JP3012623B1 - Vehicle ventilation system - Google Patents

Vehicle ventilation system

Info

Publication number
JP3012623B1
JP3012623B1 JP33788498A JP33788498A JP3012623B1 JP 3012623 B1 JP3012623 B1 JP 3012623B1 JP 33788498 A JP33788498 A JP 33788498A JP 33788498 A JP33788498 A JP 33788498A JP 3012623 B1 JP3012623 B1 JP 3012623B1
Authority
JP
Japan
Prior art keywords
vehicle
pressure
rotation speed
blower
vehicle interior
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33788498A
Other languages
Japanese (ja)
Other versions
JP2000158934A (en
Inventor
治 野呂
研吾 沖田
哲 坂中
忠機 鈴木
祥生 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Motors Ltd
Original Assignee
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Jukogyo KK filed Critical Kawasaki Jukogyo KK
Priority to JP33788498A priority Critical patent/JP3012623B1/en
Application granted granted Critical
Publication of JP3012623B1 publication Critical patent/JP3012623B1/en
Publication of JP2000158934A publication Critical patent/JP2000158934A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Air-Conditioning For Vehicles (AREA)

Abstract

【要約】 【課題】 送風機の無駄な運転を可及的に少なくして、
消費電力および騒音を低減することができる車両換気装
置を提供する。 【解決手段】 車両2に設けられる給気送風機3および
排気送風機4の各ファン3a,4aの回転数を制御し
て、車内への給気送風量および排気送風量を連続的に調
整する制御手段5によって、車内の必要換気量を維持し
ながら車内圧力の急激な変動を抑制する車両換気装置に
おいて、前記制御手段5は、各送風機3,4の必要換気
量に相当する各回転数を基準回転数とし、車内圧力が車
内圧設定値に対して変化したとき、車内圧力をフィード
バックして各送風機3,4の各回転数を制御して車内圧
力を前記車内圧設定値に維持し、各送風機3,4のうち
いずれか一方の回転数が上限であるとき、車外圧力に応
じて各送風機3,4の基準回転数を低下させ、各送風機
3,4の風量差が大きくなるように制御する。
Abstract: [PROBLEMS] To minimize unnecessary operation of a blower,
Provided is a vehicle ventilation device capable of reducing power consumption and noise. SOLUTION: A control means for controlling the rotation speed of each fan 3a, 4a of an air supply blower 3 and an exhaust blower 4 provided in a vehicle 2 to continuously adjust a supply air supply amount and an exhaust air supply amount into the vehicle. In the vehicle ventilator for suppressing the rapid fluctuation of the pressure inside the vehicle while maintaining the required ventilation volume in the vehicle by the control means 5, the control means 5 controls each rotation speed corresponding to the required ventilation volume of each of the blowers 3 and 4 to the reference rotation speed. When the in-vehicle pressure changes with respect to the in-vehicle pressure set value, the in-vehicle pressure is fed back to control the number of revolutions of each of the blowers 3 and 4 to maintain the in-vehicle pressure at the in-vehicle pressure set value. When any one of the rotation speeds of the fans 3 and 4 is the upper limit, the reference rotation speed of each of the blowers 3 and 4 is reduced according to the pressure outside the vehicle, and control is performed such that the difference in the air volume between the blowers 3 and 4 increases. .

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、鉄道車両などの車
内で所要の換気量を維持しながら車内圧力の急激な変動
を抑制することができる車両換気装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vehicle ventilation system capable of suppressing a rapid change in vehicle interior pressure while maintaining a required ventilation volume in a vehicle such as a railway vehicle.

【0002】[0002]

【従来の技術】鉄道車両には、車外の新鮮な空気と車内
の汚れた空気を入換えるために、換気装置が備えられ。
この換気装置は、車内と車外とをダクトでつなぎ、この
ダクトの途中に車内へ送風するためのファンを設置する
という構成が採られている。このような換気装置は、車
内と車外とがダクトによって連通されているので、車両
がトンネルに進入するとき、および対向車両とすれ違う
ときなどには、車外圧力が変動し、これに伴って車外圧
力と車内圧力との圧力差が変化する。この圧力差の変化
によって、前記ファンによる車内への送風量が変化して
車内圧力の変動を引き起こし、車内の乗客は、鼓膜に外
圧が作用して聴力が一時的に低下するいわば耳つん状態
に陥り、不快感を感じてしまう。このような車内圧力の
変動に起因する乗客の不快感をなくすために、前記換気
装置には、車内圧力の急激な変動を抑制するための構成
が具備されている。
2. Description of the Related Art A railcar is provided with a ventilation device for exchanging fresh air outside the vehicle with dirty air inside the vehicle.
This ventilating device adopts a configuration in which a duct is connected between the inside and the outside of a vehicle by a duct, and a fan for blowing air into the vehicle is installed in the middle of the duct. In such a ventilation device, since the inside and the outside of the vehicle are communicated by a duct, when a vehicle enters a tunnel or passes by an oncoming vehicle, the outside pressure fluctuates, and accordingly the outside pressure changes. The pressure difference between the vehicle and the vehicle interior pressure changes. Due to the change in the pressure difference, the amount of air blown into the vehicle by the fan changes to cause a change in the vehicle pressure, so that the passengers in the vehicle are in a so-called deaf state in which external pressure acts on the eardrum and the hearing is temporarily reduced. You fall and feel discomfort. In order to eliminate the discomfort of the passenger due to such a change in the vehicle interior pressure, the ventilator is provided with a configuration for suppressing a sudden change in the vehicle interior pressure.

【0003】この車内圧力の急激な変動を抑制するため
の最も初歩的な従来の技術として、ダクトの圧力損失を
大きくして、車外圧力の変動の影響が車内へ伝わりにく
くする方法が周知である。この方法では、圧力損失を大
きくするために、本来必要な換気風量を確保するために
能力の大きなファンが必要となり、消費電力および騒音
が大きくなるという問題がある。
[0003] As the most rudimentary conventional technique for suppressing the rapid fluctuation of the in-vehicle pressure, there is known a method of increasing the pressure loss of a duct so that the influence of the fluctuation of the outside pressure is hardly transmitted to the inside of the vehicle. . In this method, in order to increase the pressure loss, a fan having a large capacity is required to secure the originally required ventilation air volume, and there is a problem that power consumption and noise increase.

【0004】また上記の従来の技術に類似の他の従来の
技術では、ダクトの途中に絞り弁を設置して車外圧力の
変動による車内への影響を低減する方法がある。すなわ
ち、この従来の技術では、車外圧力が上昇したときに
は、給気ダクトに設けられる絞り弁の開度を小さくし、
かつ排気ダクトに設けられる絞り弁の開度を大きくし、
また車外圧力が低下したときには、給気ダクトに設けら
れる絞り弁の開度を大きくし、かつ排気ダクトに設けら
れる絞り弁の開度を小さくすることによって、車内圧力
の変動を抑制しようとするものである。前記絞り弁の構
成については、多段切換弁および連続可変弁などがあ
り、また絞り弁の駆動方法については、電動モータなど
の能動的なアクチュエータを利用するものと、車外圧力
および車内圧力間の差圧によって駆動するダイアフラム
などをアクチュエータとして利用するものとがあり、各
種の組合せが周知である。
[0004] In another conventional technique similar to the above-mentioned conventional technique, there is a method in which a throttle valve is provided in the middle of a duct to reduce the influence on the inside of the vehicle due to fluctuations in pressure outside the vehicle. That is, in this conventional technique, when the external pressure increases, the opening degree of the throttle valve provided in the air supply duct is reduced,
And increase the opening of the throttle valve provided in the exhaust duct,
Further, when the pressure outside the vehicle decreases, the opening degree of the throttle valve provided in the air supply duct is increased, and the opening degree of the throttle valve provided in the exhaust duct is reduced, thereby suppressing fluctuations in the vehicle interior pressure. It is. Regarding the configuration of the throttle valve, there are a multi-stage switching valve, a continuously variable valve, and the like, and the drive method of the throttle valve is different from that using an active actuator such as an electric motor and that between the outside pressure and the inside pressure. Some use a diaphragm or the like driven by pressure as an actuator, and various combinations are well known.

【0005】このような絞り弁を用いる従来の技術で
は、送風ファンの回転数は一定であり、たとえば車外圧
力が上昇して給気ファンの回転数を低下させても所要の
風量が確保できる場合であっても、給気ファンの回転数
はそのままにして絞り弁の開度を変化させることによっ
て風量を調整するため、この給気ファンの回転数を下げ
ることができるにも拘わらず常に一定の回転数で駆動さ
れることによって無駄に電力が消費され、経済性が悪い
という問題を有するだけでなく、回転数を下げて騒音が
低減できるのにそのままにする、といういわば機会損失
が存在する。
In the conventional technique using such a throttle valve, the rotation speed of the blower fan is constant. For example, when a required air volume can be secured even when the rotation speed of the air supply fan is reduced due to an increase in the pressure outside the vehicle. However, since the air flow rate is adjusted by changing the opening degree of the throttle valve while keeping the rotation speed of the air supply fan as it is, the rotation speed of the air supply fan can be reduced even though the rotation speed of the air supply fan can be reduced. Driving at the rotational speed consumes power wastefully and is not economical. In addition, there is an opportunity loss that the rotational speed is reduced and noise is reduced.

【0006】以上の各従来の技術の問題を解決するさら
に他の従来の技術は、特開平5−178207号公報に
示されている。この従来の技術では、給気用ダクトに給
気ファンを設けるとともに、排気用ダクトに排気ファン
を設け、検出自列車速度、検出自列車トンネル突入タイ
ミング、検出対向列車速度、検出対向列車トンネル突入
タイミング、トンネル形状データ、および列車データに
基づいて、トンネル走行時において時列車の受ける車外
圧変動を推定演算し、この演算結果に基づいて、給気フ
ァンおよび排気ファンの回転数をインバータ制御し、ま
たは給気ダクトおよび排気ダクトに絞り弁を設けてこれ
らの各絞り弁を制御して、給気風量および排気風量を調
節して、車内圧の変動を抑制している。
Still another conventional technique for solving the above-mentioned problems of the conventional techniques is disclosed in Japanese Patent Application Laid-Open No. 5-178207. In this conventional technique, an air supply fan is provided in an air supply duct, and an exhaust fan is provided in an exhaust duct, and the detected own train speed, the detected own train tunnel entry timing, the detected oncoming train speed, the detected oncoming train tunnel entry timing are provided. Based on the tunnel shape data, and the train data, the vehicle outside pressure fluctuation received by the hour train during the tunnel traveling is estimated and calculated, and based on the calculation result, the rotation speeds of the air supply fan and the exhaust fan are inverter-controlled, or Throttle valves are provided in the air supply duct and the exhaust duct, and these throttle valves are controlled to adjust the supply air flow and the exhaust air flow, thereby suppressing fluctuations in the vehicle interior pressure.

【0007】さらに他の従来の技術は、特開昭63−3
15365公報に示されている。この従来の技術では、
給気手段および排気手段の各送風機の回転数を制御する
にあたって、送風機の特性として、静圧の増加に伴って
風量も増加するという静圧と風量との関係を多段階に予
め設定しておき、車外圧力が変化したとき、この変化を
車外圧力検出器によって検出し、制御手段は、この検出
値によって各送風機の特性を選択し、インバータに選択
した特性に対応する周波数を指令し、インバータは各送
風機に前記指令に基づいて電力供給を行って、車外圧力
の変動の影響が車内に伝搬しないように、各送風機によ
る風量を制御している。
[0007] Still another conventional technique is disclosed in Japanese Patent Application Laid-Open No. 63-3630.
No. 15365. In this conventional technique,
In controlling the rotation speed of each blower of the air supply means and the exhaust means, as a characteristic of the blower, the relationship between the static pressure and the air volume, in which the air volume increases with the increase of the static pressure, is set in advance in multiple stages. When the pressure outside the vehicle changes, the change is detected by a pressure detector outside the vehicle, and the control means selects the characteristics of each blower according to the detected value, and commands the inverter to specify the frequency corresponding to the selected characteristics. Electric power is supplied to each blower based on the command, and the air volume of each blower is controlled so that the influence of the fluctuation in the pressure outside the vehicle does not propagate inside the vehicle.

【0008】[0008]

【発明が解決しようとする課題】上記の特開平5−17
8207号公報に示される従来の技術では、給気風量と
排気風量とのアンバランスを抑え、車外圧力変動の車内
への侵入によって乗客が感じる不快感を防止するため
に、給気風量および排気風量を調整するための装置とし
て、各送風機が設けられる各ダクト内に絞り弁がそれぞ
れ設けられている。また特開昭63−315365号公
報に示される従来の技術では、各送風機の特性の選択で
は風量の変動が大きく、無駄な換気を行うことになるた
め、適正な換気量となるように、各送風機が設けられる
ダクトに絞り弁が設けられている。これらの各従来の技
術では、給気および排気の各風量を調整するにあたっ
て、各送風機のダクト内に絞り弁がそれぞれ設けられる
ため、給気経路および排気経路のいずれにも絞り弁によ
って圧力損失が発生し、適正な換気風量を確保するため
に前記圧力損失によって風量が減少する分だけ余分に各
送風機を駆動しなければならず、消費電力および騒音が
大きくなってしまうという問題がある。
SUMMARY OF THE INVENTION The above-mentioned Japanese Patent Laid-Open No. 5-17 / 1993
In the prior art disclosed in Japanese Patent No. 8207, the supply air flow rate and the exhaust air flow rate are set to suppress the imbalance between the supply air flow rate and the exhaust air flow rate and to prevent the passengers from feeling uncomfortable due to the intrusion of the external pressure fluctuation into the vehicle. The throttle valve is provided in each duct in which each blower is provided as a device for adjusting. Further, in the conventional technique disclosed in Japanese Patent Application Laid-Open No. 63-315365, when the characteristics of each blower are selected, the air volume fluctuates greatly and wasteful ventilation is performed. A throttle valve is provided in a duct in which the blower is provided. In each of these conventional techniques, a throttle valve is provided in each of the ducts of each blower when adjusting the respective air volumes of the air supply and the exhaust, so that the pressure loss is caused by the throttle valve in both the air supply path and the exhaust path. In order to ensure a proper ventilation air volume, each blower must be driven extra by an amount corresponding to a decrease in the air volume due to the pressure loss, and there is a problem that power consumption and noise increase.

【0009】本発明の目的は、送風機の無駄な運転を可
及的に少なくして、消費電力および騒音を低減すること
ができる車両換気装置を提供することである。
An object of the present invention is to provide a vehicle ventilation device capable of reducing power consumption and noise by minimizing useless operation of a blower.

【0010】[0010]

【課題を解決するための手段】請求項1記載の本発明
は、車両に設けられる給気送風機および排気送風機の各
ファンの回転数を制御して、車内への給気送風量および
排気送風量を連続的に調整する制御手段によって、車内
の必要換気量を維持しながら車内圧力の急激な変動を抑
制する車両換気装置において、前記制御手段は、各送風
機の前記必要換気量に相当する各回転数を基準回転数と
し、車内圧力が車内圧設定値に対して変化したとき、車
内圧力をフィードバックして各送風機の各回転数を制御
して車内圧力を前記車内圧設定値に維持し、車内圧力を
前記車内圧設定値に維持するために各送風機のうち少な
くとも一方の回転数が上限であるとき、車外圧力に応じ
て各送風機の基準回転数を低下させて各送風機の風量差
を大きくすることを特徴とする車両換気装置である。
According to the present invention, the number of rotations of each fan of an air supply blower and an exhaust blower provided in a vehicle is controlled to supply air and exhaust air to the vehicle. In a vehicle ventilation device that suppresses a sudden change in the vehicle interior pressure while maintaining the required ventilation volume in the vehicle by a control unit that continuously adjusts, the control unit performs each rotation corresponding to the required ventilation volume of each blower. When the vehicle interior pressure changes with respect to the vehicle interior pressure set value, the vehicle interior pressure is fed back to control each rotation speed of each blower to maintain the vehicle interior pressure at the vehicle interior pressure set value, When the rotation speed of at least one of the blowers is the upper limit in order to maintain the pressure at the vehicle interior pressure set value, the reference rotation speed of each blower is reduced in accordance with the external pressure to increase the difference in the air volume between the blowers. That A vehicle ventilator and symptoms.

【0011】本発明に従えば、車内圧力が車内圧設定値
に対して変化したとき、車内圧力をフィードバックして
各送風機の各回転数を制御し、車内圧力を前記車内圧設
定値に維持するように制御し、このとき各送風機のいず
れか一方の回転数が上限に達したとき、車外圧力に応じ
て各送風機の基準回転数を低下させて風量差を大きく
し、これによって必要換気量を損なうことなく、車内圧
力の急激な変動を防止する。
According to the present invention, when the in-vehicle pressure changes with respect to the in-vehicle pressure set value, the in-vehicle pressure is fed back to control each rotation speed of each blower, and the in-vehicle pressure is maintained at the in-vehicle pressure set value. When the rotation speed of any one of the blowers reaches the upper limit at this time, the reference rotation speed of each blower is reduced according to the pressure outside the vehicle to increase the airflow difference, thereby increasing the required ventilation volume. Abrupt fluctuations in vehicle interior pressure are prevented without loss.

【0012】請求項2記載の本発明は、前記制御手段
は、車外圧力が一定であるとき、前記車内圧設定値を車
外圧力に近づく方向に緩やかに変化させることを特徴と
する。
According to a second aspect of the present invention, when the outside pressure is constant, the control means gradually changes the inside pressure set value in a direction approaching the outside pressure.

【0013】本発明に従えば、前記制御手段は車外圧力
が一定であるときには車内圧設定値を車外圧力に近づく
方向に緩やかに変化させ、これによって車内圧力はより
緩やかに車外圧力に近づく方向に変化し、乗客が車内圧
力の変化を感じるような大きな圧力変動を防止すること
ができる。
According to the present invention, when the outside pressure is constant, the control means changes the inside pressure set value gradually in the direction approaching the outside pressure, whereby the inside pressure is gradually changed in the direction approaching the outside pressure. It is possible to prevent a large pressure fluctuation that changes and the passenger feels a change in the vehicle interior pressure.

【0014】請求項3記載の本発明は、車両に設けられ
る給気送風機および排気送風機の各ファンの回転数を制
御して、車内への給気送風量および排気送風量を連続的
に調整する制御手段によって、車内の必要換気量を維持
しながら車内圧力の急激な変動を抑制する車両換気装置
において、前記制御手段は、予め定める時定数に基づい
て、車内圧力が車外圧力に緩慢に近ずく方向に変化する
ように前記車内圧設定値を演算して求め、その車内圧設
定値を出力する車内圧演算手段と、車外圧力および前記
車内圧演算手段から出力される車内圧設定値に基づい
て、少なくとも必要換気量を維持する各送風機の基準回
転数を演算して求め、その基準回転数を出力する基準回
転数演算手段と、車内圧力と車内圧設定値との圧力差を
演算して求め、その圧力差を出力する圧力差演算手段
と、基準回転数演算手段からの基準回転数と圧力差演算
手段からの圧力差に相当する回転数とを比較して差を求
め、その差を回転数指令値として各送風機に出力する回
転数指令手段とを含むことを特徴とする車両換気装置で
ある。
According to a third aspect of the present invention, the number of rotations of each fan of an air supply blower and an exhaust blower provided in a vehicle is controlled to continuously adjust the amount of air supply and the amount of exhaust air blown into the vehicle. In the vehicle ventilation device, wherein the control means suppresses a sudden change in the internal pressure while maintaining the required ventilation volume in the vehicle, the control means sets the internal pressure close to the external pressure slowly based on a predetermined time constant. The vehicle interior pressure set value is calculated and obtained so as to change in the direction, based on the vehicle interior pressure calculation means for outputting the vehicle interior pressure set value, and the vehicle exterior pressure and the vehicle interior pressure set value output from the vehicle interior pressure calculation means. Calculating and calculating a reference rotation speed of each blower that maintains at least the required ventilation volume, and calculating and calculating a reference rotation speed calculating means for outputting the reference rotation speed, and a pressure difference between the vehicle interior pressure and the vehicle interior pressure set value. ,That A pressure difference calculating means for outputting a force difference is compared with a reference speed from the reference speed calculating means and a speed corresponding to the pressure difference from the pressure difference calculating means to obtain a difference. And a rotation speed command means for outputting a value to each blower as a value.

【0015】本発明に従えば、車内圧演算手段は車内圧
設定値を求めるにあたって、予め定める時定数に基づ
き、車内圧力が車外圧力に緩慢に近づくように前記車内
圧設定値を出力し、基準回転数演算手段は、この車内圧
設定値と車外圧力とに基づいて各送風機の基準回転数を
演算して求める。圧力差演算手段は前記車内圧演算手段
によって出力された車内圧設定値と車内圧力との圧力差
を演算して求め、回転数指令手段によって前記基準回転
数と前記圧力差に相当する回転数との差を求めて、その
差の回転数を指令値として各送風機に出力し、各送風機
の送風量を変化させ、急激な圧力変動の生じない車外圧
力を維持することができる。
According to the invention, the vehicle interior pressure calculating means outputs the vehicle interior pressure set value based on a predetermined time constant so that the vehicle interior pressure approaches the vehicle exterior pressure slowly based on a predetermined time constant. The rotation speed calculating means calculates and obtains a reference rotation speed of each blower based on the vehicle interior pressure set value and the vehicle exterior pressure. The pressure difference calculating means calculates and calculates a pressure difference between the in-vehicle pressure set value and the in-vehicle pressure output by the in-vehicle pressure calculating means, and the rotation speed command means determines the reference rotation speed and a rotation speed corresponding to the pressure difference. , The rotation speed of the difference is output as a command value to each of the blowers, and the blowing amount of each of the blowers is changed, so that the outside pressure that does not cause a sudden pressure change can be maintained.

【0016】[0016]

【発明の実施の形態】図1は、本発明の実施の一形態の
車両換気装置1の全体の構成を示すブロック図である。
本実施の形態の車両換気装置1は、たとえば高速鉄道車
両である車両2に設けられる給気送風機3および排気送
風機4の各ファン3a,4aの回転数を制御して、車内
への給気送風量および排気送風量を連続的に調整して、
車内の必要換気量を維持しながら車内圧力の急激な変動
を抑制する制御手段5を備える。車両2には、前記車内
圧力を検出するための車内圧力検出手段である車内圧力
センサ6と、前記車外圧力を検出するための車外圧力検
出手段である車外圧力センサ7とが設けられる。また各
送風機3,4には、各ファン3a,4aを回転駆動する
モータM1,M2と、各モータM1,M2の出力軸の回
転数を検出するたとえばロータリエンコーダによって実
現される回転数検出器とが設けられる。
FIG. 1 is a block diagram showing the overall configuration of a vehicle ventilation device 1 according to one embodiment of the present invention.
The vehicle ventilation device 1 of the present embodiment controls the number of revolutions of each fan 3a, 4a of an air supply blower 3 and an exhaust blower 4 provided in a vehicle 2 that is, for example, a high-speed railway vehicle to supply air into the vehicle. By continuously adjusting the air volume and exhaust air volume,
Control means 5 is provided for suppressing a sudden change in the pressure inside the vehicle while maintaining the required ventilation volume inside the vehicle. The vehicle 2 is provided with an in-vehicle pressure sensor 6 as an in-vehicle pressure detecting means for detecting the in-vehicle pressure and an out-of-vehicle pressure sensor 7 as an out-of-vehicle pressure detecting means for detecting the out-of-vehicle pressure. Each of the blowers 3 and 4 includes motors M1 and M2 for rotating and driving the fans 3a and 4a, and a rotation speed detector implemented by, for example, a rotary encoder for detecting the rotation speed of the output shaft of each of the motors M1 and M2. Is provided.

【0017】この制御手段5は、各送風機3,4の前記
必要換気量に相当する各回転数を基準回転数とし、車内
圧力が車内圧設定値に対して変化したとき、車内圧力を
フィードバックして各送風機3,4の各回転数を制御し
て車内圧力を前記車内圧設定値に維持し、車内圧力を前
記車内圧設定値に維持するために、各送風機3,4のう
ち少なくとも一方の回転数が上限であるとき、車外圧力
に応じて各送風機3,4の基準回転数を低下させて各送
風機3,4の風量差を大きくするように制御し、また車
外圧力が一定であるとき、前記車内圧設定値を車外圧力
に近づく方向に緩やかに変化させるように制御する。
The control means 5 sets each rotation speed corresponding to the required ventilation amount of each of the blowers 3 and 4 as a reference rotation speed, and feeds back the vehicle interior pressure when the vehicle interior pressure changes with respect to the vehicle interior pressure set value. In order to maintain the in-vehicle pressure at the in-vehicle pressure set value by controlling the rotational speed of each of the blowers 3 and 4 and maintain the in-vehicle pressure at the in-vehicle pressure set value, at least one of the blowers 3 and 4 is controlled. When the rotation speed is at the upper limit, the reference rotation speed of each of the blowers 3 and 4 is controlled to be reduced according to the pressure outside the vehicle so as to increase the difference in airflow between the blowers 3 and 4, and when the pressure outside the vehicle is constant. The control is performed such that the vehicle interior pressure set value is gradually changed in a direction approaching the vehicle exterior pressure.

【0018】このような制御手段5は、予め定める時定
数に基づいて、フィードバック要素としての車内圧力セ
ンサ6からの車内圧力が、目標値としての車外圧力に緩
やかに近づく方向に変化するように車内圧設定値を演算
して求め、その車内圧設定値を出力する車内圧演算手段
である車内圧演算回路11と、車外圧力および前記車内
圧演算回路11から出力される車内圧設定値に基づい
て、前記必要換気量に相当する各送風機3,4の基準回
転数を演算して求め、その基準回転数を出力する基準回
転数演算手段である基準回転数演算回路12と、車内圧
力と車内圧設定値との圧力差を演算して求め、その圧力
差を出力する圧力差演算手段である圧力差演算回路13
と、車内圧力制御の応答性を改善するための要素、すな
わち圧力変化に対してその効果が出るようにする速応性
改善のための位相進み要素、および定常的に偏差が出な
いようにする定常特性改善のための積分要素などの位相
遅れ要素などの補償要素に基づいて、圧力差演算回路1
3から入力した圧力差を零とするための補償回転数を演
算して求め、その補償回転数を出力する補償回転数演算
手段である補償回転数演算回路14と、基準回転数演算
回路12からの基準回転数と補償回転数演算回路14か
らの補償回転数とを比較して差を求め、その差を回転数
指令値として各送風機3,4にそれぞれ出力する回転数
指令手段である2つの回転数指令回路15a,15bと
を含む。
The control means 5 controls the vehicle so that the internal pressure from the internal pressure sensor 6 as a feedback element changes in a direction to gradually approach the external pressure as a target value based on a predetermined time constant. An internal pressure set value is calculated and calculated, and based on an internal pressure arithmetic circuit 11 which is an internal pressure calculating means for outputting the internal pressure set value and an external pressure and an internal pressure set value output from the internal pressure arithmetic circuit 11. A reference rotation speed calculating circuit 12 serving as a reference rotation speed calculating means for calculating and obtaining a reference rotation speed of each of the blowers 3 and 4 corresponding to the required ventilation amount, and outputting the reference rotation speed; A pressure difference calculation circuit 13 which is a pressure difference calculation means for calculating a pressure difference from a set value and outputting the pressure difference.
And an element for improving the responsiveness of the in-vehicle pressure control, i.e., a phase lead element for improving the responsiveness so that the effect is exerted against a pressure change, and a steady state for preventing a steady deviation. Pressure difference calculation circuit 1 based on a compensation element such as a phase delay element such as an integral element for improving characteristics
A compensation rotation speed calculating circuit 14 serving as a compensation rotation speed calculation means for calculating and obtaining a compensation rotation speed for making the pressure difference input from 3 zero, and outputting the compensation rotation speed, and a reference rotation speed calculation circuit 12 Are compared with the compensating rotational speed from the compensating rotational speed calculation circuit 14 to obtain a difference, and the two rotational speed command means for outputting the difference to each of the fans 3 and 4 as a rotational speed command value. Rotation speed command circuits 15a and 15b.

【0019】前記車内圧演算回路11は、車外圧力の変
動に対して車内圧力制御の目標値となる車内圧設定値を
追従させるための回路であり、乗客の鼓膜への外圧、す
なわち車内圧力の作用によって一時的に聴力が低下する
いわば耳つん状態を感じない程度の時間をかけて緩やか
に車内圧設定値を変化させることができるように構成さ
れる。具体的には、充分長い時定数をもつ一次遅れ要素
を入力する。前記充分長い時定数は、たとえば2秒以上
に選ばれ、好ましくは3秒以上に選ばれ、より好ましく
は1分以上に選ばれる。実施の他の形態として、前記車
内圧演算回路11は、現在の車内圧設定値から現在の車
外圧力に向かって一定の小さな傾き、すなわち一定の小
さな時間変化率で車内圧設定値を変化させるように構成
されてもよい。
The in-vehicle pressure calculation circuit 11 is a circuit for causing a set value of the in-vehicle pressure, which is a target value of the in-vehicle pressure control, to follow a change in the out-of-vehicle pressure. The configuration is such that the set value of the internal pressure of the vehicle can be slowly changed over a period of time in which the hearing is temporarily reduced by the action so as not to feel the pinnacle state. Specifically, a first-order lag element having a sufficiently long time constant is input. The sufficiently long time constant is selected, for example, at least 2 seconds, preferably at least 3 seconds, and more preferably at least 1 minute. As another embodiment, the vehicle interior pressure calculation circuit 11 changes the vehicle interior pressure set value at a constant small gradient from the current vehicle interior pressure set value to the current vehicle exterior pressure, that is, at a constant small time change rate. May be configured.

【0020】このような車内圧演算回路11によって、
車内圧力の設定値を除々に車外圧力に近づくように追従
させることができるので、車両の走行中における標高差
および気候の変化によって気圧が変化した場合、長大ト
ンネルで車外圧力が変化した後、長時間一定に保たれる
場合などにおいて、車内圧力を殊更に車外圧力と異なっ
た値に保つことによって、各送風機3,4の無駄なエネ
ルギの損失および騒音の発生を抑制し、駅到着時のドア
の開放時の大きな車内圧力の変動を抑制することができ
る。この車内圧演算回路11はまた、時定数に対して車
外圧力の変化が早い場合には、車内圧演算回路11の車
内圧設定値の変化は微小となり、車内圧力が一定に保た
れるように構成されている。
With such a vehicle pressure calculation circuit 11,
Since the set value of the vehicle interior pressure can be made to gradually follow the vehicle exterior pressure, if the atmospheric pressure changes due to the altitude difference and the climate change while the vehicle is running, after the vehicle exterior pressure changes in the long tunnel, For example, when the time is kept constant, the pressure inside the vehicle is kept at a value different from the pressure outside the vehicle, thereby suppressing unnecessary energy loss and noise generation of each of the blowers 3 and 4. Large fluctuations in the vehicle interior pressure when the vehicle is opened can be suppressed. When the change in the outside pressure is fast with respect to the time constant, the change in the inside pressure set value of the inside pressure calculation circuit 11 becomes small, and the inside pressure calculation circuit 11 keeps the inside pressure constant. It is configured.

【0021】前記基準回転数演算回路12は、車外圧力
の変化がない場合、各送風機3,4は所要の送風量に対
応する一定回転数で回転させ、車外圧力が変化した場合
には各送風機3,4の各回転数の組合わせを変えて車内
圧力の変化を抑えながら所要風量を確保できるようにし
て基準回転数を演算して求め、それを出力する。すなわ
ち、たとえば車外圧力が下がった場合には、給気送風機
3の回転数を上げ、かつ排気送風機4の回転数を下げ
て、車内圧力の低下を防止しながら換気風量を確保す
る。また車外圧力の変動が大きくなった場合には、各送
風機3,4の能力を超す回転数で回転させなければ換気
風量を確保しつつ車内圧力の保持ができなくなる場合が
ある。このような場合には、換気風量を減らして各送風
機3,4のうち少なくとも一方の回転数の上限に対する
余裕を大きくして、車内圧力の制御能力を高め、車内圧
力を保持できるように基準回転数を決定する。さらに各
送風機3,4のうち、いずれか一方の現在の回転数が限
界に近い場合、およびさらに回転数を上げなければなら
ないような車外圧力と車内圧力設定値との圧力差が生じ
た場合には、基準回転数を下げる。またこれとは逆に、
車外圧力と車内圧力設定値との圧力差が小さくなり、回
転数の限界に対する余裕が生じた場合には、基準回転数
を所要の換気風量に対応する値に戻す。前記基準回転数
演算回路12は、このように構成されている。
When there is no change in the pressure outside the vehicle, the reference rotation speed calculation circuit 12 rotates each of the blowers 3 and 4 at a constant rotation speed corresponding to a required air flow rate. By changing the combination of the rotation speeds 3 and 4, the reference rotation speed is calculated and obtained so that the required air volume can be secured while suppressing the change in the vehicle interior pressure, and is output. That is, for example, when the pressure outside the vehicle decreases, the rotation speed of the air supply blower 3 is increased, and the rotation speed of the exhaust blower 4 is reduced, so that the ventilation air volume is secured while preventing a decrease in the vehicle interior pressure. Further, when the fluctuation of the pressure outside the vehicle becomes large, the inside pressure may not be maintained while maintaining the ventilation air volume unless the air blowers 3 and 4 are rotated at a rotation speed exceeding the capacity. In such a case, the amount of ventilation air is reduced to increase the margin for the upper limit of the rotational speed of at least one of the blowers 3 and 4, thereby increasing the controllability of the in-vehicle pressure and maintaining the reference rotation so that the in-vehicle pressure can be maintained. Determine the number. Further, when the current rotation speed of one of the blowers 3 and 4 is close to the limit, and when a pressure difference between the outside pressure and the inside pressure set value that further increases the rotation speed occurs. Lowers the reference rotation speed. On the contrary,
When the pressure difference between the outside pressure and the inside pressure set value becomes small and there is a margin for the rotation speed limit, the reference rotation speed is returned to a value corresponding to the required ventilation air volume. The reference rotation speed calculation circuit 12 is configured as described above.

【0022】上記の給気送風機3および排気送風機4
は、市販のモータ駆動の送風装置で実現することができ
る。これらの送風機3,4に用いられる各モータM1,
M2は、回転数が可変のモータが用いられ、たとえばA
CサーボモータまたはDCサーボモータとサーボアンプ
との組合わせによって実現される。また前述の回転数検
出器は、エンコーダ、レゾルバなどの回転角を検知する
手段の出力信号の微分演算処理、あるいはタコジェネレ
ータなど直接回転速度を検知する手段によって実現さ
れ、このエンコーダ、レゾルバあるいはタコジェネレー
タを各モータM1,M2の出力軸に取付け、その検出値
と回転数指令値との差がなくなるように前記サーボアン
プの出力を自動調整することができるように構成されて
いる。実施の他の形態として、誘導モータとインバータ
とを組合わせて、インバータの出力周波数を前記タコジ
ェネレータの検出時と回転数指令値との差がなくなるよ
うに変化させて、各モータM1,M2の回転数を自動調
整する構成であってもよい。
The above air supply blower 3 and exhaust blower 4
Can be realized by a commercially available blower driven by a motor. Each of the motors M1,
M2 uses a motor whose rotation speed is variable.
This is realized by a combination of a C servomotor or a DC servomotor and a servo amplifier. Further, the above-described rotation speed detector is realized by a differential operation processing of an output signal of a rotation angle detecting means such as an encoder or a resolver, or a means for directly detecting a rotation speed such as a tachogenerator. Are attached to the output shafts of the motors M1 and M2, so that the output of the servo amplifier can be automatically adjusted so that the difference between the detected value and the rotational speed command value is eliminated. As another embodiment of the present invention, by combining an induction motor and an inverter, the output frequency of the inverter is changed so that there is no difference between the time when the tachometer is detected and the rotation speed command value, and the output frequency of each motor M1, M2 is changed. A configuration in which the number of rotations is automatically adjusted may be employed.

【0023】前記車内圧力センサ6および車外圧力セン
サ7は、市販の圧力検出器によって実現することができ
る。ただし検出信号のドリフトなどの誤差が想定される
ため、ドア開放時などの車内圧力と車外圧力とが一致し
ていることが明らかな状態で、各圧力センサ6,7の検
出時の校正を行う。このような校正は、各圧力センサ
6,7に予め設定されている自動校正機能によって定期
的、たとえば電源を投入し、換気装置を起動する直前に
行うことができる。また、車両のドアの開放信号が取得
できる場合には、車両が駅に到着しドアが開放されるた
びに行うことができる。上記の制御手段5は、マイクロ
コンピュータなどを用いて実現することができる。
The in-vehicle pressure sensor 6 and the out-of-vehicle pressure sensor 7 can be realized by a commercially available pressure detector. However, since errors such as drift of the detection signal are assumed, calibration is performed at the time of detection of each of the pressure sensors 6 and 7 in a state where it is clear that the in-vehicle pressure and the out-of-vehicle pressure are coincident when the door is opened. . Such calibration can be performed periodically, for example, immediately before the power is turned on and the ventilator is started, by an automatic calibration function preset in each of the pressure sensors 6 and 7. In addition, when a signal to open the door of the vehicle can be obtained, it can be performed each time the vehicle arrives at the station and the door is opened. The control means 5 can be realized using a microcomputer or the like.

【0024】図2は、制御手段5による各送風機3,4
の各回転数と、風量と、車内圧力および車外圧力間の圧
力差との関係を示すグラフである。各送風機3,4は、
前記制御手段5によって動作点P1に示されるように、
風量曲線L1上を矢符A上で移動し、この範囲で各送風
機3,4の回転数が制御されている。一方の回転数が上
下に対して余裕がある場合には、風量を元に戻す。車内
圧力と車外圧力との圧力差が増加し、各送風機3,4の
いずれか一方の回転数が限界に近づくと、動作点P2で
示されるように風量を前記ラインL1からラインL2に
減らして車内圧力を保持するように制御する。また車内
圧力と車外圧力との圧力差が減少し、各送風機3,4の
いずれか一方の回転数に上限から余裕ができた場合には
再び動作点P1に戻り、風量を増加して元に戻すように
制御する。同図において放射状に延びる複数のラインm
1,m2,…は車内圧力と車外圧力との差が一定な圧力
差の値を示している。次に、前記制御手段5の具体的動
作について説明する。
FIG. 2 shows each of the blowers 3, 4 by the control means 5.
4 is a graph showing the relationship between each rotation speed, the air volume, and the pressure difference between the in-vehicle pressure and the out-of-vehicle pressure. Each blower 3, 4
As shown by an operating point P1 by the control means 5,
It moves on the arrow A on the air volume curve L1, and the rotation speed of each of the blowers 3 and 4 is controlled in this range. If one of the rotational speeds has room for the upper and lower sides, the air volume is returned to the original. When the pressure difference between the in-vehicle pressure and the out-of-vehicle pressure increases and the rotational speed of one of the blowers 3 and 4 approaches the limit, the air volume is reduced from the line L1 to the line L2 as indicated by an operating point P2. Control to maintain the vehicle interior pressure. Further, when the pressure difference between the in-vehicle pressure and the out-of-vehicle pressure decreases, and when the rotational speed of one of the blowers 3 and 4 has a margin from the upper limit, the operation returns to the operating point P1 again, and the air flow is increased and Control to return. A plurality of lines m extending radially in FIG.
1, m2,... Indicate the value of the pressure difference where the difference between the in-vehicle pressure and the out-of-vehicle pressure is constant. Next, a specific operation of the control means 5 will be described.

【0025】図3は車両2を模式的に示す図であり、図
4は車内圧力pinおよび車外圧力poutの時間経過
に伴う変化を示すグラフであり、図5は風量の時間変化
を示すグラフであり、図5(1)は給気送風機3による
風量Qinの時間経過に伴う変化を示し、図5(2)は
排気送風機4による風量Qoutの時間経過に伴う変化
を示し、図5(3)は圧力差Qin−Qoutの時間経
過に伴う変化を示す。
FIG. 3 is a diagram schematically showing the vehicle 2, FIG. 4 is a graph showing the change over time of the in-vehicle pressure pin and the out-of-vehicle pressure pout, and FIG. 5 is a graph showing the time change of the air volume. FIG. 5A shows a change with time of the air flow Qin by the air supply blower 3, FIG. 5B shows a change with time of the air flow Qout by the exhaust blower 4, and FIG. Indicates a change with time of the pressure difference Qin-Qout.

【0026】車内圧力をPinとし、車外圧力をPou
tとする。また給気送風機3の風量をQin、排気送風
機4の風量をQoutとする。車内外の圧力が釣り合っ
て、かつ給排気風量が相等しいときは明らかに車内圧力
の変動は起こらずに時刻t1まで換気が行われる。ここ
で、たとえば車外圧力が図5(2)のように時刻t1で
ステップ状に増加したとする。このような車外圧力Po
utの変動は、車両2がトンネルに突入したときに先頭
車両で起こる。このとき、車外圧力Poutが高くなる
ため、図5(1)で示されるように、明らかに給気風量
Qinが増大し、図5(2)で示されるように排気風量
Qoutが減少する。その結果、車内の空気量は増大
し、車内の圧力は上昇する。車内圧力が上昇するに伴
い、車内外の圧力差は減少し、図5(3)に示すよう
に、一旦変動した給排気風量は徐々に元に戻り、最終的
には車内圧力が車外圧力と釣り合った時刻t2で給排気
風量は再び相等しくなり、圧力一定で換気が行われるよ
うになる。この過程で、時刻t1における車内圧力の変
動が耳つん状態を発生させる。これに対して、給排気送
風機3,4の回転数を変化させて、この圧力変動を緩和
して耳つん状態の発生を抑えようというのが本発明の趣
旨である。
The internal pressure is defined as Pin, and the external pressure is defined as Pou.
Let it be t. In addition, the air volume of the air supply blower 3 is Qin, and the air volume of the exhaust air blower 4 is Qout. When the pressures inside and outside the vehicle are balanced and the air supply / exhaust air volumes are equal, the ventilation is performed until time t1 without the apparent change in the vehicle interior pressure. Here, for example, it is assumed that the outside pressure increases stepwise at time t1 as shown in FIG. Such external pressure Po
The fluctuation of ut occurs in the leading vehicle when the vehicle 2 enters the tunnel. At this time, since the external pressure Pout increases, the supply air volume Qin obviously increases as shown in FIG. 5A, and the exhaust air volume Qout decreases as shown in FIG. 5B. As a result, the amount of air in the vehicle increases, and the pressure in the vehicle increases. As the pressure inside the vehicle increases, the pressure difference between the inside and outside of the vehicle decreases, and as shown in FIG. 5 (3), the once-fluctuated air supply / exhaust air volume gradually returns to its original state. At the balanced time t2, the air supply and exhaust air volumes become equal again, and ventilation is performed at a constant pressure. In this process, the fluctuation of the in-vehicle pressure at the time t1 causes an earplug state. On the other hand, the gist of the present invention is to change the number of rotations of the air supply / exhaust blowers 3 and 4 so as to alleviate the pressure fluctuation and suppress the occurrence of the pinching state.

【0027】図6は風量と回転数との関係を示し、図6
(1)は給気送風機3の回転数に対する風量Qinの特
性を示し、図6(2)は排気送風機4の回転数に対する
風量Qoutの特性を示す。
FIG. 6 shows the relationship between the air volume and the number of revolutions.
(1) shows the characteristics of the air volume Qin with respect to the rotation speed of the air supply blower 3, and FIG. 6 (2) shows the characteristics of the air volume Qout with respect to the rotation speed of the exhaust blower 4.

【0028】図6(1)のa点とb点において曲線c1
とc3は車内外圧力が釣り合っている場合の特性であ
り、各送風機3,4の回転数の増減に応じ風量が増減す
ることを示している。車外圧力Poutが車内圧力Pi
nよりも高い場合、車内外圧力が釣り合っている場合に
比べて給気風量Qinは増大、排気風量Qoutは減少
するため、回転数に対する風量の特性曲線はそれぞれc
2とc3に変化する。ここで、図6のa点とb点で給排
気送風機が運転されて釣り合っていたとすると、図5に
示すようにこの状態から車外圧力Poutが増大すれ
ば、給排気送風機の状態は、図6(1)のb点と図6
(2)のe点に移動し、給排気風量のバランスがくずれ
て車内圧力の変動が起こる。これを防止するためには、
給気送風機3は回転数を下げてc点に状態を移し、排気
送風機4は回転数を上げてf点に状態を移せば、給排気
風量は等しく保たれて車内圧力の変動は起こらない。
The curve c1 at point a and point b in FIG.
And c3 are characteristics when the pressures inside and outside the vehicle are balanced, and indicate that the air volume increases and decreases according to the increase and decrease of the rotation speed of each of the blowers 3 and 4. External pressure Pout is equal to internal pressure Pi
When the pressure is higher than n, the supply air volume Qin increases and the exhaust air volume Qout decreases as compared with the case where the vehicle interior and exterior pressures are balanced.
2 and c3. Here, assuming that the air supply / exhaust blower is operated and balanced at points a and b in FIG. 6, if the external pressure Pout increases from this state as shown in FIG. (1) Point b and FIG.
It moves to the point e of (2), and the balance of the air supply / exhaust air volume is lost, and the pressure in the vehicle changes. To prevent this,
If the number of rotations of the air supply blower 3 is reduced and the state is shifted to the point c, and the number of rotations of the exhaust air blower 4 is increased and the state is shifted to the point f, the air supply / exhaust air volume is kept equal and the pressure in the vehicle does not fluctuate.

【0029】以上では車外圧力が増加した場合の現象を
説明したが、車外圧力が低下した場合も同様の議論によ
り、車内圧力の低下が起こり、耳つん発生の原因となる
こと、その場合、給気送風機3の回転数を上げ、排気送
風機4の回転数を下げれば、給排気風量を等しく保って
車内圧力の変動を防止できることは明らかである。
Although the above description has been given of the phenomenon in which the external pressure increases, the same discussion will be applied to the case where the external pressure decreases. Obviously, if the rotation speed of the air blower 3 is increased and the rotation speed of the exhaust blower 4 is reduced, the air supply / exhaust air volume can be kept equal and the fluctuation in the vehicle interior pressure can be prevented.

【0030】本実施の形態では、車内圧力の変化を検知
して給排気送風機3,4の回転数を変化させて車内圧力
の変動を抑制して、耳つん状態の発生を抑えようとする
ものである。図1をも参照して、Pin0は車内圧力の
設定値でたとえば車外の平均的な圧力に設定される。車
内圧力が設定圧力と等しい場合、給排気送風機3,4は
所定の回転数、すなわち給排気風量が等しくかつ所定の
量の換気が行われる回転数の指令を受けて回転してい
る。何らからの原因、たとえば車外圧力の急変などによ
り車内圧力が上昇した場合、車内圧力設定値との差に応
じて給気送風機3の回転数を減少させるとともに排気送
風機4の回転数を増加させて、車内の空気量を減らして
圧力を下げることで車内圧力を一定に保とうとする。図
1中の補償回転数演算回路14の伝達関数Kは、車内圧
力の変化をどの程度回転数の増減に反映するかを決める
要素であり、比例要素の他、圧力変化の抑制の応答をよ
くするために微分要素などで構成されており、車両の容
積や送風機3,4の能力に応じて決定する。
In the present embodiment, the change in the pressure inside the vehicle is detected, and the rotation speed of the air supply / exhaust air blowers 3, 4 is changed to suppress the fluctuation of the pressure inside the vehicle, so as to suppress the occurrence of a pinching state. It is. Referring to FIG. 1 as well, Pin0 is a set value of the in-vehicle pressure and is set to, for example, an average pressure outside the vehicle. When the in-vehicle pressure is equal to the set pressure, the air supply / exhaust blowers 3 and 4 are rotating upon receiving a command of a predetermined rotation speed, that is, a rotation speed at which the air supply / exhaust air volume is equal and a predetermined amount of ventilation is performed. If the internal pressure increases due to any cause, for example, a sudden change in the external pressure, the rotational speed of the air blower 3 is reduced and the rotational speed of the exhaust blower 4 is increased in accordance with the difference from the vehicle internal pressure set value. Attempts to keep the in-vehicle pressure constant by reducing the amount of air in the vehicle to lower the pressure. The transfer function K of the compensating rotation speed calculation circuit 14 in FIG. 1 is an element for determining how much the change in the in-vehicle pressure is reflected in the increase or decrease of the rotation speed. For this purpose, a differential element or the like is used, and is determined according to the volume of the vehicle and the capabilities of the blowers 3 and 4.

【0031】図7は、制御手段5による制御をかけた場
合の応答を示し、車内圧力Pinおよび車外圧力Pou
t、各送風機3,4の回転数、給気送風機3による風量
Qinおよび排気送風機4による風量Qoutの時間経
過に伴う変化を示すグラフであり、図7(1)は車内圧
力Pinおよび車外圧力Poutの時間経過に伴う変化
を示し、図7(2)は各送風機3,4の回転数の時間経
過に伴う変化を示し、図7(3)は給気送風機3による
風量Qinの時間経過に伴う変化を示し、図7(4)は
排気送風機4による風量Qoutの時間経過に伴う変化
を示す。車外圧力のステップ状の増加に対して、車内圧
力を増加し始めるが、それに応じて給気送風機の回転数
は減少、排気送風機の回転数は増加し、給気風量を減ら
すとともに排気風量を増やして車内圧力の増大に対抗し
て車内圧力を一定に保持しようとする。その結果、車内
圧力は設定値に近い値に落ち着き、車外圧力と車内圧力
は差を保ったまま、給排気送風機の回転数は給気が排気
よりも低い状態で風量を確保しつつ一定状態を保持す
る。これにより、車内圧力の変動は抑制されて耳つん状
態の発生を防止することができる。
FIG. 7 shows the response when the control by the control means 5 is performed, and shows the in-vehicle pressure Pin and the out-of-vehicle pressure Pou.
FIG. 7A is a graph showing changes over time of t, the rotation speed of each of the blowers 3 and 4, the air flow Qin by the air supply blower 3, and the air flow Qout by the exhaust blower 4, and FIG. 7 (1) shows the in-vehicle pressure Pin and the out-of-vehicle pressure Pout. 7 (2) shows the change over time of the rotation speed of each of the blowers 3 and 4, and FIG. 7 (3) shows the change over time of the air volume Qin by the air supply blower 3. FIG. 7D shows a change with time of the air volume Qout by the exhaust blower 4. In response to the stepwise increase in the outside pressure, the inside pressure starts to increase, but the number of rotations of the air blower decreases and the number of rotations of the exhaust blower increases accordingly, reducing the amount of supply air and increasing the amount of exhaust air. Thus, an attempt is made to maintain the vehicle interior pressure constant against the increase in the vehicle interior pressure. As a result, the vehicle interior pressure settles to a value close to the set value, the external pressure and the vehicle interior pressure maintain the difference, and the rotation speed of the air supply / exhaust blower maintains a constant state while securing the air volume while the air supply is lower than the exhaust air. Hold. As a result, fluctuations in the in-vehicle pressure are suppressed, and the occurrence of an earplug state can be prevented.

【0032】図7においては、車内圧力と車外圧力に差
が生じた状態を保っているが、これは車内圧力の設定値
が最初に決められた値を保持するためである。このよう
に車内圧力の設定値が定常的に車外圧力とずれていた場
合、たとえば外気圧が変化したとも考えられ、そのまま
では、駅に到着し、ドアを開いたときに急激な圧力変動
が生じるおそれがある。したがって、車内圧力の設定値
をあくまでも一定に保つのは得策ではなく、本発明にお
いてはさらに、車内圧力の設定値を徐々に車外圧力の平
均的な値に追従させる。その具体例を図8に示す。
In FIG. 7, the difference between the in-vehicle pressure and the out-of-vehicle pressure is maintained. This is because the set value of the in-vehicle pressure holds the initially determined value. When the set value of the in-vehicle pressure constantly deviates from the out-of-vehicle pressure in this way, for example, it is considered that the outside air pressure has changed, and as it is, a sudden pressure fluctuation occurs when the vehicle arrives at the station and opens the door. There is a risk. Therefore, it is not advisable to keep the set value of the in-vehicle pressure constant to the last, and in the present invention, the set value of the in-vehicle pressure is made to gradually follow the average value of the out-of-vehicle pressure. FIG. 8 shows a specific example.

【0033】図8は、車内圧演算回路11の具体的構成
を説明するためのブロック図である。同図において、符
号sはラプラス演算子であり、ブロックは時定数Tの一
時遅れを表している。この時定数Tは車内圧力の設定値
の変化により耳つんを引き起こさないように充分長く、
たとえば数10秒から数分程度に設定する。これによ
り、車内圧力の設定値は緩やかに車外圧力の平均的な値
に追従し、ドア開放時などの急激な圧力変動を防止する
ことができる。
FIG. 8 is a block diagram for explaining a specific configuration of the in-vehicle pressure calculating circuit 11. As shown in FIG. In the figure, the symbol s is a Laplace operator, and the block represents a temporary delay of the time constant T. This time constant T is long enough so that the change of the set value of the pressure inside the vehicle does not cause ear pinching,
For example, it is set to several tens seconds to several minutes. Thus, the set value of the in-vehicle pressure slowly follows the average value of the out-of-vehicle pressure, and it is possible to prevent a sudden pressure change such as when the door is opened.

【0034】図9は、室内圧力Pinおよび室外圧力P
out、各送風機3,4の回転数、および各送風機3,
4による風量Qin,Qoutの時間経過に伴う変化を
示すグラフであり、図9(1)は車内圧力Pinおよび
車外圧力Poutの時間経過に伴う変化を示し、図9
(2)は各送風機3,4の回転数の時間経過に伴う変化
を示し、図9(3)は各送風機3,4による風量Qi
n,Qoutの時間経過に伴う変化を示す。図9にこの
場合の応答を示す。車内圧力の設定値が徐々に車外圧力
に近づくため、車内圧力も緩やかに車外圧力に追従し、
給排気送風機3,4の回転数も初期の値に戻りつつ所定
の風量を確保する。
FIG. 9 shows the indoor pressure Pin and the outdoor pressure P
out, the rotation speed of each of the blowers 3 and 4, and
FIG. 9A is a graph showing changes over time of the air volumes Qin and Qout with time according to FIG. 4. FIG. 9A shows changes over time of the in-vehicle pressure Pin and the out-of-vehicle pressure Pout.
(2) shows the change with time of the rotation speed of each of the blowers 3 and 4, and FIG. 9 (3) shows the air volume Qi by each of the blowers 3 and 4.
It shows a change with time of n and Qout. FIG. 9 shows the response in this case. Since the set value of the vehicle interior pressure gradually approaches the vehicle exterior pressure, the vehicle interior pressure also slowly follows the vehicle exterior pressure,
The rotation speed of the air supply / exhaust blowers 3 and 4 also secures a predetermined air volume while returning to the initial value.

【0035】給排気送風機3,4の回転数は無制限に大
きくすることはできず、したがって車外圧力変動が大き
な場合、給排気送風機3,4の回転数の上限にかかって
制御が充分効かなくなるおそれがある。本願においては
この場合、一時的に風量を減少させて圧力の保持を優先
させることとする。すなわち、車内圧力制御において、
回転数の指令値が上限になった場合、基準回転数指令を
下げて圧力制御のための給排気送風機の回転数差を確保
する。
The rotation speed of the air supply / exhaust blowers 3 and 4 cannot be increased without limit. Therefore, when the pressure fluctuation outside the vehicle is large, the control may not be sufficiently effective due to the upper limit of the rotation speed of the air supply / exhaust blowers 3 and 4. There is. In this case, in this case, the air volume is temporarily reduced to give priority to maintaining the pressure. That is, in the in-vehicle pressure control,
When the rotation speed command value reaches the upper limit, the reference rotation speed command is lowered to secure a rotation speed difference between the supply and exhaust blowers for pressure control.

【0036】図10に各回転数指令回路15a,15b
の基準回転数指令の設定のフローチャートの例を示す。
同図において、所定回転数Nsは車内外圧力差がない場
合に所定の風量を確保するための給排気送風機3,4の
回転数であり、ステップs1で、低減回転数ΔNが給気
送風機3の回転数指令が上限値未満か否かを判断し、未
満である場合は、ステップs2で排気送風機4について
も前記上限値を超えたか否かが判断される。超えていな
い場合には、ステップs3で基準回転数指令Ncを求
め、超えていない場合はステップs4で基準回転数指令
Ncは所定回転数Nsであるものとして各送風機3,4
に指令する。基準回転数指令Ncの低減分ΔNは、基準
回転数指令Ncを低減させている場合、たとえば車内圧
力Pinと車内圧設定値の偏差が充分に小さくなれば、
基準回転数指令値の低減ΔNを解除することにより、通
常の車内圧力保持の制御に復帰する。
FIG. 10 shows each rotation speed command circuit 15a, 15b.
4 shows an example of a flowchart for setting a reference rotation speed command.
In the figure, a predetermined rotation speed Ns is a rotation speed of the air supply / exhaust blowers 3 and 4 for securing a predetermined air volume when there is no pressure difference between the inside and outside of the vehicle. It is determined whether or not the rotation speed command is less than the upper limit value. If the rotation speed command is less than the upper limit value, it is determined in step s2 whether the exhaust fan 4 has also exceeded the upper limit value. If not, a reference rotation speed command Nc is obtained in step s3. If not, in step s4, the reference rotation speed command Nc is determined to be the predetermined rotation speed Ns and each of the blowers 3, 4
Command. When the reference rotation speed command Nc is reduced, for example, if the deviation between the vehicle interior pressure Pin and the vehicle interior pressure set value becomes sufficiently small, the reduction ΔN of the reference rotation speed command Nc is
By releasing the reduction ΔN of the reference rotation speed command value, the control returns to the normal control of maintaining the pressure in the vehicle.

【0037】図11に車外圧力が大きく変動したために
車内圧力も変動が大きく、その結果排気送風機4の回転
数指令値が上限を超した場合の応答動作を示す。図11
(1)は車内圧力Pinおよび車内圧力Poutの時間
経過に伴う変化を示し、図11(2)は各送風機3,4
の回転数の時間経過に伴う変化を示し、図11(3)は
各送風機3,4による風量Qin,Qoutの時間経過
に伴う変化を示す。図11において、時刻taの時点ま
では車内圧力の変動に対応して給排気送風機3,4の回
転数指令が増減するが、時刻taにおいて、排気送風機
4の回転数指令が上限に達したため、基準回転数が低減
されて、より低い回転数を中心に給排気送風機3,4の
回転数が設定されて圧力保持の動作が行われる。それに
伴い、風量も低くなっている。しかし、時刻tbにおい
て車内圧力が設定値に充分近づいたため、基準回転数指
令が所定回転数に戻されて風量が回復し始める。
FIG. 11 shows a response operation when the pressure inside the vehicle greatly fluctuates because the pressure outside the vehicle greatly fluctuates, and as a result, the rotation speed command value of the exhaust blower 4 exceeds the upper limit. FIG.
(1) shows changes with time in the in-vehicle pressure Pin and the in-vehicle pressure Pout, and FIG.
11 (3) shows changes over time of the air volumes Qin, Qout by the fans 3 and 4. FIG. In FIG. 11, the rotation speed commands of the air supply / exhaust blowers 3 and 4 increase and decrease in response to the fluctuation of the vehicle interior pressure until time ta, but at time ta, the rotation speed commands of the exhaust blower 4 reach the upper limit. The reference rotation speed is reduced, and the rotation speeds of the air supply / exhaust blowers 3 and 4 are set around the lower rotation speed to perform the pressure holding operation. Along with that, the air volume has also decreased. However, since the in-vehicle pressure has sufficiently approached the set value at time tb, the reference rotation speed command is returned to the predetermined rotation speed, and the air volume starts to recover.

【0038】さらに時刻tcにおいて車外圧力が低下し
たとすると、給気風量が急減かつ排気風量が急増する。
また車内圧力が設定圧力よりも低くなり、したがって給
気送風機3の回転数指令は所定回転数より増加、排気送
風機4の回転数指令は所定回転数より減少し、給気風量
は増加、排気風量は減少しつつ車内外の圧力が均圧し、
排気送風機4の回転数、風量ともに所定値に落ち着いて
いる。
Further, assuming that the pressure outside the vehicle decreases at time tc, the amount of supplied air rapidly decreases and the amount of exhaust air rapidly increases.
Further, the vehicle interior pressure becomes lower than the set pressure, so that the rotation speed command of the air supply blower 3 is higher than a predetermined rotation speed, the rotation speed command of the exhaust blower 4 is lower than the predetermined rotation speed, the supply air volume is increased, and the exhaust air volume is increased. Is decreasing and the pressure inside and outside the car is equalized,
Both the rotation speed and the air volume of the exhaust blower 4 have settled to predetermined values.

【0039】上記の実施の形態では、車両2は高速鉄道
車両であったけれども、本発明はこれに限るものではな
く、その他の車両、たとえばバスおよび磁気浮上式起動
車両などに対しても好適に実施することができる。
In the above embodiment, although the vehicle 2 is a high-speed railway vehicle, the present invention is not limited to this, and is suitable for other vehicles, such as buses and magnetically levitated starting vehicles. Can be implemented.

【0040】[0040]

【発明の効果】請求項1記載の本発明によれば、給気送
風機および排気送風機のうちいずれか一方の回転数が上
限であるとき、各送風機の基準回転数を低下させて各送
風機の風量差を大きくするように制御されるので、車内
の必要換気量を確保し、かつ車内の急激な圧力変動を確
実に防止して、乗客の聴力が外圧によって一時的に低下
するいわば耳つん状態になることを防ぐことができる。
According to the first aspect of the present invention, when the rotation speed of one of the air supply fan and the exhaust air blower is the upper limit, the reference rotation speed of each fan is reduced to reduce the air volume of each fan. Controlled to increase the difference, ensuring the required ventilation volume inside the vehicle and reliably preventing sudden pressure fluctuations inside the vehicle, so that the passenger's hearing temporarily drops due to external pressure, so to speak Can be prevented.

【0041】請求項2記載の本発明によれば、車外圧力
が一定であるときには制御手段は車内圧力設定値を車外
圧力に近づく方向に緩やかに変化させるので、車内圧力
の急激な変化がより緩和され、乗客が上記の耳つん状態
を感じないまでも圧力変化を感じてしまうという不具合
を防止することができ、車内圧力の変動をより少なくす
ることができる。
According to the second aspect of the present invention, when the pressure outside the vehicle is constant, the control means gradually changes the set value of the pressure inside the vehicle in a direction approaching the pressure outside the vehicle. In addition, it is possible to prevent the passenger from feeling the pressure change even if he does not feel the above-mentioned ear pinch state, and it is possible to further reduce the fluctuation of the vehicle interior pressure.

【0042】請求項3記載の本発明によれば、車内圧演
算手段から出力される車内圧設定値を車内圧力が車外圧
力に緩慢に近づくように変化させ、このような車内圧設
定値と車外圧力とに基づいて基準回転数演算手段は少な
くとも必要換気量を維持するように各送風機の基準回転
数を求め、回転数指令手段は車内圧力と車内圧設定値と
の圧力差に相当する回転数と、前記基準回転数とを比較
して、その差を回転数指令値として各送風機に出力する
ので、車内の必要換気量を確保し、かつ車内の急激な圧
力変動を確実に防止して、乗客の聴力が外圧によって一
時的に低下するいわば耳つん状態になることを防ぐこと
ができる。
According to the third aspect of the present invention, the vehicle interior pressure setting value output from the vehicle interior pressure calculating means is changed so that the vehicle interior pressure approaches the vehicle exterior pressure slowly, and the vehicle interior pressure setting value and the vehicle exterior pressure setting value are varied. Based on the pressure, the reference rotation speed calculating means determines the reference rotation speed of each blower so as to maintain at least the required ventilation volume, and the rotation speed command means determines the rotation speed corresponding to the pressure difference between the vehicle interior pressure and the vehicle interior pressure set value. And, compared with the reference rotation speed, since the difference is output to each blower as a rotation speed command value, to ensure the required ventilation volume in the car, and to reliably prevent sudden pressure fluctuations in the car, It is possible to prevent the passenger's hearing from temporarily dropping due to external pressure, so to speak, a so-called ear pinching state.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の一形態の車両換気装置1の構成
を模式的に示すブロック図である。
FIG. 1 is a block diagram schematically showing a configuration of a vehicle ventilation device 1 according to an embodiment of the present invention.

【図2】各送風機3,4の風量と車内圧力および車外圧
力間の圧力差と、各送風機3,4の回転数との関係を示
すグラフである。
FIG. 2 is a graph showing the relationship between the air volume of each of the blowers 3, 4 and the pressure difference between the in-vehicle pressure and the out-of-vehicle pressure, and the rotation speed of each of the blowers 3, 4.

【図3】車両2を模式的に示す図である。FIG. 3 is a diagram schematically showing a vehicle 2.

【図4】車内圧力Pinおよび車外圧力Poutの時間
経過に伴う変化を示すグラフである。
FIG. 4 is a graph showing changes over time in the in-vehicle pressure Pin and the out-of-vehicle pressure Pout.

【図5】風量の時間経過に伴う変化を示す図であり、図
5(1)は給気送風機3による風量Qinの時間経過に
伴う変化を示し、図5(2)は排気送風機4による風量
Qoutの時間経過に伴う変化を示し、図5(3)は圧
力差Qin−Qoutの時間経過に伴う変化を示す。
5A and 5B are diagrams showing changes in the air flow with time, FIG. 5A shows changes in the air flow Qin with the air supply blower 3 with time, and FIG. 5B shows the air flow with the exhaust blower 4; FIG. 5C shows a change with time of Qout, and FIG. 5C shows a change with time of Qin-Qout.

【図6】各風量Qin,Qoutと各回転数との関係を
示すグラフであり、図6(1)は給気送風機3による風
量Qinとその回転数との関係を示し、図6(2)は排
気送風機4による風量Qoutとその回転数との関係を
示す。
FIG. 6 is a graph showing a relationship between each air volume Qin, Qout and each rotation speed, and FIG. 6 (1) shows a relationship between the air volume Qin by the air supply blower 3 and its rotation speed, and FIG. 6 (2). Shows the relationship between the air volume Qout by the exhaust blower 4 and its rotation speed.

【図7】車内圧力Pinおよび車外圧力Pout、各送
風機3,4の回転数、給気送風機3による風量Qinお
よび排気送風機4による風量Qoutの時間経過に伴う
変化を示すグラフであり、図7(1)は車内圧力Pin
および車外圧力Poutの時間経過に伴う変化を示し、
図7(2)は各送風機3,4の回転数の時間経過に伴う
変化を示し、図7(3)は給気送風機3による風量Qi
nの時間経過に伴う変化を示し、図7(4)は排気送風
機4による風量Qoutの時間経過に伴う変化を示す。
FIG. 7 is a graph showing changes over time of the in-vehicle pressure Pin and the out-of-vehicle pressure Pout, the rotation speed of each of the blowers 3 and 4, the air volume Qin by the air blower 3, and the air volume Qout by the exhaust air blower 4, and FIG. 1) is the internal pressure Pin
And changes with time of the outside pressure Pout,
FIG. 7 (2) shows the change over time of the rotation speed of each of the blowers 3 and 4, and FIG. 7 (3) shows the air volume Qi by the air supply blower 3.
FIG. 7D shows a change with time of the air flow rate Qout by the exhaust blower 4.

【図8】車内圧演算回路11の具体的構成を説明するた
めのブロック図である。
FIG. 8 is a block diagram for explaining a specific configuration of a vehicle interior pressure calculation circuit 11;

【図9】室内圧力Pinおよび室外圧力Pout、各送
風機3,4の回転数、および各送風機3,4による風量
Qin,Qoutの時間経過に伴う変化を示すグラフで
あり、図9(1)は車内圧力Pinおよび車外圧力Po
utの時間経過に伴う変化を示し、図9(2)は各送風
機3,4の回転数の時間経過に伴う変化を示し、図9
(3)は各送風機3,4による風量Qin,Qoutの
時間経過に伴う変化を示す。
FIG. 9 is a graph showing changes in the indoor pressure Pin and the outdoor pressure Pout, the rotation speed of each of the blowers 3 and 4, and the airflow Qin and Qout of each of the blowers 3 and 4 over time, and FIG. Inside pressure Pin and outside pressure Po
FIG. 9 (2) shows the change with time of the blowers 3 and 4, and FIG.
(3) shows a change with time of the air volume Qin and Qout by each of the blowers 3 and 4.

【図10】基準回転数演算回路12による基準回転数の
設定動作を説明するためのフローチャートである。
FIG. 10 is a flowchart illustrating an operation of setting a reference rotation speed by a reference rotation speed calculation circuit 12;

【図11】車内圧力Pinおよび車外圧力Pout、各
送風機3,4の回転数ならびに各送風機3,4による風
量Qin,Qoutの時間経過に伴う変化を示すグラフ
であり、図11(1)は車内圧力Pinおよび車内圧力
Poutの時間経過に伴う変化を示し、図11(2)は
各送風機3,4の回転数の時間経過に伴う変化を示し、
図11(3)は各送風機3,4による風量Qin,Qo
utの時間経過に伴う変化を示す。
FIG. 11 is a graph showing changes with time in the in-vehicle pressure Pin and the out-of-vehicle pressure Pout, the rotation speed of each of the blowers 3 and 4, and the air volumes Qin and Qout by the blowers 3 and 4, and FIG. FIG. 11B shows changes with time of the pressure Pin and the in-vehicle pressure Pout with time, and FIG. 11B shows changes with time of the rotation speeds of the blowers 3 and 4.
FIG. 11 (3) shows the air volumes Qin, Qo by the respective blowers 3, 4.
The change with time of ut is shown.

【符号の説明】[Explanation of symbols]

1 車両換気装置 2 車両 3 給気送風機 4 排気送風機 5 制御手段 6 車内圧力センサ 7 車外圧力センサ 8,9 回転数検出器 11 車内圧演算回路 12 基準回転数演算回路 13 圧力差演算回路 14 補償回転数演算回路 15a,15b 回転数指令回路 REFERENCE SIGNS LIST 1 vehicle ventilation device 2 vehicle 3 air supply blower 4 exhaust blower 5 control means 6 in-vehicle pressure sensor 7 out-of-vehicle pressure sensor 8,9 rotation speed detector 11 in-vehicle pressure calculation circuit 12 reference rotation speed calculation circuit 13 pressure difference calculation circuit 14 compensation rotation Number operation circuit 15a, 15b Revolution speed command circuit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 鈴木 忠機 兵庫県神戸市兵庫区和田山通2丁目1番 18号 川崎重工業株式会社 兵庫工場内 (72)発明者 渡辺 祥生 兵庫県神戸市兵庫区和田山通2丁目1番 18号 川崎重工業株式会社 兵庫工場内 (58)調査した分野(Int.Cl.7,DB名) B60H 1/24 661 B61D 27/00 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Tadashi Suzuki 2-1-1-18 Wadayama-dori, Hyogo-ku, Kobe-shi, Hyogo Kawasaki Heavy Industries, Ltd. Hyogo Plant (72) Inventor Yoshio Watanabe Hyogo-ku, Kobe-shi, Hyogo 2-1-1-18 Wadayama-dori Kawasaki Heavy Industries, Ltd. Hyogo Plant (58) Field surveyed (Int. Cl. 7 , DB name) B60H 1/24 661 B61D 27/00

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 車両に設けられる給気送風機および排気
送風機の各ファンの回転数を制御して、車内への給気送
風量および排気送風量を連続的に調整する制御手段によ
って、車内の必要換気量を維持しながら車内圧力の急激
な変動を抑制する車両換気装置において、 前記制御手段は、各送風機の前記必要換気量に相当する
各回転数を基準回転数とし、車内圧力が車内圧設定値に
対して変化したとき、車内圧力をフィードバックして各
送風機の各回転数を制御して車内圧力を前記車内圧設定
値に維持し、車内圧力を前記車内圧設定値に維持するた
めに各送風機のうち少なくとも一方の回転数が上限であ
るとき、車外圧力に応じて各送風機の基準回転数を低下
させて各送風機の風量差を大きくすることを特徴とする
車両換気装置。
A control means for controlling the number of rotations of each fan of an air supply fan and an exhaust air blower provided in the vehicle to continuously adjust the amount of air supply and the amount of exhaust air blown into the vehicle. In a vehicle ventilator that suppresses a rapid change in vehicle interior pressure while maintaining a ventilation volume, the control unit sets each revolution speed corresponding to the required ventilation volume of each blower as a reference revolution speed, and sets the vehicle interior pressure to a vehicle interior pressure. When it changes with respect to the value, the internal pressure is fed back to control each rotation speed of each blower to maintain the internal pressure at the internal pressure set value, and to maintain the internal pressure at the internal pressure set value. A vehicle ventilation device, wherein when at least one of the rotation speeds of the blowers is an upper limit, the reference rotation speed of each of the blowers is reduced in accordance with the pressure outside the vehicle to increase the difference in air flow between the blowers.
【請求項2】 前記制御手段は、車外圧力が一定である
とき、前記車内圧設定値を車外圧力に近づく方向に緩や
かに変化させることを特徴とする請求項1記載の車両換
気装置。
2. The vehicle ventilator according to claim 1, wherein the control unit gradually changes the vehicle interior pressure set value toward the vehicle exterior pressure when the vehicle exterior pressure is constant.
【請求項3】 車両に設けられる給気送風機および排気
送風機の各ファンの回転数を制御して、車内への給気送
風量および排気送風量を連続的に調整する制御手段によ
って、車内の必要換気量を維持しながら車内圧力の急激
な変動を抑制する車両換気装置において、 前記制御手段は、予め定める時定数に基づいて、車内圧
力が車外圧力に緩慢に近ずく方向に変化するように前記
車内圧設定値を演算して求め、その車内圧設定値を出力
する車内圧演算手段と、 車外圧力および前記車内圧演算手段から出力される車内
圧設定値に基づいて、少なくとも必要換気量を維持する
各送風機の基準回転数を演算して求め、その基準回転数
を出力する基準回転数演算手段と、 車内圧力と車内圧設定値との圧力差を演算して求め、そ
の圧力差を出力する圧力差演算手段と、 基準回転数演算手段からの基準回転数と圧力差演算手段
からの圧力差に相当する回転数とを比較して差を求め、
その差を回転数指令値として各送風機に出力する回転数
指令手段とを含むことを特徴とする車両換気装置。
3. A control means for controlling the rotation speed of each fan of an air supply blower and an exhaust blower provided in the vehicle to continuously adjust the amount of air supply and the amount of exhaust air blown into the vehicle. In a vehicle ventilator that suppresses a sudden change in vehicle interior pressure while maintaining a ventilation volume, the control unit is configured to change the vehicle interior pressure in a direction approaching the vehicle exterior pressure slowly based on a predetermined time constant. Calculating and calculating a vehicle interior pressure set value, and maintaining at least a required ventilation amount based on the vehicle exterior pressure and the vehicle interior pressure set value output from the vehicle interior pressure calculation means for outputting the vehicle interior pressure set value; Calculating and calculating the reference rotation speed of each blower, and calculating and calculating the pressure difference between the vehicle interior pressure and the vehicle interior pressure set value, and outputting the pressure difference. Pressure difference Calculating means, and comparing the reference rotation speed from the reference rotation speed calculation means with the rotation speed corresponding to the pressure difference from the pressure difference calculation means to obtain a difference,
A rotation speed commanding means for outputting the difference to each blower as a rotation speed command value.
JP33788498A 1998-11-27 1998-11-27 Vehicle ventilation system Expired - Fee Related JP3012623B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33788498A JP3012623B1 (en) 1998-11-27 1998-11-27 Vehicle ventilation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33788498A JP3012623B1 (en) 1998-11-27 1998-11-27 Vehicle ventilation system

Publications (2)

Publication Number Publication Date
JP3012623B1 true JP3012623B1 (en) 2000-02-28
JP2000158934A JP2000158934A (en) 2000-06-13

Family

ID=18312910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33788498A Expired - Fee Related JP3012623B1 (en) 1998-11-27 1998-11-27 Vehicle ventilation system

Country Status (1)

Country Link
JP (1) JP3012623B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111847153A (en) * 2019-04-24 2020-10-30 株式会社日立制作所 Elevator control system and elevator control method

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002067658A (en) * 2000-09-01 2002-03-08 Denso Corp Vehicle system
JP2004136804A (en) * 2002-10-18 2004-05-13 Kawasaki Heavy Ind Ltd Ventilation control method and ventilation controller for vehicle
JP4667116B2 (en) * 2005-05-16 2011-04-06 川崎重工業株式会社 Train smoke system
KR100787390B1 (en) 2007-03-19 2007-12-21 주식회사 태성 System for purifing the noxious gas of vehicle's room and the method thereof
JP2009023566A (en) * 2007-07-20 2009-02-05 Valeo Thermal Systems Japan Corp Unit combinedly used for ventilation, air conditioning and exhaust heat recovery utilization, and air conditioner for vehicle
JP2013075574A (en) * 2011-09-29 2013-04-25 Fuji Heavy Ind Ltd Vehicle, cooling apparatus and cooling method
JP7501194B2 (en) * 2020-07-21 2024-06-18 株式会社デンソー Motor Control Device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111847153A (en) * 2019-04-24 2020-10-30 株式会社日立制作所 Elevator control system and elevator control method

Also Published As

Publication number Publication date
JP2000158934A (en) 2000-06-13

Similar Documents

Publication Publication Date Title
EP0363038B1 (en) Air conditioning system for a vehicle
JP3104308B2 (en) Electric vehicle air conditioner
JPS6329642B2 (en)
JP3416993B2 (en) Air conditioner
WO2014162701A1 (en) Motor controller
JP3012623B1 (en) Vehicle ventilation system
JPS6061324A (en) Automatic controlling air conditioner
US6029466A (en) Method for evaporator temperature control as a function of the outside dew point
JPH10508966A (en) Room temperature adjustment method using air conditioning device with increment switching fan
JP3368316B2 (en) Vehicle ventilation control method and control device
JPH0248821B2 (en)
JPS6246371B2 (en)
JP3167396B2 (en) Intake door drive control device for automotive air conditioner
JPH0478493B2 (en)
JP3814964B2 (en) Air conditioner for vehicles
JPS63315365A (en) Ventilating device for vehicle
JP2654685B2 (en) Blower motor controller for automotive air conditioner
JPS60128013A (en) Method of temperature control in car air conditioner
JPH0634186A (en) Controller for air conditioning
JP3309545B2 (en) Vehicle air conditioning controller
JPH0584243B2 (en)
JPS6374711A (en) Air-conditioner for automobile
JPS6329643B2 (en)
JPS5926483B2 (en) Automatic control system for automotive air conditioners
JPH04131655A (en) Centralized type air conditioning apparatus

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081210

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091210

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101210

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111210

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111210

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121210

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121210

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees