JP3007447B2 - Air-fuel ratio control method for internal combustion engine - Google Patents

Air-fuel ratio control method for internal combustion engine

Info

Publication number
JP3007447B2
JP3007447B2 JP3174088A JP17408891A JP3007447B2 JP 3007447 B2 JP3007447 B2 JP 3007447B2 JP 3174088 A JP3174088 A JP 3174088A JP 17408891 A JP17408891 A JP 17408891A JP 3007447 B2 JP3007447 B2 JP 3007447B2
Authority
JP
Japan
Prior art keywords
air
fuel ratio
internal combustion
combustion engine
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3174088A
Other languages
Japanese (ja)
Other versions
JPH0518299A (en
Inventor
親礼 安部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Spark Plug Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP3174088A priority Critical patent/JP3007447B2/en
Publication of JPH0518299A publication Critical patent/JPH0518299A/en
Application granted granted Critical
Publication of JP3007447B2 publication Critical patent/JP3007447B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は酸素ポンプ素子と酸素濃
淡電池素子とを備えた空燃比センサを用いて、内燃機関
の空燃比を制御する内燃機関の空燃比制御方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling the air-fuel ratio of an internal combustion engine using an air-fuel ratio sensor provided with an oxygen pump element and an oxygen concentration cell element.

【0002】[0002]

【従来の技術】従来より、内燃機関の排気管に設けられ
て該内燃機関の空燃比を検出する空燃比センサと、内燃
機関の空燃比を制御する空燃比制御手段とを用いて、空
燃比センサにて検出される空燃比が理論空燃比となるよ
うに空燃比制御手段を調整することが行われている。
2. Description of the Related Art Conventionally, an air-fuel ratio sensor provided in an exhaust pipe of an internal combustion engine to detect the air-fuel ratio of the internal combustion engine and air-fuel ratio control means for controlling the air-fuel ratio of the internal combustion engine have been used. The air-fuel ratio control means is adjusted so that the air-fuel ratio detected by the sensor becomes the stoichiometric air-fuel ratio.

【0003】例えば内燃機関が理論空燃比で駆動されて
いるとき所定電圧を発生する酸素濃淡電池素子と、酸素
濃淡電池素子表面に設けた測定ガス室へ通電電流に対応
した量の酸素を給排する酸素ポンプ素子とを備えた空燃
比センサを排気管内に設け、酸素濃淡電池素子が上記所
定電圧を発生するように酸素ポンプ素子への通電電流を
調整し、その通電電流が測定ガス室から酸素を排出する
正方向であるときは燃料噴射量や空気供給量等を調整し
て空燃比を濃厚にし、逆に通電電流が測定ガス室へ酸素
を供給する負方向であるときは空燃比を希薄にする空燃
比制御方法が知られている。
For example, when an internal combustion engine is driven at a stoichiometric air-fuel ratio, an oxygen concentration cell element that generates a predetermined voltage, and an amount of oxygen corresponding to an energizing current is supplied to and exhausted from a measurement gas chamber provided on the surface of the oxygen concentration cell element. An air-fuel ratio sensor having an oxygen pump element for performing the above operation is provided in the exhaust pipe, and the current supplied to the oxygen pump element is adjusted so that the oxygen concentration cell element generates the predetermined voltage. The fuel injection amount and air supply amount are adjusted to make the air-fuel ratio rich when the fuel is discharged in the positive direction, and the air-fuel ratio is made lean when the energized current is the negative direction that supplies oxygen to the measurement gas chamber. An air-fuel ratio control method is known.

【0004】また内燃機関の始動直後には機関温度が低
いため、吸気管にて噴射される燃料が良好に霧化しな
い。そこで必要な駆動力を得るために、内燃機関の始動
直後には空燃比を理論空燃比より濃厚に、即ちリッチに
制御して必要な駆動力を得ることが行われている。
Immediately after the start of the internal combustion engine, the fuel injected through the intake pipe does not atomize well because the engine temperature is low. Therefore, in order to obtain a necessary driving force, the air-fuel ratio is controlled to be richer, that is, richer than the stoichiometric air-fuel ratio immediately after the start of the internal combustion engine to obtain a necessary driving force.

【0005】これには、冷却水温や排気温が所定値とな
るまでは燃料噴射量を多めに設定された所定量に制御す
る方法が知られている。
[0005] For this purpose, there is known a method of controlling the fuel injection amount to a predetermined large amount until the cooling water temperature or the exhaust gas temperature reaches a predetermined value.

【0006】[0006]

【発明が解決しようとする課題】ところがこの方法によ
れば、内燃機関の始動直後には空燃比センサの出力に係
わらず、燃料噴射量を一律に上記所定量に制御している
ので、内燃機関に必要な駆動力を確実に発生させるため
には、上記所定量を若干多めに設定しておき、始動に必
要な燃料噴射量より若干多めの燃料を噴射しなければな
らなかった。
However, according to this method, the fuel injection amount is uniformly controlled to the predetermined amount immediately after the start of the internal combustion engine regardless of the output of the air-fuel ratio sensor. In order to surely generate the driving force required for the above, the above-mentioned predetermined amount must be set slightly larger, and fuel slightly larger than the fuel injection amount required for starting has to be injected.

【0007】従って内燃機関の始動直後には空燃比が必
要以上にリッチとなり、燃費が低下したり排気中の有害
成分であるNOxやCOが増加してしまうことがあっ
た。そこで本発明は、内燃機関の始動直後において空燃
比のリッチ制御を好適に行えるようにすることを目的と
してなされた。
[0007] Therefore, immediately after the start of the internal combustion engine, the air-fuel ratio becomes richer than necessary, and the fuel efficiency may decrease or NOx and CO, which are harmful components in the exhaust gas, may increase. Therefore, an object of the present invention is to make it possible to preferably perform rich control of the air-fuel ratio immediately after the start of the internal combustion engine.

【0008】[0008]

【課題を解決するための手段】上記目的を達するために
なされた本発明は、ガス拡散制限部を介して測定ガス雰
囲気と連通する測定ガス室と、通電される電気量に対応
した量の酸素を該測定ガス室に給排する酸素ポンプ素子
と、該測定ガス室の酸素濃度と基準となる酸素濃度との
比に対応した電圧を発生する酸素濃淡電池素子とを備
え、内燃機関の排気管に設けられて該内燃機関の空燃比
を検出する空燃比センサと、内燃機関の空燃比を制御す
る空燃比制御手段と、を用い、上記酸素濃淡電池の発生
電圧が所定値となるように上記測定ガス室から酸素を排
出する正方向の電流値、若しくは上記測定ガス室へ酸素
を供給する負方向の電流値を有するポンプ電流を上記酸
素ポンプ素子に通電し、上記ポンプ電流が所定の目標値
となるように内燃機関の空燃比を制御する内燃機関の空
燃比制御方法において、上記内燃機関の始動直後に、上
記ポンプ電流の目標値を負の側へずらすことを特徴とす
る内燃機関の空燃比制御方法を要旨としている。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention provides a measuring gas chamber communicating with a measuring gas atmosphere via a gas diffusion restricting portion, and an oxygen gas having an amount corresponding to the amount of electricity supplied. An oxygen pump element that supplies and discharges gas to and from the measurement gas chamber, and an oxygen concentration cell element that generates a voltage corresponding to the ratio of the oxygen concentration of the measurement gas chamber to a reference oxygen concentration, and an exhaust pipe of an internal combustion engine. And an air-fuel ratio sensor for detecting the air-fuel ratio of the internal combustion engine, and air-fuel ratio control means for controlling the air-fuel ratio of the internal combustion engine, wherein the generated voltage of the oxygen concentration cell becomes a predetermined value. A pump current having a positive current value for discharging oxygen from the measurement gas chamber or a negative current value for supplying oxygen to the measurement gas chamber is supplied to the oxygen pump element, and the pump current has a predetermined target value. So that the internal combustion engine An air-fuel ratio control method for an internal combustion engine for controlling an air-fuel ratio of an internal combustion engine, wherein the target value of the pump current is shifted to a negative side immediately after the start of the internal combustion engine. I have.

【0009】[0009]

【作用】このように構成された本発明の空燃比制御方法
では、先ず空燃比センサにおいては、酸素濃淡電池の発
生電圧が所定値となるように酸素ポンプ素子にポンプ電
流を通電する。
In the air-fuel ratio control method according to the present invention, the air-fuel ratio sensor first supplies a pump current to the oxygen pump element so that the voltage generated by the oxygen concentration cell becomes a predetermined value.

【0010】そしてそのポンプ電流が測定ガス室から酸
素を排出する正方向である場合は内燃機関の空燃比がリ
ーンであり、逆にポンプ電流が測定ガス室へ酸素を供給
する負方向である場合は内燃機関の空燃比がリッチであ
ることが判る。そこで上記ポンプ電流が目標値となるよ
うに、空燃比制御手段によって内燃機関の空燃比を制御
すれば、上記目標値に対応する所望の空燃比とすること
ができる。
When the pump current is in the positive direction for discharging oxygen from the measurement gas chamber, the air-fuel ratio of the internal combustion engine is lean, and when the pump current is in the negative direction for supplying oxygen to the measurement gas chamber. Indicates that the air-fuel ratio of the internal combustion engine is rich. Therefore, if the air-fuel ratio of the internal combustion engine is controlled by the air-fuel ratio control means so that the pump current becomes the target value, a desired air-fuel ratio corresponding to the target value can be obtained.

【0011】一方内燃機関の始動直後には上記ポンプ電
流の目標値を負の側へずらす。このずらされた目標値に
対して同様の空燃比制御を実行すれば、空燃比のリッチ
制御を好適に行うことができる。
On the other hand, immediately after the start of the internal combustion engine, the target value of the pump current is shifted to the negative side. If the same air-fuel ratio control is executed for the shifted target value, rich control of the air-fuel ratio can be suitably performed.

【0012】[0012]

【実施例】以下本発明の実施例を図面と共に説明する。
図1は実施例の空燃比制御方法が適用された車両用の内
燃機関1を表す概略構成図である。図示しないスロット
ル弁を介して空気が供給される吸気管3には、燃料を噴
射して混合気を形成するインジェクタ5が各気筒毎に設
けられている。混合気は、吸気管3から吸気弁7を介し
て内燃機関1の各気筒に吸入され、点火プラグ9が形成
する電気火花により着火される。また燃焼後の排気は、
排気管11を介して放出される。更に排気管11には排
気中の酸素濃度から内燃機関1の空燃比を検出する空燃
比センサ21が設けられている。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a schematic configuration diagram illustrating an internal combustion engine 1 for a vehicle to which an air-fuel ratio control method according to an embodiment is applied. An intake pipe 3 to which air is supplied via a throttle valve (not shown) is provided with an injector 5 for injecting fuel to form an air-fuel mixture for each cylinder. The air-fuel mixture is drawn into each cylinder of the internal combustion engine 1 from the intake pipe 3 via the intake valve 7 and ignited by an electric spark formed by the spark plug 9. The exhaust after combustion is
It is discharged via the exhaust pipe 11. Further, the exhaust pipe 11 is provided with an air-fuel ratio sensor 21 for detecting the air-fuel ratio of the internal combustion engine 1 from the oxygen concentration in the exhaust gas.

【0013】次に図2は内燃機関1の空燃比制御系を表
す概略構成図である。先ず空燃比センサ21は、固体電
解質基板23aの両側に多孔質電極23b,23cを形
成した酸素ポンプ素子23と、同じく固体電解質基板2
5aの両側に多孔質電極25b,25cを形成した酸素
濃淡電池素子25と、これらの両素子23,25の間に
積層されて測定ガス室27を形成するスペーサ29とを
備えている。
FIG. 2 is a schematic diagram showing an air-fuel ratio control system of the internal combustion engine 1. As shown in FIG. First, the air-fuel ratio sensor 21 includes an oxygen pump element 23 having porous electrodes 23b and 23c formed on both sides of a solid electrolyte substrate 23a, and a solid electrolyte substrate 2 similarly.
An oxygen concentration cell element 25 having porous electrodes 25b and 25c formed on both sides of 5a, and a spacer 29 stacked between these elements 23 and 25 to form a measurement gas chamber 27 are provided.

【0014】ここで、固体電解質基板23a,25aは
イットリア−ジルコニア固溶体から形成され、多孔質電
極23b,23c,25b,25cは、共素地としての
イットリア−ジルコニア固溶体と残部白金から形成され
ている。尚、上記固体電解質基板23a,25aの材料
としては、イットリア−ジルコニア固溶体の他に、カル
シア−ジルコニア固溶体が知られており、更に、二酸化
セリウム、二酸化トリウム、二酸化ハフニウムの各固溶
体、ペロブスカイト型固溶体、3価金属酸化物固溶体等
が使用できる。
Here, the solid electrolyte substrates 23a and 25a are formed from a yttria-zirconia solid solution, and the porous electrodes 23b, 23c, 25b and 25c are formed from a yttria-zirconia solid solution as a co-base and the balance platinum. As a material for the solid electrolyte substrates 23a and 25a, a calcia-zirconia solid solution is known in addition to a yttria-zirconia solid solution. Further, cerium dioxide, thorium dioxide, hafnium dioxide solid solutions, perovskite solid solutions, A trivalent metal oxide solid solution or the like can be used.

【0015】また、酸素濃淡電池素子25の外側の多孔
質電極25cを覆って、固体電解質からなる遮蔽体31
が貼り付けられている。一方スペーサ29の素材として
は、アルミナ、スピネル、フォルステライト、ステアタ
イト、ジルコニア等が用いられる。
A shield 31 made of a solid electrolyte covers the porous electrode 25c outside the oxygen concentration cell element 25.
Is pasted. On the other hand, as a material of the spacer 29, alumina, spinel, forsterite, steatite, zirconia, or the like is used.

【0016】また、測定ガス室27の内側には、上記多
孔質電極23c,25bが露出しており、更にスペーサ
29の先端には、測定ガス室27と排気管内の測定ガス
雰囲気とを連通させるガス拡散孔33が設けられてい
る。このガス拡散孔33には、アルミナからなる多孔質
の充填材35が詰められており、それによって、測定ガ
スの測定ガス室27への流入等を律速するガス拡散制限
部37が形成される。
The porous electrodes 23c and 25b are exposed inside the measurement gas chamber 27, and the tip of the spacer 29 communicates the measurement gas chamber 27 with the measurement gas atmosphere in the exhaust pipe. Gas diffusion holes 33 are provided. The gas diffusion holes 33 are filled with a porous filler 35 made of alumina, thereby forming a gas diffusion restricting portion 37 for controlling the flow of the measurement gas into the measurement gas chamber 27 and the like.

【0017】次に酸素ポンプ素子23の多孔質電極23
b,23c,25b,25cは夫々制御回路ECUに接
続されており、制御回路ECUは各多孔質電極23b,
23c,25b,25cに以下に詳述する電気信号を入
出力して空燃比を検出している。尚制御回路ECUはA
/D変換器,駆動回路等を備えた周知のマイクロコンピ
ュータである。また制御回路ECUには、空燃比センサ
21の検出信号の他,機関の回転速度,吸入空気量等に
対応する種々の検出信号が入力されると共に、インジェ
クタ5からの燃料噴射量を調整する空燃比制御手段とし
ての電磁弁39が接続され、内燃機関1の空燃比をはじ
めとする種々の機関運転状態に応じて燃料噴射量を調整
している。
Next, the porous electrode 23 of the oxygen pump element 23
b, 23c, 25b, and 25c are connected to a control circuit ECU, respectively.
The air-fuel ratio is detected by inputting and outputting electric signals described below in detail to 23c, 25b, and 25c. The control circuit ECU is A
It is a known microcomputer provided with a / D converter, a drive circuit, and the like. In addition to the detection signal of the air-fuel ratio sensor 21, various detection signals corresponding to the rotation speed of the engine, the amount of intake air, and the like are input to the control circuit ECU, and the control circuit ECU adjusts the fuel injection amount from the injector 5. An electromagnetic valve 39 as a fuel ratio control unit is connected, and adjusts a fuel injection amount according to various engine operating states such as an air-fuel ratio of the internal combustion engine 1.

【0018】先ず制御回路ECUは、多孔質電極25c
から多孔質電極25bに向かって常時27.5μAの電
流を供給している。すると、測定ガス室27内の酸素ガ
スが多孔質電極25b表面でイオン化した後固体電解質
基板25aを介して多孔質電極25c表面へ移動し、そ
こで再び酸素ガスとなる。多孔質電極25cは遮蔽体3
1によって被覆され所定の漏出抵抗を有するので、多孔
質電極25c表面は基準となる酸素濃度、例えば大気と
同程度、若しくはそれ以上の酸素濃度に保持される。尚
酸素濃淡電池素子に定常電流を通電して、基準となる酸
素濃度を得る方法は、特開昭61−296262号に詳
しいのでここでは詳述しない。
First, the control circuit ECU includes a porous electrode 25c.
, A current of 27.5 μA is constantly supplied to the porous electrode 25b. Then, the oxygen gas in the measurement gas chamber 27 is ionized on the surface of the porous electrode 25b, and then moves to the surface of the porous electrode 25c via the solid electrolyte substrate 25a, where it becomes oxygen gas again. The porous electrode 25c is a shield 3
1 and has a predetermined leakage resistance, the surface of the porous electrode 25c is maintained at a reference oxygen concentration, for example, about the same as or higher than the atmosphere. A method of obtaining a reference oxygen concentration by supplying a steady current to the oxygen concentration cell element is described in detail in JP-A-61-296262, and will not be described in detail here.

【0019】次に制御回路ECUは後述するポンプ電流
設定処理を実行した後、多孔質電極23b,23c間に
ポンプ電流を通電する。このポンプ電流は、多孔質電極
23bから多孔質電極23cに向かう正方向と、多孔質
電極23cから多孔質電極23bに向かう負方向との電
流が250Hzの周波数で交番する矩形電流であり、ポ
ンプ電流設定処理はこのポンプ電流の各方向の電流値を
設定する処理である。
Next, after executing a pump current setting process described later, the control circuit ECU supplies a pump current between the porous electrodes 23b and 23c. This pump current is a rectangular current in which the current in the positive direction from the porous electrode 23b toward the porous electrode 23c and the current in the negative direction from the porous electrode 23c to the porous electrode 23b alternate at a frequency of 250 Hz. The setting process is a process for setting the current value of each direction of the pump current.

【0020】続いて図3のフローチャートに基づいてこ
のポンプ電流設定処理を説明する。尚、この処理は内燃
機関1の始動と同時に実行され所定時間毎に繰り返され
る。処理が開始されると先ずS11にて内燃機関1の始
動から30秒経過したか否かを判断する。始動から30
秒経過しない始動直後である場合はS13へ移行し図4
に例示するタイムテーブルに基づいてポンプ電流の正方
向の電流値と負方向の電流値とを設定し、処理を一旦終
了する。図4に示すようにポンプ電流は、正方向の電流
は常に200μAで一定であるが、負方向の電流は始動
時に1mμAで、それから徐々に減少して30秒後には
200μAとなる。尚図4では正方向を+、負方向を−
として描いている。
Next, the pump current setting process will be described with reference to the flowchart of FIG. This process is executed simultaneously with the start of the internal combustion engine 1 and is repeated at predetermined intervals. When the process is started, first, in S11, it is determined whether or not 30 seconds have elapsed since the start of the internal combustion engine 1. 30 from start
If it is immediately after the start without the lapse of seconds, the process proceeds to S13 and FIG.
The current value in the positive direction and the current value in the negative direction of the pump current are set based on the time table illustrated in FIG. As shown in FIG. 4, the pump current in the positive direction is always constant at 200 μA, but the current in the negative direction is 1 μA at start-up and gradually decreases to 200 μA after 30 seconds. In FIG. 4, the positive direction is + and the negative direction is-.
It is drawn as.

【0021】一方S11にて30秒経過したと判断され
た場合は、S15にて正方向の電流を200μA,負方
向の電流を−200μAと設定して処理を終了する。こ
の結果ポンプ電流は図5に例示するような矩形電流とな
り、始動後30秒までの暖気時にはポンプ電流が負の側
に偏る。また後述するように、正方向の電流値と負方向
の電流値との平均値がポンプ電流の目標値に相当する。
尚説明の便宜上、図におけるポンプ電流の周波数は実際
より小さくして描いている。
On the other hand, if it is determined in S11 that 30 seconds have elapsed, the current in the positive direction is set to 200 μA and the current in the negative direction is set to −200 μA in S15, and the process is terminated. As a result, the pump current becomes a rectangular current as illustrated in FIG. 5, and the pump current is biased to the negative side during warm-up until 30 seconds after the start. Further, as described later, the average value of the current value in the positive direction and the current value in the negative direction corresponds to the target value of the pump current.
For convenience of explanation, the frequency of the pump current in the drawing is smaller than the actual frequency.

【0022】またポンプ電流が通電された空燃比センサ
21では、多孔質電極23bから多孔質電極23cへ正
方向の電流が通電されると、測定ガス室27内の酸素ガ
スは多孔質電極23c表面でイオン化した後固体電解質
基板23aを介して多孔質電極23b表面へ移動し、再
び酸素ガスとして測定ガス雰囲気に排出される。逆に多
孔質電極23cから多孔質電極23bへ負方向の電流が
通電されると、測定ガス雰囲気の酸素ガスは多孔質電極
23b表面でイオン化した後固体電解質基板23aを介
して測定ガス室27内へ供給される。
In the air-fuel ratio sensor 21 to which the pump current has been applied, when a positive current is applied from the porous electrode 23b to the porous electrode 23c, the oxygen gas in the measurement gas chamber 27 is removed from the surface of the porous electrode 23c. After the ionization, the ions move to the surface of the porous electrode 23b via the solid electrolyte substrate 23a, and are again discharged into the measurement gas atmosphere as oxygen gas. Conversely, when a current flows in the negative direction from the porous electrode 23c to the porous electrode 23b, the oxygen gas in the measurement gas atmosphere is ionized on the surface of the porous electrode 23b and then in the measurement gas chamber 27 via the solid electrolyte substrate 23a. Supplied to

【0023】このように酸素ガスが給排されて測定ガス
室27内の酸素濃度が変化すると、それに伴って多孔質
電極25b表面の酸素濃度も変化する。一方酸素濃淡電
池素子25は多孔質電極25b表面と多孔質電極25c
表面との酸素濃度比に対応した電圧を発生するので、結
局ポンプ電流の変化に伴って両電極25b,25c間の
発生電圧が変化する。制御回路ECUは多孔質電極25
b,25c間の発生電圧に基づき、電磁弁39の開度を
調整してインジェクタ5からの燃料噴射量を、延いては
内燃機関1の空燃比を制御している。
When the oxygen gas is supplied and discharged as described above and the oxygen concentration in the measurement gas chamber 27 changes, the oxygen concentration on the surface of the porous electrode 25b also changes accordingly. On the other hand, the oxygen concentration cell element 25 has the surface of the porous electrode 25b and the porous electrode 25c.
Since a voltage corresponding to the oxygen concentration ratio with respect to the surface is generated, the voltage generated between the two electrodes 25b and 25c eventually changes with a change in the pump current. The control circuit ECU is a porous electrode 25
Based on the voltage generated between b and 25c, the opening degree of the solenoid valve 39 is adjusted to control the fuel injection amount from the injector 5 and, consequently, the air-fuel ratio of the internal combustion engine 1.

【0024】図6は制御回路ECUにて実行される燃料
噴射量制御処理を表すフローチャートである。先ず処理
が開始されるとS21にて制御回路ECUに入力される
回転速度,吸入空気量等に基づいて燃料噴射量制御の基
本となる基本噴射量を算出する。続くS23では多孔質
電極25b,25c間の発生電圧が理論空燃比に対応す
る所定値を中心に振動するように、ポンプ電流のデュー
ティ比を調整してS25へ移行する。
FIG. 6 is a flowchart showing a fuel injection amount control process executed by the control circuit ECU. First, when the process is started, a basic injection amount, which is the basis of fuel injection amount control, is calculated based on the rotation speed, intake air amount, and the like input to the control circuit ECU in S21. At S23, the duty ratio of the pump current is adjusted so that the voltage generated between the porous electrodes 25b and 25c oscillates around a predetermined value corresponding to the stoichiometric air-fuel ratio, and the process proceeds to S25.

【0025】S25ではポンプ電流の調整後のデューテ
ィ比と0.5との大小関係を比較する。調整後のデュー
ティ比が0.5未満であるとき、即ち測定ガス室27へ
酸素を供給する負方向の電流をより長時間酸素ポンプ素
子23に通電している場合は、S27へ移行して燃料噴
射量を減少補正し、続いてS29へ移行する。逆にポン
プ電流の調整後のデューティ比が0.5を超えるとき、
即ち測定ガス室から酸素を排出する正方向の電流をより
長時間酸素ポンプ素子23に通電している場合は、S3
1へ移行して燃料噴射量を増加補正し、続いてS29へ
移行する。また調整後のデューティ比が0.5に等しい
場合はそのままS29へ移行する。
In step S25, the magnitude relationship between the adjusted duty ratio of the pump current and 0.5 is compared. If the adjusted duty ratio is less than 0.5, that is, if a negative current for supplying oxygen to the measurement gas chamber 27 has been supplied to the oxygen pump element 23 for a longer time, the flow proceeds to S27 and the fuel The injection amount is corrected to decrease, and then the process proceeds to S29. Conversely, when the adjusted duty ratio of the pump current exceeds 0.5,
That is, when a positive current for discharging oxygen from the measurement gas chamber is supplied to the oxygen pump element 23 for a longer time,
The process proceeds to 1 to increase and correct the fuel injection amount, and then proceeds to S29. If the adjusted duty ratio is equal to 0.5, the process directly proceeds to S29.

【0026】S29へ移行するとインジェクタ5からの
燃料噴射量がS21〜S31にて算出された燃料噴射量
となるように電磁弁39の開度を調整して処理を終了す
る。以上の処理によって内燃機関1の空燃比はポンプ電
流の調整後のデューティ比が0.5となるように調整さ
れる。即ち本実施例では正方向の電流値と負方向の電流
値との平均値がポンプ電流の目標値に相当する。
In S29, the opening of the solenoid valve 39 is adjusted so that the fuel injection amount from the injector 5 becomes the fuel injection amount calculated in S21 to S31, and the process is terminated. By the above processing, the air-fuel ratio of the internal combustion engine 1 is adjusted so that the duty ratio after the adjustment of the pump current becomes 0.5. That is, in this embodiment, the average value of the current value in the positive direction and the current value in the negative direction corresponds to the target value of the pump current.

【0027】図7はポンプ電流の調整後のデューティ比
が0.5となるときの、内燃機関の空燃比の変化を表す
グラフである。図に示すように内燃機関の始動時にはλ
=0.8と空燃比は必要かつ充分なだけリッチである。
このため機関温度が低くて燃料が霧化しにくい状態でも
内燃機関を確実に始動することができる。その後空燃比
は徐々に増加して、略暖気が完了する始動30秒後には
略理論空燃比となって、内燃機関は通常の運転状態とな
る。
FIG. 7 is a graph showing a change in the air-fuel ratio of the internal combustion engine when the adjusted duty ratio of the pump current is 0.5. As shown in FIG.
= 0.8 and the air-fuel ratio is rich as necessary and sufficient.
Therefore, even when the engine temperature is low and the fuel is hardly atomized, the internal combustion engine can be reliably started. Thereafter, the air-fuel ratio gradually increases, and reaches a substantially stoichiometric air-fuel ratio 30 seconds after the start of substantially warm-up, and the internal combustion engine enters a normal operating state.

【0028】尚上記実施例ではポンプ電流の負方向の電
流値のみが変化するように構成しているが、図8に例示
する第2実施例のようにポンプ電流の振幅は400μA
で一定にしておき、始動直後には振動の中心を−800
μAとしても同様の効果が得られる。更にこのようなポ
ンプ電流は、通常運転時の0Aを中心とする矩形電流
に、電流値が−800μAから連続的に変化する負方向
の直流電流を重畳するだけで簡単に得られる。
In the above embodiment, only the current value of the pump current in the negative direction changes. However, as in the second embodiment shown in FIG. 8, the amplitude of the pump current is 400 μA.
The center of vibration is -800 immediately after starting.
Similar effects can be obtained with μA. Further, such a pump current can be easily obtained simply by superimposing a negative direct current whose current value continuously changes from −800 μA on a rectangular current centered at 0 A during normal operation.

【0029】このように上記各実施例の空燃比制御方法
では、始動直後において空燃比が必要以上にリッチにな
るのを防止することができ、従って内燃機関の燃費を向
上すると共にNOx やCOの排出量を低減することがで
きる。図9は上記各実施例の空燃比制御方法と、始動直
後には一律に所定の燃料噴射量を増加させる従来の空燃
比制御方法とを、4サイクル2000ccのガソリンエ
ンジンに適用してCOおよびNOx の発生量を比較した
ものである。図に示すように従来の空燃比制御方法によ
るCO,NOx の発生量を夫々1.0とすると、上記各
実施例の空燃比制御方法では、COの発生量が約0.
2、NOx の発生量が約0.4となり排気中の有害物質
低減に非常に効果的であることが判る。
As described above, according to the air-fuel ratio control methods of the above embodiments, it is possible to prevent the air-fuel ratio from becoming unnecessarily rich immediately after starting, thereby improving the fuel efficiency of the internal combustion engine and reducing NOx and CO emissions. Emissions can be reduced. FIG. 9 shows that the air-fuel ratio control method of each of the above-described embodiments and the conventional air-fuel ratio control method of immediately increasing a predetermined fuel injection amount immediately after starting are applied to a 4-cycle 2000 cc gasoline engine to obtain CO and NOx. Is a comparison of the amount of generation. As shown in the drawing, when the amounts of generated CO and NOx by the conventional air-fuel ratio control method are each set to 1.0, in the air-fuel ratio control methods of the above embodiments, the amount of generated CO is about 0.5.
2. The amount of generated NOx is about 0.4, which is very effective in reducing harmful substances in exhaust gas.

【0030】また上記各実施例では、ポンプ電流を始動
後の経過時間に対応して変化させているが、ポンプ電流
は例えば冷却水温や排気温等、内燃機関の暖気状態を直
接表す要素に対応して変化するように構成してもよい。
このように構成すれば外気温度等によって暖気速度が変
化しても暖気状態に対応した空燃比に制御することがで
きる。更に上記各実施例では、空燃比制御手段として燃
料噴射量を調整する電磁弁39を用いているが、空燃比
制御手段としては、吸気供給量を調整する電磁弁等種々
の装置を用いることができる。
In each of the above embodiments, the pump current is changed in accordance with the elapsed time after the start. However, the pump current corresponds to an element that directly indicates the warm-up state of the internal combustion engine, such as a cooling water temperature or an exhaust temperature. Alternatively, it may be configured to change.
With this configuration, it is possible to control the air-fuel ratio corresponding to the warm-up state even if the warm-up speed changes due to the outside air temperature or the like. Further, in each of the above embodiments, the electromagnetic valve 39 for adjusting the fuel injection amount is used as the air-fuel ratio control means, but various devices such as the electromagnetic valve for adjusting the intake air supply amount may be used as the air-fuel ratio control means. it can.

【0031】[0031]

【発明の効果】以上詳述したように、本発明の内燃機関
の空燃比制御方法では、始動直後においても空燃比セン
サの出力に基づいて空燃比のリッチ制御を好適に行うこ
とができるので、始動直後において空燃比が必要以上に
リッチになるのを防止することができ、従って内燃機関
の燃費を向上すると共にNOxやCOの排出量を低減す
ることができる。
As described above in detail, according to the air-fuel ratio control method for an internal combustion engine of the present invention, the air-fuel ratio rich control can be suitably performed even immediately after starting, based on the output of the air-fuel ratio sensor. It is possible to prevent the air-fuel ratio from becoming unnecessarily rich immediately after the start, so that the fuel efficiency of the internal combustion engine can be improved and the emission of NOx and CO can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例の空燃比制御方法が適用された車両用の
内燃機関およびその周辺装置を表す概略構成図である。
FIG. 1 is a schematic configuration diagram illustrating an internal combustion engine for a vehicle to which an air-fuel ratio control method according to an embodiment is applied and peripheral devices thereof.

【図2】実施例の空燃比制御装置を表す概略構成図であ
る。
FIG. 2 is a schematic configuration diagram illustrating an air-fuel ratio control device according to an embodiment.

【図3】実施例のポンプ電流設定処理を表すフローチャ
ートである。
FIG. 3 is a flowchart illustrating a pump current setting process according to the embodiment.

【図4】第1実施例のポンプ電流設定処理で使用するタ
イムテーブルを表す説明図である。
FIG. 4 is an explanatory diagram illustrating a time table used in a pump current setting process according to the first embodiment.

【図5】第1実施例のポンプ電流を表す波形図である。FIG. 5 is a waveform chart showing a pump current of the first embodiment.

【図6】実施例の燃料噴射量制御処理を表すフローチャ
ートである。
FIG. 6 is a flowchart illustrating a fuel injection amount control process according to the embodiment.

【図7】第1実施例の空燃比制御方法による空燃比の変
化を表す説明図である。
FIG. 7 is an explanatory diagram showing a change in the air-fuel ratio according to the air-fuel ratio control method of the first embodiment.

【図8】第2実施例のポンプ電流を表す波形図である。FIG. 8 is a waveform diagram illustrating a pump current according to the second embodiment.

【図9】第1実施例,第2実施例,および従来の空燃比
制御方法による有害成分排出量を表す説明図である。
FIG. 9 is an explanatory diagram showing harmful component emissions by the first embodiment, the second embodiment, and the conventional air-fuel ratio control method.

【符号の説明】[Explanation of symbols]

1…内燃機関 5…インジェクタ 2
1…空燃比センサ 23…酸素ポンプ素子 25…酸素濃淡電池素子
27…測定ガス室 37…ガス拡散制限部 39…電磁弁 E
CU…制御回路
1: Internal combustion engine 5: Injector 2
DESCRIPTION OF SYMBOLS 1 ... Air-fuel ratio sensor 23 ... Oxygen pump element 25 ... Oxygen concentration cell element
27 ... Measurement gas chamber 37 ... Gas diffusion limiting part 39 ... Solenoid valve E
CU ... Control circuit

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) F02D 41/14 310 F02D 35/00 368 F02D 45/00 368 ──────────────────────────────────────────────────続 き Continuation of front page (58) Field surveyed (Int. Cl. 7 , DB name) F02D 41/14 310 F02D 35/00 368 F02D 45/00 368

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ガス拡散制限部を介して測定ガス雰囲気
と連通する測定ガス室と、通電される電気量に対応した
量の酸素を該測定ガス室に給排する酸素ポンプ素子と、
該測定ガス室の酸素濃度と基準となる酸素濃度との比に
対応した電圧を発生する酸素濃淡電池素子とを備え、内
燃機関の排気管に設けられて該内燃機関の空燃比を検出
する空燃比センサと、 内燃機関の空燃比を制御する空燃比制御手段と、 を用い、 上記酸素濃淡電池の発生電圧が所定値となるように上記
測定ガス室から酸素を排出する正方向の電流値、若しく
は上記測定ガス室へ酸素を供給する負方向の電流値を有
するポンプ電流を上記酸素ポンプ素子に通電し、 上記ポンプ電流が所定の目標値となるように内燃機関の
空燃比を制御する内燃機関の空燃比制御方法において、 上記内燃機関の始動直後に、上記ポンプ電流の目標値を
負の側へずらすことを特徴とする内燃機関の空燃比制御
方法。
A measuring gas chamber communicating with a measuring gas atmosphere through a gas diffusion restricting unit; an oxygen pump element for supplying and discharging oxygen to the measuring gas chamber in an amount corresponding to an amount of electricity to be supplied;
An oxygen concentration cell element for generating a voltage corresponding to a ratio between the oxygen concentration in the measurement gas chamber and a reference oxygen concentration, the air concentration cell being provided in an exhaust pipe of the internal combustion engine and detecting an air-fuel ratio of the internal combustion engine. Using a fuel ratio sensor and air-fuel ratio control means for controlling the air-fuel ratio of the internal combustion engine, and a positive current value for discharging oxygen from the measurement gas chamber so that the generated voltage of the oxygen concentration cell becomes a predetermined value; Alternatively, an internal combustion engine that supplies a pump current having a negative current value for supplying oxygen to the measurement gas chamber to the oxygen pump element and controls an air-fuel ratio of the internal combustion engine so that the pump current has a predetermined target value. The air-fuel ratio control method for an internal combustion engine according to any one of claims 1 to 3, wherein the target value of the pump current is shifted to a negative side immediately after the internal combustion engine is started.
JP3174088A 1991-07-15 1991-07-15 Air-fuel ratio control method for internal combustion engine Expired - Fee Related JP3007447B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3174088A JP3007447B2 (en) 1991-07-15 1991-07-15 Air-fuel ratio control method for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3174088A JP3007447B2 (en) 1991-07-15 1991-07-15 Air-fuel ratio control method for internal combustion engine

Publications (2)

Publication Number Publication Date
JPH0518299A JPH0518299A (en) 1993-01-26
JP3007447B2 true JP3007447B2 (en) 2000-02-07

Family

ID=15972444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3174088A Expired - Fee Related JP3007447B2 (en) 1991-07-15 1991-07-15 Air-fuel ratio control method for internal combustion engine

Country Status (1)

Country Link
JP (1) JP3007447B2 (en)

Also Published As

Publication number Publication date
JPH0518299A (en) 1993-01-26

Similar Documents

Publication Publication Date Title
US6341599B1 (en) Power supply control system for heater used in gas concentration sensor
JPS6042368Y2 (en) Air fuel ratio control device
JP2005523431A (en) Operation method of broadband lambda sensor
JPS62247142A (en) Air-fuel ratio controller for internal combustion engine
US4566419A (en) Apparatus and method for controlling air-to-fuel ratio for an internal combustion engine
KR100290394B1 (en) Fuel feedback control method
US6576118B2 (en) Correction device of air-fuel ratio detection apparatus
JP4228488B2 (en) Gas concentration sensor heater control device
EP0866222A2 (en) Ignition timing control system for industrial engines
JP3007447B2 (en) Air-fuel ratio control method for internal combustion engine
US4249496A (en) Air-fuel ratio feedback control apparatus of an internal combustion engine
JPS6296743A (en) Air-fuel ratio controller for internal combustion engine
JPH0627508B2 (en) Air-fuel ratio controller
KR100337299B1 (en) Exhaust gas reduction method using o2 sensor level conversion
JP2505750B2 (en) Air-fuel ratio control method for multi-fuel internal combustion engine
CN113389625B (en) Control device for exhaust gas sensor
JPH0318658A (en) Fuel control device for gas engine
JP2002005882A (en) Apparatus for determining activity of air/fuel ratio sensor
JPH1073041A (en) Air-fuel ratio detector and air-fuel ratio controller
KR0153118B1 (en) Lean/rich nonsymmetric correction control method of oxygen sensor
JPS6134331A (en) Air-fuel ratio controller for internal-combustion engine
KR100305807B1 (en) Method for controlling fuel injection amount
JPS6276449A (en) Method for controlling oxygen concentration sensor
KR0153120B1 (en) Closed loop air/fuel ratio control method by using oxygen sensor
JPH0682416A (en) Control apparatus of oxygen sensor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees