JP3009405B2 - Permanent magnet material and manufacturing method thereof - Google Patents

Permanent magnet material and manufacturing method thereof

Info

Publication number
JP3009405B2
JP3009405B2 JP1114157A JP11415789A JP3009405B2 JP 3009405 B2 JP3009405 B2 JP 3009405B2 JP 1114157 A JP1114157 A JP 1114157A JP 11415789 A JP11415789 A JP 11415789A JP 3009405 B2 JP3009405 B2 JP 3009405B2
Authority
JP
Japan
Prior art keywords
permanent magnet
rare earth
magnet material
combination
earth element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1114157A
Other languages
Japanese (ja)
Other versions
JPH02294447A (en
Inventor
栄 日向野
啓司 山方
方勝 福田
一典 所
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Steel Mfg Co Ltd
Original Assignee
Mitsubishi Steel Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Steel Mfg Co Ltd filed Critical Mitsubishi Steel Mfg Co Ltd
Priority to JP1114157A priority Critical patent/JP3009405B2/en
Publication of JPH02294447A publication Critical patent/JPH02294447A/en
Application granted granted Critical
Publication of JP3009405B2 publication Critical patent/JP3009405B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は優れた磁気特性を有する希土類元素−遷移金
属永久磁石材料およびその磁気特性を向上させる製造方
法に関する。
The present invention relates to a rare earth element-transition metal permanent magnet material having excellent magnetic properties and a manufacturing method for improving the magnetic properties.

[従来の技術] 希土類元素(R)−遷移金属(T)2元合金において
は、R2T17、RT5、R2T7、RT3、RT2等の多数の化合物が存
在することが知られている。これらの中で、永久磁石材
料として用いられているものは、TがCoの場合、R2Co17
とRCo5である。RT5化合物はCaCu5型の六方晶構造の化合
物であり、SmCo5は大きな結晶磁気異方性を有してい
る。一方R2T17化合物は、Th2Ni17型の六方晶構造の化合
物と、Th2Zn17型の菱面体構造の化合物の2つがある。
R−Co系合金では希土類元素の種類により、一般的には
Gdよりも軽希土類側ではTh2Zn17型の化合物が、Gdより
も重希土類側ではTh2Ni17型の化合物が安定に存在する
ことがわかっている。Sm2Co17では両方の化合物が存在
しており、高い飽和磁化を持っている。
[Prior Art] In a rare earth element (R) -transition metal (T) binary alloy, a large number of compounds such as R 2 T 17 , RT 5 , R 2 T 7 , RT 3 and RT 2 may be present. Are known. Among these, the one used as a permanent magnet material is R 2 Co 17 when T is Co.
And RCo 5 . The RT 5 compound is a CaCu 5 type hexagonal structure compound, and SmCo 5 has a large magnetocrystalline anisotropy. On the other hand, the R 2 T 17 compound includes a compound having a hexagonal structure of Th 2 Ni 17 type and a compound having a rhombohedral structure of Th 2 Zn 17 type.
In R-Co alloys, depending on the type of rare earth element, generally,
It is known that a Th 2 Zn 17 type compound is stably present on the light rare earth side of Gd and a Th 2 Ni 17 type compound is stably present on the heavy rare earth side of Gd. In Sm 2 Co 17 , both compounds are present and have high saturation magnetization.

さらに、Sm−Co系合金およびCe−Co系合金において
は、Sm−Co−Fe−Cu−Ti、Sm−Co−Fe−Cu−Zr、Ce−Co
−Fe−Cu−Ti等の多元系合金において、高温状態でTbCu
7型の六方晶構造を有するRT7化合物が存在することが知
られている。ただし、RT7化合物は結晶構造の類似性か
ら容易にCaCu5型の化合物RT5とTh2Ni17型の化合物R2T17
に分解することが可能である。TbCu7型のRT7化合物の結
晶構造は、CaCu5型のRT5化合物のRの一部がランダムに
Tのペア(ダンベルペア)に置換されたものなので、RT
7相のR元素の組成は固溶範囲を持ち、化学量論組成12.
5原子%を中心として広がる。
Further, in Sm-Co-based alloys and Ce-Co-based alloys, Sm-Co-Fe-Cu-Ti, Sm-Co-Fe-Cu-Zr, Ce-Co
-In multi-component alloys such as Fe-Cu-Ti, TbCu
It is known that there is an RT 7 compound having a 7- type hexagonal structure. However, RT 7 Compound compounds readily CaCu 5 type compound RT 5 and Th 2 Ni 17 type from the similarity of the crystal structure R 2 T 17
Can be decomposed into The crystal structure of the TbCu 7 RT 7 compounds of, so that a part of R of the CaCu 5 type RT 5 compound of is substituted with T pair (dumbbell pairs) randomly, RT
The composition of the seven- phase R element has a solid solution range, and the stoichiometric composition 12.
Spreads around 5 atomic%.

しかし、他の希土類元素においては、TbCu7型の化合
物RT7が存在するかについては全く明らかでない。
However, in the other rare earth elements, not at all clear whether the compounds RT 7 of the TbCu 7 is present.

[発明が解決しようとする課題] 本発明は、R−Co系合金、特にSmよりも重希土類元素
およびYを主体とした希土類とCoとの合金において、他
の遷移金属等との組合せによって、TbCu7型の化合物RT7
相を得て、永久磁石材料として利用できる磁気特性を有
する材料を提供しようとするものである。
[Problems to be Solved by the Invention] The present invention relates to an R-Co based alloy, particularly an alloy of Co and a rare earth element which is heavier than Sm and a rare earth element mainly composed of Y, in combination with another transition metal or the like. TbCu type 7 compound RT 7
The aim is to obtain a phase and provide a material having magnetic properties that can be used as a permanent magnet material.

[課題を解決するための手段] 本発明は、原子百分率において、 R:7〜17%(ただし、Rは希土類元素でそのうち半分以
上がEu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Lu,Yの少なくとも1種以
上である) X:1〜10%(ただし、XはTi、Zr、Hfより選ばれた1種
または2種以上の組合せ) 残部実質的にCoの組成からなるものあるいはさらに、こ
れに、 Cu:25%以下(但し、0%を除く) T:30%以下(ただし、TはFe、Mnの1種または2種の組
合せで、0%を除く) のいずれか1方または双方を加えた組成からなるTbCu7
型の結晶構造を有する化合物を主相とする永久磁石材料
および上記組成からなる材料を溶解し、単ロール法によ
る溶湯急冷装置により急冷し、得られた薄片状粉末を80
0℃を越えない温度範囲で熱処理することを特徴とする
永久磁石材料の製造方法である。
[Means for Solving the Problems] The present invention provides an atomic percentage of R: 7 to 17% (where R is a rare earth element and at least half of them are Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb , Lu, Y at least one) X: 1 to 10% (where X is one or a combination of two or more selected from Ti, Zr, Hf) The balance substantially consists of Co Or Cu: 25% or less (excluding 0%) T: 30% or less (T is one or a combination of two types of Fe and Mn, excluding 0%) TbCu 7 composed of one or both
A permanent magnet material having a compound having a type crystal structure as a main phase and a material having the above composition are melted and quenched by a melt quenching device by a single roll method.
A method for producing a permanent magnet material, characterized by performing a heat treatment in a temperature range not exceeding 0 ° C.

すなわち、本発明は、R−Co系合金、特にSmよりも重
希土類元素およびYを主体とするCoとの合金において、
他の遷移金属の中でCoよりも原子半径が大きく、Rと原
子半径が比較的近い元素のうち、Ti、Zr、Hfを添加する
ことにより、TbCu7型の化合物RT7相が得られることを見
出し、この化合物を主相とする合金が、永久磁石材料と
して利用できる磁気特性を有していることを見出したの
である。
That is, the present invention is an R-Co based alloy, particularly an alloy with Co mainly composed of a rare earth element and Y that is more heavy than Sm,
Other atomic radius greater than Co in the transition metals, of the R and atomic radii are relatively close element, Ti, Zr, by adding Hf, the compounds of the TbCu 7 RT 7 phase is obtained And found that an alloy containing this compound as a main phase has magnetic properties that can be used as a permanent magnet material.

添加元素のTi、Zr、Hfは、TbCu7型の化合物RT7相を得
るための必須の元素であり、1原子%未満では、RT7
合物が得られないか、あるいはそれを得るための製造条
件が厳しくなり、工業的でなくなる。また、10原子%を
越えるとRT7化合物以外の相が混在したり、あるいは、
合金の飽和磁化が低下するので、永久磁石材料に適さな
くなる。
Ti added elements, Zr, Hf is an essential element for obtaining the TbCu 7 compounds RT 7 phase, is less than 1 atomic%, or not to obtain RT 7 compounds, or prepared to obtain it Conditions become stricter and less industrial. If it exceeds 10 atomic%, phases other than the RT 7 compound may be mixed, or
As the saturation magnetization of the alloy is reduced, it is not suitable for permanent magnet materials.

本発明における希土類元素Rは、その半分以上がEu,G
d,Tb,Dy,Ho,Er,Tm,Yb,Lu,Yの少なくとも1種以上であ
る。
More than half of the rare earth elements R in the present invention are Eu, G
It is at least one of d, Tb, Dy, Ho, Er, Tm, Yb, Lu, and Y.

Rの含有量は、7原子%未満および17原子%を越える
と、Ti、Zr、Hfの各元素を添加しても、RT7化合物が得
られない。
When the content of R is less than 7 atomic% and exceeds 17 atomic%, an RT 7 compound cannot be obtained even if the respective elements Ti, Zr, and Hf are added.

R−Co系合金にTi、Zr、Hfの各元素を添加して得たTb
Cu7型のRT7化合物を主相とする合金は、永久磁石材料と
して利用できる磁気特性を有している。この合金にCuを
添加することにより、保磁力がさらに増大する。しか
し、Cuの25原子%を越える添加は、合金の飽和磁化が低
下するので好ましくない。また、FeあるいはMnを添加す
ることにより、合金の飽和磁化が増大する。特にRが重
希土類元素を主体とする場合、Mnは有効である。しか
し、FeあるいはMnの30原子%を越える添加は、合金の保
磁力の低下をもたらすので好ましくない。
Tb obtained by adding each element of Ti, Zr, Hf to R-Co alloy
An alloy containing a Cu 7 type RT 7 compound as a main phase has magnetic properties that can be used as a permanent magnet material. By adding Cu to this alloy, the coercive force further increases. However, addition of Cu exceeding 25 atomic% is not preferable because the saturation magnetization of the alloy is reduced. The addition of Fe or Mn increases the saturation magnetization of the alloy. In particular, when R is mainly composed of a heavy rare earth element, Mn is effective. However, the addition of Fe or Mn in an amount exceeding 30 atomic% is not preferable because it lowers the coercive force of the alloy.

さらにまた、永久磁石特性を向上させるために、他の
遷移金属V、Cr、Ni、Nb、Mo、Ta、W等あるいは、半金
属元素B、C、Al、Si、Ga、Ge等を添加することも可能
である。
Furthermore, in order to improve the permanent magnet properties, other transition metals V, Cr, Ni, Nb, Mo, Ta, W, etc., or semimetal elements B, C, Al, Si, Ga, Ge, etc. are added. It is also possible.

本発明の永久磁石材料の製造方法の一つの方法は、所
定組成の合金を溶解鋳造し、RT7化合物が存在する温度
範囲で溶体化処理することであるが、冷却の過程でRT5
化合物とR2T17化合物に分解したり、他の相が析出して
くる場合は急冷する必要がある。また、他の製造方法と
しては、所定組成の合金を溶解し、溶湯急冷法により超
急冷することによりRT7化合物を主相とする永久磁石材
料を製造する方法と、所定組成の合金をターゲットとし
て、スパッタ法により、基板上にRT7化合物を主相とす
る永久磁石材料を製造する方法等がある。
One method of a method of manufacturing a permanent magnet material of the present invention may be prepared by dissolving cast alloy having a predetermined composition, but is to solution treated in the temperature range of RT 7 compound is present, RT in the course of cooling 5
When it decomposes into a compound and an R 2 T 17 compound, or when another phase precipitates, it is necessary to rapidly cool it. As another manufacturing method, by dissolving the alloy having a predetermined composition, and a method of manufacturing a permanent magnet material as a main phase an RT 7 compound by rapid quenching by melt-quenching method, the alloy having a predetermined composition as the target by sputtering, and a method of manufacturing a permanent magnet material as a main phase an RT 7 compound on the substrate.

また、本発明の永久磁石材料を、RT7化合物が存在す
る800℃を越えない温度範囲で熱処理することにより、
磁気特性特に保磁力が向上する。
Further, by heat-treating the permanent magnet material of the present invention in a temperature range not exceeding 800 ° C. in which the RT 7 compound is present,
Magnetic properties, especially coercive force, are improved.

[実施例] 以下、本発明を実施例により具体的に説明する。EXAMPLES Hereinafter, the present invention will be described specifically with reference to Examples.

実施例1 第1表に示す所定組成の合金を、アルゴン雰囲気中に
おいてアーク溶解炉により作成した。その合金を再溶解
し、銅製の単ロール法による溶湯急冷装置により急冷し
て、試料を作成した。溶湯急冷の条件は、ロール直径30
0mm、回転数1000rpm、雰囲気10-3Torr、射出圧0.5kgG/c
m2である。
Example 1 An alloy having a predetermined composition shown in Table 1 was prepared by an arc melting furnace in an argon atmosphere. The alloy was redissolved and quenched by a copper single roll method quenching device to prepare a sample. The condition for quenching the melt is 30 rolls.
0mm, rotation speed 1000rpm, atmosphere 10-3 Torr, injection pressure 0.5kgG / c
a m 2.

得られた試料の形状は、幅0.5〜2mm、長さ1〜5mm、
厚さ40〜100μmの薄片、あるいは大きさ1mm程度の粉末
であり、表面は金属光沢を示していた。この試料をCoK
α線によるX線回折法により結晶構造を調べ、振動型磁
力計により、印加磁界15kOeにおける自発磁化の大きさ
(σ15k)および保磁力(iHc)を測定した。結果を第1
表に示す。
The shape of the obtained sample is 0.5 to 2 mm in width, 1 to 5 mm in length,
It was a thin piece having a thickness of 40 to 100 μm or a powder having a size of about 1 mm, and the surface showed metallic luster. Transfer this sample to CoK
The crystal structure was examined by an X-ray diffraction method using α rays, and the magnitude of the spontaneous magnetization (σ 15k ) and the coercive force (iHc) at an applied magnetic field of 15 kOe were measured by a vibrating magnetometer. First result
It is shown in the table.

これによると、RとしてSmよりも重希土類元素および
Yを主体とするR−Co系合金において、Ti、Zr、Hfの各
元表を添加することにより、TbCu7型の六方晶構造を有
するRT7化合物が得られることがわかる。またこれらのT
bCu7型化合物は1kOe以上の保磁力を持ち、永久磁石材料
として利用できることがわかる。
According to this, in an R-Co alloy mainly composed of a rare earth element and Y as a main component of Sm as R, an RT having a TbCu 7 type hexagonal structure can be obtained by adding the respective elements of Ti, Zr and Hf. It can be seen that 7 compounds are obtained. Also these T
It can be seen that the bCu 7 type compound has a coercive force of 1 kOe or more and can be used as a permanent magnet material.

実施例2 第2表に示す所定組成の合金を、実施例1と同様にし
て、急冷薄片あるいは急冷粉末試料を作成した。この試
料の結晶構造および磁気特性を測定した。結果を第2表
に示す。ここで試料番号に*印のあるものは、本発明の
特許請求の範囲外の比較例である。
Example 2 Quenched flakes or quenched powder samples were prepared from the alloys having the predetermined compositions shown in Table 2 in the same manner as in Example 1. The crystal structure and magnetic properties of this sample were measured. The results are shown in Table 2. Here, those with asterisks in the sample numbers are comparative examples outside the scope of the claims of the present invention.

これによると、希土類元素の含有量が7原子%未満で
はCoやTh2Ni17型の化合物が析出し、17原子%を越える
と非晶質や不明相が析出したりする。すなわち、希土類
元素の含有量が7〜17原子%の範囲において、TbCu7
のRT7化合物が得られることがわかる。また、RT7化合物
を得るための添加元素Ti、Zr、Hfは、1原子%未満では
RT7化合物を得ることがむずかしく、10原子%を越える
とRT7相以外の相が大量に混在したり、合金の自発磁化
が低下したりして、永久磁石材料として適さなくなる。
すなわち、Ti、Zr、Hfの含有量が1〜10原子%の範囲に
おいて、永久磁石材料として有用なTbCu7型化合物が得
られることがわかる。
According to this, when the content of the rare earth element is less than 7 atomic%, a Co or Th 2 Ni 17 type compound is precipitated, and when it exceeds 17 atomic%, an amorphous phase or an unknown phase is precipitated. That is, in the range content is 7 to 17 atomic% of a rare earth element, it can be seen that the RT 7 compounds of the TbCu 7 is obtained. Further, the additive element Ti to obtain RT 7 compound, Zr, Hf, in less than 1 atomic%
It is difficult to obtain a RT 7 compound exceeds 10 atomic%, the or large quantities coexist phase other than RT 7 phase, the spontaneous magnetization of the alloy was lowered, is not suitable as a permanent magnet material.
That is, it is found that a TbCu 7- type compound useful as a permanent magnet material can be obtained when the content of Ti, Zr, and Hf is in the range of 1 to 10 atomic%.

実施例3 所定組成の合金を、実施例1と同様にして、急冷薄片
あるいは急冷粉末試料を作成した。この試料の結晶構造
および磁気特性を測定した。結果を第3表に示す。ここ
で試料番号に*印のあるものは、本発明の特許請求の範
囲外の比較例である。
Example 3 A quenched flake or a quenched powder sample was prepared from an alloy having a predetermined composition in the same manner as in Example 1. The crystal structure and magnetic properties of this sample were measured. The results are shown in Table 3. Here, those with asterisks in the sample numbers are comparative examples outside the scope of the claims of the present invention.

これによると、TbCu7型のRT7化合物を含む合金におい
て、Cuの含有量が増加するにともない、保磁力が増加す
ることがわかる。しかし、その量が25原子%を越える
と、合金の自発磁化が減少し、永久磁石材料として適さ
なくなる。また、FeあるいはMnの含有量が増加するにと
もない、合金の自発磁化が増加することがわかる。しか
し、30原子%を越えると合金の保磁力が減少し、永久磁
石材料として適さなくなる。
According to this, in an alloy containing the TbCu 7 RT 7 compounds of, with the content of Cu is increased, it can be seen that the coercive force increases. However, if the amount exceeds 25 atomic%, the spontaneous magnetization of the alloy decreases, and the alloy is not suitable as a permanent magnet material. In addition, it can be seen that the spontaneous magnetization of the alloy increases as the content of Fe or Mn increases. However, when the content exceeds 30 atomic%, the coercive force of the alloy decreases, and the alloy is not suitable as a permanent magnet material.

実施例4 原子百分率で10%Yb、2.5%Pr、1%Zr、1%Ti、10
%Cu、18%Fe、4%Mn、53.5%Coの組成の合金を、アル
ゴン雰囲気中で高周波誘導溶解炉により作成した。その
合金を再溶解し、銅製の単ロール法による溶湯急冷装置
により、急冷粉末試料を作成した。溶湯急冷の条件は、
ロール直径300mm、回転数850rpm、雰囲気10-3Torr、射
出圧0.75kgG/cm2である。
Example 4 10% Yb, 2.5% Pr, 1% Zr, 1% Ti, 10% by atomic percentage
An alloy having a composition of% Cu, 18% Fe, 4% Mn, and 53.5% Co was prepared by a high-frequency induction melting furnace in an argon atmosphere. The alloy was redissolved, and a quenched powder sample was prepared by a molten metal quenching device using a single roll method made of copper. The conditions for quenching the melt are:
The roll diameter is 300 mm, the number of revolutions is 850 rpm, the atmosphere is 10 −3 Torr, and the injection pressure is 0.75 kgG / cm 2 .

この試料の結晶構造を、X線回折法により調べると、
TbCu7化合物であった。これによるとR−Co−X−Cu−
T系合金において、TbCu7型化合物が得られることがわ
かる。磁気特性はσ15K=94emu/g、σ=49emu/g、iHc
=2.8kOeの永久磁石特性を示した。
Examining the crystal structure of this sample by X-ray diffraction,
It was a TbCu 7 compound. According to this, R-Co-X-Cu-
It can be seen that a TbCu 7- type compound is obtained in the T-based alloy. Magnetic properties are σ 15K = 94 emu / g, σ r = 49 emu / g, iHc
= 2.8 kOe.

さらにこの試料を、加圧雰囲気熱処理炉において、ア
ルゴンガス5kgG/cm2の圧力で、400〜900℃の各温度で1
時間の熱処理をし、室温まで急冷し、磁気特性を測定し
た。熱処理温度と保磁力の関係を第1図に示す。これに
よる、800℃を越えない温度範囲で熱処理することによ
り、磁気特性、特に保磁力が改善されることがわかる。
Further, this sample was heated in a pressurized atmosphere heat treatment furnace at a pressure of 5 kgG / cm 2 of argon gas at a temperature of 400 to 900 ° C. for 1 hour.
After the heat treatment for a long time, the temperature was rapidly cooled to room temperature, and the magnetic properties were measured. FIG. 1 shows the relationship between the heat treatment temperature and the coercive force. It can be seen that the magnetic properties, especially the coercive force, are improved by performing the heat treatment in a temperature range not exceeding 800 ° C.

800℃を越える温度で熱処理を行うと、他の相が析出
して磁気特性が低下する。すなわち、本発明の合金の磁
気特性を向上させるための熱処理温度としては、RT7
合物が他の相に分解してしまわない温度範囲で熱処理す
る必要がある。
When heat treatment is performed at a temperature exceeding 800 ° C., other phases are precipitated and the magnetic properties are reduced. That is, the heat treatment temperature for improving the magnetic properties of the alloy of the present invention, it is necessary to heat treatment at a temperature range of RT 7 compound does would provide an decomposed into other phases.

実施例5 原子百分率で、8%Yb、1%Dy、4%Pr、2%Zr、1
%Hf、15%Cu、20%Fe、5%Mn、44%Coの組成の合金
を、アルゴン雰囲気中でアーク溶解炉により作成した。
この合金をターゲットとして、マグネトロンスパッタ法
によりガラス基板上に薄膜を形成した。薄膜作成条件
は、印加電圧1kV、アルゴンガス圧力約10-3Torrであ
る。
Example 5 8% Yb, 1% Dy, 4% Pr, 2% Zr, 1 atomic%
An alloy having a composition of% Hf, 15% Cu, 20% Fe, 5% Mn, and 44% Co was prepared by an arc melting furnace in an argon atmosphere.
Using this alloy as a target, a thin film was formed on a glass substrate by magnetron sputtering. The conditions for forming the thin film are an applied voltage of 1 kV and an argon gas pressure of about 10 -3 Torr.

得られた試料は、厚さ1μmであった。この薄膜の結
晶構造をX線回折法により調べると、TbCu7化合物であ
った。この薄膜の磁気特性を薄膜の面内において測定す
ると、σ15K=90emu/g、σ=58emu/g、iHc=4.2kOeで
あり、薄膜としての永久磁石特性を示した。
The obtained sample was 1 μm in thickness. When the crystal structure of this thin film was examined by X-ray diffraction, it was found to be a TbCu 7 compound. When the magnetic properties of this thin film were measured in the plane of the thin film, σ 15K = 90 emu / g, σ r = 58 emu / g, and iHc = 4.2 kOe, indicating permanent magnet characteristics as a thin film.

さらに、この薄膜を真空中で600℃、2時間の熱処理
をして磁気特性を測定すると、σ15K=92emu/g、σ
60emu/g、iHc=5.2kOeの永久磁石特性を示した。
Further, when this thin film was subjected to a heat treatment at 600 ° C. for 2 hours in a vacuum and the magnetic properties were measured, σ 15K = 92 emu / g and σ r =
The permanent magnet characteristics of 60 emu / g and iHc = 5.2 kOe were exhibited.

[発明の効果] 本発明によれば優れた磁気特性を有する新規組成の希
土類元素−遷移金属永久磁石材料を得ることができる。
According to the present invention, a rare earth element-transition metal permanent magnet material having a novel composition and excellent magnetic properties can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

第1図は実施例4の組成の合金の熱処理温度と保磁力の
関係を示すグラフである。
FIG. 1 is a graph showing the relationship between the heat treatment temperature and the coercive force of the alloy having the composition of Example 4.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 所 一典 東京都江東区東雲1―9―31 三菱製鋼 株式会社技術開発センター内 (56)参考文献 特開 昭57−134533(JP,A) 特開 昭63−213904(JP,A) 特開 平2−263937(JP,A) (58)調査した分野(Int.Cl.7,DB名) C22C 19/07 C22F 1/10 H01F 1/04 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Kazunori 1-9-31 Shinonome, Koto-ku, Tokyo Mitsubishi Steel Corporation Technology Development Center (56) References JP-A-57-134533 (JP, A) JP-A-63-213904 (JP, A) JP-A-2-263937 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C22C 19/07 C22F 1/10 H01F 1/04

Claims (8)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】原子百分率において R:7〜17%(ただし、Rは希土類元素でそのうち半分以
上がEu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Lu,Yの少なくとも1種以
上である) X:1〜10%(ただし、XはTi、Zr、Hfより選ばれた1種
または2種以上の組合せ) 残部実質的にCoの組成からなり、TbCu7型の結晶構造を
有する化合物を主相とする永久磁石材料。
1. An atomic percentage of R: 7 to 17% (where R is a rare earth element and at least one of them is at least one of Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Y) X: 1 to 10% (where X is one or a combination of two or more selected from Ti, Zr, and Hf) The balance substantially consists of Co and has a TbCu 7- type crystal structure. Permanent magnet material whose main phase is a compound.
【請求項2】原子百分率において R:7〜17%(ただし、Rは希土類元素でそのうち半分以
上がEu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Lu,Yの少なくとも1種以
上である) X:1〜10%(ただし、XはTi,Zr,Hfより選ばれた1種は
2種以上の組合せ) Cu:25%以下(ただし、0%は除く) 残部実質的にCoの組成からなり、TbCu7型の結晶構造を
有する化合物を主相とする永久磁石材料。
2. Atomic percentage R: 7 to 17% (where R is a rare earth element, at least one of which is at least one of Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Y) X: 1 to 10% (where X is a combination of two or more of one selected from Ti, Zr, Hf) Cu: 25% or less (excluding 0%) The balance is substantially Co A permanent magnet material mainly composed of a compound having a TbCu 7- type crystal structure.
【請求項3】原子百分率において R:7〜17%(ただし、Rは希土類元素でそのうち半分以
上がEu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Lu,Yの少なくとも1種以
上である) X:1〜10%(ただし、XはTi,Zr,Hfより選ばれた1種ま
たは2種以上の組合せ) T:30%以下(ただし、TはFe、Mnの1種または2種の組
合せで0%を除く) 残部実質的にCoの組成からなり、TbCu7型の結晶構造を
有する化合物を主相とする永久磁石材料。
3. An atomic percentage of R: 7 to 17% (where R is a rare earth element and at least one of them is at least one of Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Y) X: 1 to 10% (where X is one or a combination of two or more selected from Ti, Zr and Hf) T: 30% or less (where T is one or two of Fe and Mn) A permanent magnet material whose main phase is a compound substantially composed of Co and having a TbCu 7 type crystal structure.
【請求項4】原子百分率において R:7〜17%(ただし、Rは希土類元素でそのうち半分以
上がEu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Lu,Yの少なくとも1種以
上である X:1〜10%(ただし、XはTi,Zr,Hfより選ばれた1種ま
たは2種以上の組合せ) Cu:25%以下(ただし、0%を除く) T:30%以下(ただし、TはFe、Mnの1種または2種の組
合せで、0%を除く) 残部実質的にCoの組成からなり、TbCu7型の結晶構造を
有する化合物を主相とする永久磁石材料。
4. An atomic percentage of R: 7 to 17% (where R is a rare earth element, at least one of which is at least one of Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Y) X: 1 to 10% (where X is one or a combination of two or more selected from Ti, Zr, Hf) Cu: 25% or less (excluding 0%) T: 30% or less ( However, T is one or a combination of two kinds of Fe and Mn, excluding 0%.) The balance is a permanent magnet material having a main phase of a compound substantially composed of Co and having a TbCu 7 type crystal structure.
【請求項5】原子百分率において R:7〜17%(ただし、Rは希土類元素でそのうち半分以
上がEu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Lu,Yの少なくとも1種以
上である) X:1〜10%(ただし、XはTi,Zr,Hfより選ばれた1種ま
たは2種以上の組合せ) 残部実質的にCoの組成からなる材料を溶解し、単ロール
法による溶湯急冷装置により急冷し、得られた薄片状粉
末を800℃を越えない温度範囲で熱処理することを特徴
とする永久磁石材料の製造方法。
5. An atomic percentage of R: 7 to 17% (where R is a rare earth element, at least one of which is at least one of Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Y) X: 1 to 10% (where X is one or a combination of two or more selected from Ti, Zr, Hf) Remaining material substantially composed of Co is dissolved, and a single roll method is used. A method for producing a permanent magnet material, wherein the powder is quenched by a molten metal quenching device and the obtained flaky powder is heat-treated in a temperature range not exceeding 800 ° C.
【請求項6】原子百分率において R:7〜17%(ただし、Rは希土類元素でそのうち半分以
上がEu,Gd,Tb,Dy,Ho,Tm,Yb,Lu,Yの少なくとも1種以上
である) X:1〜10%(ただし、XはTi,Zr,Hfより選ばれた1種ま
たは2種以上の組合せ) Cu:25%以下(ただし、0%は除く) 残部実質的にCoの組成からなる材料を溶解し、単ロール
法による溶湯急冷装置により急冷し、得られた薄片状粉
末を800℃を越えない温度範囲で熱処理することを特徴
とする永久磁石材料の製造方法。
6. An atomic percentage of R: 7 to 17% (where R is a rare earth element and at least half thereof is at least one of Eu, Gd, Tb, Dy, Ho, Tm, Yb, Lu, Y) X: 1 to 10% (X is one or a combination of two or more selected from Ti, Zr, Hf) Cu: 25% or less (excluding 0%) The balance is substantially the composition of Co A method for producing a permanent magnet material, comprising: dissolving a material comprising: quenching a flaky powder by a single-roll method, and quenching the obtained flaky powder in a temperature range not exceeding 800 ° C.
【請求項7】原子百分率において R:7〜17%(ただし、Rは希土類元素でそのうち半分以
上がEu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Lu,Yの少なくとも1種以
上である) X:1〜10%(ただし、XはTi,Zr,Hfより選ばれた1種ま
たは2種以上の組合せ) T:30%以下(ただし、TはFe,Mnの1種または2種の組
合せで0%を除く) 残部実質的にCoの組成からなる材料を溶解し、単ロール
法による溶湯急冷装置により急冷し、得られた薄片状粉
末を800℃を越えない温度範囲で熱処理することを特徴
とする永久磁石材料の製造方法。
7. An atomic percentage of R: 7 to 17% (where R is a rare earth element and at least half thereof is at least one of Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Y) X: 1 to 10% (where X is one or a combination of two or more selected from Ti, Zr, Hf) T: 30% or less (where T is one or two of Fe and Mn) The remaining material consisting essentially of Co is melted and quenched by a single-roll method molten metal quenching device, and the obtained flaky powder is heat-treated at a temperature not exceeding 800 ° C. A method for producing a permanent magnet material.
【請求項8】原子百分率において R:7〜17%(ただし、Rは希土類元素でそのうち半分以
上がEu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Lu,Yの少なくとも1種以
上である) X:1〜10%(ただし、XはTi,Zr,Hfより選ばれた1種ま
たは2種以上の組合せ) Cu:25%以下(ただし、0%は除く) T:30%以下(ただし、TはFe、Mnの1種または2種の組
合せで0%を除く) 残部実質的にCoの組成からなる材料を溶解し、単ロール
法による溶湯急冷装置により急冷し、得られた薄片状粉
末を800℃を越えない温度範囲で熱処理することを特徴
とする永久磁石材料の製造方法。
8. An atomic percentage of R: 7 to 17% (where R is a rare earth element and at least half thereof is at least one of Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Y) X: 1 to 10% (where X is one or a combination of two or more selected from Ti, Zr, Hf) Cu: 25% or less (excluding 0%) T: 30% or less (However, T is one or a combination of two kinds of Fe and Mn except 0%.) The balance was obtained by dissolving a material substantially composed of Co and quenching by a molten metal quenching apparatus using a single roll method. A method for producing a permanent magnet material, comprising heat-treating a flaky powder at a temperature not exceeding 800 ° C.
JP1114157A 1989-05-09 1989-05-09 Permanent magnet material and manufacturing method thereof Expired - Fee Related JP3009405B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1114157A JP3009405B2 (en) 1989-05-09 1989-05-09 Permanent magnet material and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1114157A JP3009405B2 (en) 1989-05-09 1989-05-09 Permanent magnet material and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH02294447A JPH02294447A (en) 1990-12-05
JP3009405B2 true JP3009405B2 (en) 2000-02-14

Family

ID=14630581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1114157A Expired - Fee Related JP3009405B2 (en) 1989-05-09 1989-05-09 Permanent magnet material and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3009405B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3072742B2 (en) * 1990-02-22 2000-08-07 株式会社東芝 permanent magnet
US5456769A (en) * 1993-03-10 1995-10-10 Kabushiki Kaisha Toshiba Magnetic material
WO2016162990A1 (en) * 2015-04-08 2016-10-13 株式会社日立製作所 Rare earth permanent magnet and method for producing same
WO2019053886A1 (en) * 2017-09-15 2019-03-21 株式会社 東芝 Permanent magnet, rotating electric machine, and vehicle

Also Published As

Publication number Publication date
JPH02294447A (en) 1990-12-05

Similar Documents

Publication Publication Date Title
US5411608A (en) Performance light rare earth, iron, and boron magnetic alloys
JP3311907B2 (en) Permanent magnet material, permanent magnet, and method of manufacturing permanent magnet
JP2774372B2 (en) Permanent magnet powder
JP2893265B2 (en) Rare earth permanent magnet alloy and its manufacturing method
JP3009405B2 (en) Permanent magnet material and manufacturing method thereof
US4983230A (en) Platinum-cobalt alloy permanent magnets of enhanced coercivity
JP2753432B2 (en) Sintered permanent magnet
EP0386286B1 (en) Rare earth iron-based permanent magnet
JP2794496B2 (en) R-Fe-Co-BC permanent magnet alloy with small irreversible demagnetization and excellent thermal stability
JP2625163B2 (en) Manufacturing method of permanent magnet powder
JP2753429B2 (en) Bonded magnet
JPS62177101A (en) Production of permanent magnet material
JPH01100242A (en) Permanent magnetic material
JP3856869B2 (en) Resin-containing rolled sheet magnet and method for producing the same
JPH06231917A (en) Permanent magnet of rare earth-transition metal base and its manufacture
JP2740901B2 (en) R-Fe-Co-BC permanent magnet alloy with small irreversible demagnetization and excellent thermal stability
JP2753431B2 (en) Sintered permanent magnet
JP2927826B2 (en) Soft magnetic alloy and manufacturing method thereof
US4969961A (en) Sm-Fe-V magnet alloy and method of making same
JPH1064710A (en) Isotropic permanent magnet having high magnetic flux density and manufacture thereof
JPH11121215A (en) Manufacture of rare-earth magnetic powder
JP3380575B2 (en) RB-Fe cast magnet
JP2753430B2 (en) Bonded magnet
JP2794494B2 (en) R-Fe-Co-BC permanent magnet alloy with small irreversible demagnetization and excellent thermal stability
JPS62177146A (en) Manufacture of permanent magnet material

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees