JP3021947B2 - Control method of variable capacity air conditioner - Google Patents

Control method of variable capacity air conditioner

Info

Publication number
JP3021947B2
JP3021947B2 JP4098630A JP9863092A JP3021947B2 JP 3021947 B2 JP3021947 B2 JP 3021947B2 JP 4098630 A JP4098630 A JP 4098630A JP 9863092 A JP9863092 A JP 9863092A JP 3021947 B2 JP3021947 B2 JP 3021947B2
Authority
JP
Japan
Prior art keywords
motor
compressor
brushless
air conditioner
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4098630A
Other languages
Japanese (ja)
Other versions
JPH05272823A (en
Inventor
和伸 大山
靖人 柳田
一郎 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=14224838&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3021947(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP4098630A priority Critical patent/JP3021947B2/en
Publication of JPH05272823A publication Critical patent/JPH05272823A/en
Application granted granted Critical
Publication of JP3021947B2 publication Critical patent/JP3021947B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)
  • Air Conditioning Control Device (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、インバータ回路を用い
たブラシレスDCモータを圧縮機の駆動源とした能力可
変型空気調和装置の制御方法に係り、特に、該装置の最
大暖房能力の増大を図るための制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of controlling a variable capacity air conditioner using a brushless DC motor using an inverter circuit as a driving source of a compressor, and more particularly, to an increase in the maximum heating capacity of the device. The present invention relates to a control method for achieving this.

【0002】[0002]

【従来の技術】能力可変型空気調和装置において、暖房
立ち上げ時には圧縮機の負荷が大きく、潤滑油および冷
媒温度が低くなっている。この状態で、圧縮機の高能力
運転を行うと、圧縮機内に貯溜された潤滑油が吐出冷媒
と共に外部に吐出されて油上りを生じ、潤滑不良を招く
など不都合である。このような不都合を回避するため
に、例えば、特開昭61−38365号公報、実開昭6
2−171743号公報に示されるように、圧縮機の発
熱により潤滑油が温度上昇するまで、圧縮機を低能力運
転するなどの方法が知られている。
2. Description of the Related Art In a variable-capacity air conditioner, the load on a compressor is large when heating is started, and lubricating oil and refrigerant temperatures are low. If the compressor is operated at a high capacity in this state, the lubricating oil stored in the compressor is discharged to the outside together with the discharged refrigerant, causing an oil rise, which causes inconvenience such as poor lubrication. In order to avoid such inconveniences, see, for example, Japanese Patent Application Laid-Open No. 61-38365,
As disclosed in Japanese Patent Application Laid-Open No. 2-171743, there is known a method of operating a compressor at low capacity until lubricating oil temperature rises due to heat generated by the compressor.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記に
示されるような運転制御方法は、潤滑油の温度が十分に
上昇した後は、通常の周波数制御となり、暖房能力を向
上させる手段とはなっていない。従って、室内温度の暖
房立ち上げ時間の短縮にはそれ程寄与していない。とこ
ろで、空気調和装置においてブラシレスDCモータを用
いて圧縮機を駆動する場合、圧縮機の回転数が高くなっ
てブラシレスDCモータの逆起電力がインバータの直流
電圧を越えるとそれ以上は高速駆動できなくなるため、
圧縮機の最高回転数はインバータの直流電圧で制限され
ることになる。このため、インバータ入力に余裕があっ
ても空調機の暖房能力を向上させることはできず、高速
での暖房立ち上がりは困難であった。
However, in the operation control method as described above, after the temperature of the lubricating oil has sufficiently risen, normal frequency control is performed, and this is a means for improving the heating capacity. Absent. Therefore, it does not significantly contribute to shortening the heating start time of the room temperature. By the way, when a compressor is driven using a brushless DC motor in an air conditioner, if the number of rotations of the compressor increases and the back electromotive force of the brushless DC motor exceeds the DC voltage of the inverter, it cannot be driven at a higher speed. For,
The maximum rotational speed of the compressor will be limited by the DC voltage of the inverter. For this reason, even if there is enough inverter input, the heating capacity of the air conditioner cannot be improved, and it is difficult to start heating at a high speed.

【0004】本発明は、上述した問題点を解決するもの
で、その目的とするところは、圧縮機回転数がブラシレ
スDCモータの逆起電力によってインバータの直流電圧
で制限されることをなくし、モータ電流を増加させ、そ
の発熱を冷媒に吸収させることにより、暖房最大能力を
増加させ、高速での暖房立ち上げを可能とすることにあ
る。また、最高回転数を上昇させて、最大暖房能力を増
加させ、高速での暖房立ち上げを可能とすることにあ
る。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems, and an object of the present invention is to eliminate the problem that the rotational speed of a compressor is not limited by the DC voltage of an inverter due to the back electromotive force of a brushless DC motor. An object of the present invention is to increase the maximum heating capacity and increase the heating speed at high speed by increasing the current and absorbing the heat generated by the refrigerant. Another object of the present invention is to increase the maximum number of revolutions, increase the maximum heating capacity, and enable high-speed heating startup.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に請求項1の発明は、圧縮機を駆動するブラシレスDC
モータと、このブラシレスDCモータを任意の回転数で
駆動するインバータ回路およびその制御回路を備え、圧
縮機の回転数を制御することにより空調能力を制御する
能力可変型空気調和装置の制御方法において、該モータ
電流の位相をずらせてモータ電流を増加させ、該モータ
コイルによる発熱を冷媒に吸収させることにより、暖房
最大能力を増加させるものである。また、請求項2の発
明は、圧縮機を駆動するブラシレスDCモータと、この
ブラシレスDCモータを任意の回転数で駆動するインバ
ータ回路およびその制御回路を備え、圧縮機の回転数を
制御することにより空調能力を制御する能力可変型空気
調和装置の制御方法において、該モータ電流の位相を電
圧に対して進み方向にずらせ、モータのロータ磁束をモ
ータコイルで発生する磁束で弱め、最高回転数を上昇さ
せることにより、暖房最大能力を増加させるものであ
る。
According to one aspect of the present invention, there is provided a brushless DC motor for driving a compressor.
A motor, an inverter circuit for driving the brushless DC motor at an arbitrary number of revolutions, and a control circuit therefor, and a control method for a variable capacity air conditioner that controls air conditioning capacity by controlling the number of revolutions of a compressor; By increasing the motor current by shifting the phase of the motor current and absorbing the heat generated by the motor coil into the refrigerant, the maximum heating capacity is increased. According to a second aspect of the present invention, there is provided a brushless DC motor for driving a compressor, an inverter circuit for driving the brushless DC motor at an arbitrary rotation speed, and a control circuit therefor, and controlling the rotation speed of the compressor. In the control method for a variable capacity air conditioner for controlling an air conditioning capacity, a phase of the motor current is shifted in a forward direction with respect to a voltage, a rotor magnetic flux of the motor is weakened by a magnetic flux generated in a motor coil, and a maximum rotation speed is increased. By doing so, the maximum heating capacity is increased.

【0006】[0006]

【作用】請求項1記載の方法によれば、モータ電流の位
相をずらすと、モータ回転数が低下しないように制御し
た場合、モータ電流が増加する。それによるモータコイ
ルの発熱を冷媒に吸収させることにより、暖房能力を増
加させることができる。請求項2記載の方法によれば、
モータ電流の位相を電圧に対して進み方向にずらせる
と、モータのロータ磁束をモータコイルで発生する磁束
で弱めることになり、最高回転数を上昇させることがで
きる。これにより、暖房最大能力を増加させることがで
きる。
According to the method of the first aspect, when the phase of the motor current is shifted, the motor current increases when the control is performed so that the motor speed does not decrease. By absorbing the heat generated by the motor coil into the refrigerant, the heating capacity can be increased. According to the method of claim 2,
When the phase of the motor current is shifted in the forward direction with respect to the voltage, the rotor magnetic flux of the motor is weakened by the magnetic flux generated by the motor coil, and the maximum rotation speed can be increased. Thereby, the maximum heating capacity can be increased.

【0007】[0007]

【実施例】以下、本発明の一実施例を図面とともに説明
する。図1は能力可変型空気調和装置におけるブラシレ
スDCモータの駆動装置の要部構成を示す。交流電源1
にダイオードブリッジでなる整流回路2が接続され、こ
の整流回路2の出力端には平滑用コンデンサ3が接続さ
れ、直流電圧VDCを得ている。さらに、この直流出力
端には、直流電圧から交流電圧に変換するインバータ回
路4が接続され、このインバータ回路4の交流出力端に
ブラシレスDCモータ5の電機子巻線が接続されてい
る。インバータ回路4は、不図示の6個のトランジスタ
でなるスイッチング素子を3相ブリッジ接続し、各トラ
ンジスタに並列にダイオードを接続してなる。ブラシレ
スDCモータ5は、固定子にスター結線されたU,V,
W相からなる3相の電機子巻線と、永久磁石形の回転子
とからなる。制御部6は、マイクロコンピュータなどで
なり、運転指令に応じてインバータ回路4を駆動するこ
とにより、ブラシレスDCモータ5の回転制御を行う。
なお、制御部6は、磁石回転子の磁極位置を検出するた
めに、ブラシレスDCモータ5の電機子巻線に誘起され
る逆起電圧を検出する回路を有している。
An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 shows a main configuration of a drive device of a brushless DC motor in a variable capacity air conditioner. AC power supply 1
A rectifier circuit 2 composed of a diode bridge is connected to the rectifier circuit 2. An output terminal of the rectifier circuit 2 is connected to a smoothing capacitor 3 to obtain a DC voltage VDC. Further, an inverter circuit 4 for converting a DC voltage to an AC voltage is connected to the DC output terminal, and an armature winding of a brushless DC motor 5 is connected to the AC output terminal of the inverter circuit 4. The inverter circuit 4 has a three-phase bridge connection of a switching element including six transistors (not shown), and a diode connected to each transistor in parallel. The brushless DC motor 5 includes U, V,
It is composed of a three-phase armature winding composed of a W-phase and a permanent magnet type rotor. The control unit 6 is configured by a microcomputer or the like, and controls the rotation of the brushless DC motor 5 by driving the inverter circuit 4 according to an operation command.
The control unit 6 has a circuit for detecting a back electromotive voltage induced in the armature winding of the brushless DC motor 5 in order to detect the magnetic pole position of the magnet rotor.

【0008】図2はインバータ直流電圧VDCとモータ
逆起電圧(線間)の関係を示す。モータ回転数が上昇す
ると、それに応じて逆起電圧が上り、インバータ直流電
圧VDCにより制限を受け、回転数はそれ以上高くでき
ない。そこで、本発明では、制御部6でもって、モータ
電流の位相をずらせ、例えば電圧に対して進み方向にず
らせて力率を低下させる。このとき、電流値を大きくし
ないと、トルクが落ち、回転数が低下する。ここで、モ
ータ回転数が低下しないように制御すると、モータ電流
は増加することになる。図3はモータ逆起電圧(相電
圧)Vuと、相電流iu、実効値電流iu(rms)お
よび、電流位相を進めた時の相電流iu´、実効値電流
iu´(rms)の関係を示す。
FIG. 2 shows the relationship between the inverter DC voltage VDC and the motor back electromotive voltage (between lines). When the motor speed increases, the back electromotive voltage rises accordingly and is limited by the inverter DC voltage VDC, and the speed cannot be further increased. Therefore, in the present invention, the control unit 6 shifts the phase of the motor current, for example, shifts the voltage in the leading direction to lower the power factor. At this time, if the current value is not increased, the torque decreases and the rotation speed decreases. Here, if control is performed so that the motor speed does not decrease, the motor current will increase. FIG. 3 shows the relationship between the motor back electromotive voltage (phase voltage) Vu, the phase current iu, the effective value current iu (rms), and the phase current iu ′ and the effective value current iu ′ (rms) when the current phase is advanced. Show.

【0009】このように、モータ電流の位相をずらせる
ことにより、モータ電流が増加するので、この電流増加
によるコイルでの発熱を冷媒に吸収させることにより、
モータ最大回転数を変化させることなく、最高回転時で
の最大暖房能力を増加させることができ、室内温度の暖
房立ち上げ時間の短縮が可能となる。さらにまた、モー
タ電流の位相を進み方向にずらせることにより、永久磁
石ロータの磁束をモータコイルで発生する磁束で弱める
ことになるので、インバータ直流電圧が同じでも、逆起
電圧の影響が小さくなり、モータ最高回転数を上昇させ
ることができる。これにより、暖房最大能力を増加させ
ることができ、室内温度の暖房立ち上げ時間の短縮が可
能となるものである。
As described above, since the motor current increases by shifting the phase of the motor current, heat generated by the coil due to the increase in the current is absorbed by the refrigerant.
The maximum heating capacity at the time of the maximum rotation can be increased without changing the motor maximum rotation speed, and the heating start-up time of the room temperature can be shortened. Furthermore, by shifting the phase of the motor current in the forward direction, the magnetic flux of the permanent magnet rotor is weakened by the magnetic flux generated by the motor coil, so that even if the inverter DC voltage is the same, the effect of the back electromotive voltage is reduced. In addition, the maximum motor speed can be increased. As a result, the maximum heating capacity can be increased, and the heating start-up time of the room temperature can be shortened.

【0010】図4は圧縮機の断面構成を示す。同図に
は、冷媒の流れと、冷媒へのモータ発熱の移動を矢印に
て示している。圧縮機は、モータコイル雰囲気が冷媒で
充填されたような構造になっており、冷媒は、ロータに
より回転駆動されるシリンダー部で圧縮され、モータ部
を通り、圧縮機の外部に流出する。従って、モータコイ
ルに流れる電流による発熱はそのまま冷媒に吸収される
ことになる。
FIG. 4 shows a sectional configuration of the compressor. In the figure, the flow of the refrigerant and the movement of the motor heat generated by the refrigerant are indicated by arrows. The compressor has a structure in which a motor coil atmosphere is filled with a refrigerant, and the refrigerant is compressed by a cylinder portion rotated and driven by a rotor, and flows out of the compressor through the motor portion. Therefore, heat generated by the current flowing through the motor coil is directly absorbed by the refrigerant.

【0011】本発明方法の作用効果を以下に説明する。
モータ電流の位相をずらせてモータ電流を増加させるこ
とにより生じる効果は、モータコイルの発熱を冷媒に吸
収させることにより暖房最大能力が増加することであ
り、さらに、電流位相のずらせる方向を進み方向とする
ことにより、次の相乗効果が得られる。すなわち、永久
磁石ロータの磁束をモータコイルに発生する磁束で弱め
ることができ、インバータ直流電圧が同じでも、逆起電
圧の影響が小さくなり、最高回転数が若干上り、これに
より、暖房最大能力が増加する。図5は回転数とモータ
発生トルクの関係を示す。同図に示されるように、モー
タトルクはインバータの電流容量により制限を受けてい
る。
The operation and effect of the method of the present invention will be described below.
The effect produced by increasing the motor current by shifting the phase of the motor current is that the maximum heating capacity is increased by absorbing the heat of the motor coil into the refrigerant, and furthermore, the direction in which the current phase is shifted is advancing direction. By doing so, the following synergistic effect is obtained. That is, the magnetic flux of the permanent magnet rotor can be weakened by the magnetic flux generated in the motor coil, and even if the inverter DC voltage is the same, the effect of the back electromotive voltage is reduced, and the maximum number of revolutions is slightly increased, thereby increasing the maximum heating capacity. To increase. FIG. 5 shows the relationship between the number of rotations and the torque generated by the motor. As shown in the figure, the motor torque is limited by the current capacity of the inverter.

【0012】上記の進み電流位相とした場合の作用効果
を説明する。ブラシレスDCモータの端子電圧は、一般
に次式で表される。 │v│=ω・√{(ψ+Ld・id)2 +(Lq・iq)2 } …(1) ここで、ω:モータの回転角周波数 ψ:永久磁石の磁束 Ld,Lq:モータのインダクタンス(d−q2軸表
示) id,iq:モータに流れる電流(d−q2軸表示)
The operation and effect when the above-described leading current phase is set will be described. The terminal voltage of a brushless DC motor is generally represented by the following equation. | V | = ω · √ {(ψ + Ld · id) 2 + (Lq · iq) 2 … (1) where, ω: rotational angular frequency of motor ψ: magnetic flux of permanent magnet Ld, Lq: inductance of motor ( id, iq: Current flowing through the motor (d-q two-axis display)

【0013】従来の駆動方法では、電流位相をほとんど
ずらさないので、上記(1)式において、idは0に近
い値となり、回転数が増加し(ωが大きくなり)、モー
タ端子電圧│vd│がインバータの出し得る最大電圧に
近くなると、急速にモータに流れる電流が小さくなるた
め、発生トルクは、図5に示すように、低下する。それ
に対して、本発明方法によれば、進み電流を流すので、
id<0、つまりLd・id<0となり、ψ+Ld・i
dが従来方式に比べ小さくなる。このため、従来と同じ
インバータの最大電圧、回転数であっても、モータ端子
電圧│v│が、小さくなるため、より高速回転領域まで
発生トルクが低下しなくなる。
In the conventional driving method, since the current phase hardly shifts, in the above equation (1), id becomes a value close to 0, the rotation speed increases (ω increases), and the motor terminal voltage | vd | Is closer to the maximum voltage that can be generated by the inverter, the current flowing through the motor rapidly decreases, so that the generated torque decreases as shown in FIG. On the other hand, according to the method of the present invention, since the leading current flows,
id <0, that is, Ld · id <0, and ψ + Ld · i
d is smaller than in the conventional method. Therefore, even if the maximum voltage and the number of rotations of the inverter are the same as those in the related art, the motor terminal voltage | v | becomes small, and the generated torque does not decrease to a higher-speed rotation region.

【0014】[0014]

【発明の効果】以上のように請求項1の発明によれば、
インバータを用いて圧縮機を駆動するブラシレスDCモ
ータの駆動を制御する際に、モータ電流の位相をずらせ
ることにより、モータ電流を増加させ、該モータコイル
による発熱を冷媒に吸収させ、暖房最大能力を増加させ
ることができ、暖房立ち上げ時間の短縮を図ることがで
きる。また、請求項2の発明によれば、モータ電流の位
相を電圧に対して進み方向にずらせることにより、モー
タのロータ磁束をモータコイルで発生する磁束で弱め、
最高回転数を上昇させることができ、もって暖房最大能
力を増加させることができ、相乗の効果が得られる。
As described above, according to the first aspect of the present invention,
When controlling the drive of a brushless DC motor that drives a compressor using an inverter, the motor current is increased by shifting the phase of the motor current, the heat generated by the motor coil is absorbed by the refrigerant, and the maximum heating capacity Can be increased, and the heating start-up time can be shortened. According to the second aspect of the present invention, the phase of the motor current is shifted in the leading direction with respect to the voltage, thereby weakening the rotor magnetic flux of the motor with the magnetic flux generated in the motor coil,
The maximum number of revolutions can be increased, and the maximum heating capacity can be increased, so that a synergistic effect can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例によるブラシレスDCモータ
の駆動装置の構成図である。
FIG. 1 is a configuration diagram of a driving device of a brushless DC motor according to an embodiment of the present invention.

【図2】インバータ直流電圧とモータ逆起電圧の関係図
である。
FIG. 2 is a diagram showing a relationship between an inverter DC voltage and a motor back electromotive voltage.

【図3】モータ逆起電圧と、相電流、実効値電流の関係
図である。
FIG. 3 is a relationship diagram of a motor back electromotive voltage, a phase current, and an effective value current.

【図4】圧縮機の断面構成図である。FIG. 4 is a sectional configuration diagram of a compressor.

【図5】本発明方法と従来の方法とを比較するための回
転数とモータ発生トルクの関係図である。
FIG. 5 is a graph showing the relationship between the number of revolutions and the motor-generated torque for comparing the method of the present invention with a conventional method.

【符号の説明】[Explanation of symbols]

4 インバータ回路 5 ブラシレスDCモータ 6 制御部 4 Inverter circuit 5 Brushless DC motor 6 Control unit

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭63−161363(JP,A) 特開 平3−122459(JP,A) (58)調査した分野(Int.Cl.7,DB名) F25B 1/00 321 F25B 1/00 361 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-63-161363 (JP, A) JP-A-3-122459 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) F25B 1/00 321 F25B 1/00 361

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 圧縮機を駆動するブラシレスDCモータ
と、このブラシレスDCモータを任意の回転数で駆動す
るインバータ回路およびその制御回路を備え、圧縮機の
回転数を制御することにより空調能力を制御する能力可
変型空気調和装置の制御方法において、該モータ電流の
位相をずらせてモータ電流を増加させ、該モータコイル
による発熱を冷媒に吸収させることにより、暖房最大能
力を増加させることを特徴とした能力可変型空気調和装
置の制御方法。
1. A brushless DC motor for driving a compressor, an inverter circuit for driving the brushless DC motor at an arbitrary number of revolutions, and a control circuit therefor, and the air conditioning capacity is controlled by controlling the number of revolutions of the compressor. In the method for controlling a variable capacity type air conditioner, the maximum heating capacity is increased by shifting the phase of the motor current to increase the motor current, and absorbing the heat generated by the motor coil into the refrigerant. A method for controlling a variable capacity air conditioner.
【請求項2】 圧縮機を駆動するブラシレスDCモータ
と、このブラシレスDCモータを任意の回転数で駆動す
るインバータ回路およびその制御回路を備え、圧縮機の
回転数を制御することにより空調能力を制御する能力可
変型空気調和装置の制御方法において、該モータ電流の
位相を電圧に対して進み方向にずらせ、モータのロータ
磁束をモータコイルで発生する磁束で弱め、最高回転数
を上昇させることにより、暖房最大能力を増加させるこ
とを特徴とした能力可変型空気調和装置の制御方法。
2. A brushless DC motor for driving a compressor, an inverter circuit for driving the brushless DC motor at an arbitrary number of revolutions, and a control circuit therefor, and the air conditioning capacity is controlled by controlling the number of revolutions of the compressor. In the control method of the variable capacity air conditioner, the phase of the motor current is shifted in the forward direction with respect to the voltage, the rotor magnetic flux of the motor is weakened by the magnetic flux generated in the motor coil, and the maximum rotation speed is increased. A method for controlling a variable capacity air conditioner, characterized by increasing the maximum heating capacity.
JP4098630A 1992-03-24 1992-03-24 Control method of variable capacity air conditioner Expired - Lifetime JP3021947B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4098630A JP3021947B2 (en) 1992-03-24 1992-03-24 Control method of variable capacity air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4098630A JP3021947B2 (en) 1992-03-24 1992-03-24 Control method of variable capacity air conditioner

Publications (2)

Publication Number Publication Date
JPH05272823A JPH05272823A (en) 1993-10-22
JP3021947B2 true JP3021947B2 (en) 2000-03-15

Family

ID=14224838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4098630A Expired - Lifetime JP3021947B2 (en) 1992-03-24 1992-03-24 Control method of variable capacity air conditioner

Country Status (1)

Country Link
JP (1) JP3021947B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009151033A1 (en) * 2008-06-09 2009-12-17 ダイキン工業株式会社 Air conditioner, air conditioner manufacturing method, and compressor
CN102164973B (en) * 2008-09-29 2013-10-23 日本电石工业株式会社 Vinyloxy group-containing vinyl polymer

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5994631B2 (en) * 2012-12-27 2016-09-21 ダイキン工業株式会社 Rotating electrical machine
US11493244B2 (en) 2017-12-18 2022-11-08 Daikin Industries, Ltd. Air-conditioning unit
US11906207B2 (en) 2017-12-18 2024-02-20 Daikin Industries, Ltd. Refrigeration apparatus
US11506425B2 (en) 2017-12-18 2022-11-22 Daikin Industries, Ltd. Refrigeration cycle apparatus
US11435118B2 (en) 2017-12-18 2022-09-06 Daikin Industries, Ltd. Heat source unit and refrigeration cycle apparatus
US11820933B2 (en) 2017-12-18 2023-11-21 Daikin Industries, Ltd. Refrigeration cycle apparatus
US11549041B2 (en) 2017-12-18 2023-01-10 Daikin Industries, Ltd. Composition containing refrigerant, use of said composition, refrigerator having said composition, and method for operating said refrigerator
US11441802B2 (en) 2017-12-18 2022-09-13 Daikin Industries, Ltd. Air conditioning apparatus
US11549695B2 (en) 2017-12-18 2023-01-10 Daikin Industries, Ltd. Heat exchange unit
BR112020010634A2 (en) 2017-12-18 2020-11-10 Daikin Industries, Ltd. composition comprising refrigerant, use of the same, refrigeration machine having the same, and method for operating said refrigeration machine
US11365335B2 (en) 2017-12-18 2022-06-21 Daikin Industries, Ltd. Composition comprising refrigerant, use thereof, refrigerating machine having same, and method for operating said refrigerating machine
US11441819B2 (en) 2017-12-18 2022-09-13 Daikin Industries, Ltd. Refrigeration cycle apparatus
KR102655619B1 (en) 2017-12-18 2024-04-09 다이킨 고교 가부시키가이샤 refrigeration cycle device
EP3786544B1 (en) * 2018-04-25 2022-05-04 Mitsubishi Electric Corporation Refrigeration cycle device
JP7099425B2 (en) * 2019-10-03 2022-07-12 トヨタ自動車株式会社 In-vehicle temperature control device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009151033A1 (en) * 2008-06-09 2009-12-17 ダイキン工業株式会社 Air conditioner, air conditioner manufacturing method, and compressor
JP2009293907A (en) * 2008-06-09 2009-12-17 Daikin Ind Ltd Air conditioner and manufacturing method of air conditioner
CN102057229A (en) * 2008-06-09 2011-05-11 大金工业株式会社 Air conditioner, air conditioner manufacturing method, and compressor
KR101324450B1 (en) * 2008-06-09 2013-10-31 다이킨 고교 가부시키가이샤 Air conditioner, air conditioner manufacturing method, and compressor
CN102057229B (en) * 2008-06-09 2013-12-18 大金工业株式会社 Air conditioner, air conditioner manufacturing method, and compressor
US8616016B2 (en) 2008-06-09 2013-12-31 Daikin Industries, Ltd. Air conditioner, air conditioner manufacturing method, and compressor
CN102164973B (en) * 2008-09-29 2013-10-23 日本电石工业株式会社 Vinyloxy group-containing vinyl polymer

Also Published As

Publication number Publication date
JPH05272823A (en) 1993-10-22

Similar Documents

Publication Publication Date Title
JP3021947B2 (en) Control method of variable capacity air conditioner
JP6360442B2 (en) Permanent magnet synchronous motor, winding switching motor drive device, refrigeration and air conditioning equipment using them, and electric vehicle
JP3341826B2 (en) PWM / PAM control type motor control device and air conditioner and motor control method using the same
JP4259173B2 (en) Electric compressor drive device
EP1906116A2 (en) Control device of motor for refrigerant compressor
JP2002252996A (en) Method and apparatus for controlling start of synchronous motor
WO2006009145A1 (en) Inverter
KR20040024447A (en) Air conditioner
JP6241453B2 (en) Motor drive device
CN111264026B (en) Motor driving device, refrigeration cycle device, air conditioner, water heater, and refrigerator
JP6217667B2 (en) Electric compressor
JP2007089247A (en) Driver of electric motor
JPS6191445A (en) Compressor drive device of air conditioner
JP2008253128A (en) Inverter apparatus
JP2010226842A (en) Control method and control apparatus for brushless dc motor
US11824472B2 (en) Motor drive apparatus and cooling apparatus
JP7325526B2 (en) Electric motor drive devices, refrigeration cycle devices, air conditioners, water heaters, and refrigerators
JP3278491B2 (en) Refrigeration cycle control device
JP4208228B2 (en) Brushless motor drive unit for air conditioner fan
JP2005207362A (en) Driving device for electric compressor
JP2002101685A (en) Inverter
JP2003070299A (en) Power generation control system and refrigerated vehicle
JP7486656B2 (en) Motor drive device, refrigeration cycle device, air conditioner, water heater and refrigerator
JPS6116278A (en) Drive device for compressor
JP7387056B2 (en) Electric motor drive equipment and refrigeration cycle application equipment

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19991214

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090114

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100114

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100114

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110114

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120114

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130114

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130114

Year of fee payment: 13