JP3006867B2 - Broadband planar antenna - Google Patents

Broadband planar antenna

Info

Publication number
JP3006867B2
JP3006867B2 JP2283737A JP28373790A JP3006867B2 JP 3006867 B2 JP3006867 B2 JP 3006867B2 JP 2283737 A JP2283737 A JP 2283737A JP 28373790 A JP28373790 A JP 28373790A JP 3006867 B2 JP3006867 B2 JP 3006867B2
Authority
JP
Japan
Prior art keywords
planar antenna
parasitic
frequency
antenna
band
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2283737A
Other languages
Japanese (ja)
Other versions
JPH04157905A (en
Inventor
吉英 山田
矩芳 寺田
誠 木島
英章 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2283737A priority Critical patent/JP3006867B2/en
Publication of JPH04157905A publication Critical patent/JPH04157905A/en
Application granted granted Critical
Publication of JP3006867B2 publication Critical patent/JP3006867B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Waveguide Aerials (AREA)
  • Radio Relay Systems (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は衛星通信や移動通信等に用いられるアンテナ
に関し、特に、それ自体でアンテナとして用いられる
他、アレーアンテナの放射素子として用いられる広帯域
特性を有するプリントアンテナおよびパッチアンテナ等
の広帯域平面アンテナの構造に係る。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an antenna used for satellite communication, mobile communication, etc., and more particularly, to a wideband characteristic used as an antenna itself and used as a radiating element of an array antenna. The present invention relates to a structure of a broadband planar antenna such as a printed antenna and a patch antenna having the above.

〔従来の技術〕[Conventional technology]

プリントおよびパッチ等の平面アンテナで広帯域化を
図るための構成として、給電素子の前方に複数枚の無給
電素子を多層に積み上げた多層構造のものと、同一平面
内に給電素子と多数の無給電素子を有する1層構造のも
のとがある。
As a configuration for broadening the band with a planar antenna such as a print and a patch, a multilayer structure in which a plurality of parasitic elements are stacked in front of a feed element in a multilayer structure, and a feed element and a large number of parasitic elements in the same plane There is a one-layer structure having an element.

前者の多層構造については第6図に示すような、Ball
Corp.社出願の「広帯域マイクロストリップアンテナ及
びその製法」(特開昭63−189002)がある。このアンテ
ナは同図(a)に示すように、給電素子の前方に無給電
素子を2層重ねた3層構造を採っている。同図において
51は金属板、52は誘電体板、53は放射素子、54は給電
点、55および56は広帯域化のための無給電素子、57およ
び58は無給電素子の支持板である。
As for the former multilayer structure, as shown in FIG.
Corp. filed "Japanese Patent Application Laid-Open No. 63-189002". This antenna has a three-layer structure in which two parasitic elements are stacked in front of a feed element as shown in FIG. In the figure
Reference numeral 51 denotes a metal plate, 52 denotes a dielectric plate, 53 denotes a radiating element, 54 denotes a feeding point, 55 and 56 denote parasitic elements for widening a band, and 57 and 58 denote support plates for the parasitic element.

広帯域化は、増幅器等で周知技術であるスタガ同調の
概念と同じである。即ち同図(b)に示すように、給電
素子と直上の無給電素子の周波数を目標の帯域の両端に
位置するように選定し、最上面の無給電素子の周波数が
帯域中央に配置することにより、広い帯域で良好な整合
を得ることができる。実現性能としては、反射量がVSWR
<1.5となる帯域幅が17%となる極めて広帯域な特性が
得られている。
The widening of the bandwidth is the same as the concept of stagger tuning which is a well-known technique for an amplifier or the like. That is, as shown in FIG. 3B, the frequencies of the feeder element and the parasitic element immediately above are selected so as to be located at both ends of the target band, and the frequency of the uppermost parasitic element is arranged at the center of the band. Thereby, good matching can be obtained in a wide band. As the realization performance, the reflection amount is VSWR
An extremely wide band characteristic in which a bandwidth of <1.5 is 17% is obtained.

一方、1層構造の例としては、第7図に示すような、
C.K.Aananden「Compact Broadband Microstrip Antenn
a」(Electronics Letters 25th September 1986 Vol.2
2,No.20)、及び第8図のK.C.Guptaの「Nonradiating E
dges and Four Edges Gap−Coupled Multiple Resonato
r Broad−Band Microstrip Antennas」(IEEE Transact
ions on Antennas and Propagation,Vol.AP−33,No.2,F
ebruary 1985)などの文献に記されたものがある。
On the other hand, as an example of a one-layer structure, as shown in FIG.
CKAananden `` Compact Broadband Microstrip Antenn
a ”(Electronics Letters 25th September 1986 Vol.2
2, No. 20), and KCGupta “Nonradiating E” in FIG.
dges and Four Edges Gap−Coupled Multiple Resonato
r Broad-Band Microstrip Antennas ”(IEEE Transact
ions on Antennas and Propagation, Vol.AP-33, No. 2, F
ebruary 1985).

第7図に示すAanandanの例では、同図(a)のように
給電点64を有する短冊形の給電素子63に並列に5素子の
長さの等しい短冊形無給電素子65〜69を配列している。
このアンテナの帯域特性を(b)に示す。ここで、70は
アンテナ入力インピーダンスの周波数変化の軌跡を表し
ており、同図の円はスミスチャートである。また、同図
の小円71の内側がVSWR<2となる範囲を示している。こ
の例ではVSWR<2で6%の帯域幅が示されている。
In the example of Aanandan shown in FIG. 7, strip-shaped parasitic elements 65 to 69 having the same length are arranged in parallel with a strip-shaped feeding element 63 having a feeding point 64 as shown in FIG. ing.
The band characteristics of this antenna are shown in FIG. Here, 70 represents the locus of the frequency change of the antenna input impedance, and the circle in the figure is a Smith chart. In addition, the inside of the small circle 71 in the figure shows the range where VSWR <2. In this example, 6% bandwidth is shown with VSWR <2.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

上述したような広帯域平面アンテナの内、第6図に示
す多層構造のものにおいては、第1層と第2の層を極め
て近接して配置する必要があり、高い精度の組み立て技
術が必要となり、また、誘電体板を3枚重ねてアンテナ
を組み上げる必要があることから、量産性を損ねるとと
もに、重量の増大を伴うという欠点があった。
Of the above-mentioned broadband planar antennas, the one having the multilayer structure shown in FIG. 6 requires the first layer and the second layer to be arranged very close to each other, and requires a high-precision assembly technique. Further, since it is necessary to assemble the antenna by stacking three dielectric plates, there is a disadvantage that mass productivity is impaired and the weight is increased.

一方、第7図に示すような1層構造の広帯域平面アン
テナにおいては、無給電素子を加えることにより帯域幅
は10倍程度に増大することができるものの、例えば、自
動車電話方式用アンテナとしては比帯域10%程度が要求
されており、6%という値は広帯域性能としては不十分
であった。
On the other hand, in a single-layered broadband planar antenna as shown in FIG. 7, the bandwidth can be increased to about 10 times by adding a parasitic element. A bandwidth of about 10% was required, and a value of 6% was insufficient for wideband performance.

また、同図(a)に示す放射特性に見られるように、
周波数により英字符Eで示すようにビーム方向が変化す
るという不都合も生ずる。
Also, as seen from the radiation characteristics shown in FIG.
There is also the disadvantage that the beam direction changes as indicated by the letter E depending on the frequency.

更に、第8図のGuptaの例では、同図(a)に示すよ
うに給電点74を有する矩形の給電素子73に並列に2個の
矩形無給電素子75,76を配列している。このアンテナの
帯域特性は同図(b)に示すようになる。
Further, in the example of Gupta shown in FIG. 8, two rectangular parasitic elements 75 and 76 are arranged in parallel with a rectangular feeding element 73 having a feeding point 74 as shown in FIG. The band characteristics of this antenna are as shown in FIG.

同図において、80はアンテナ入力インピーダンスの周
波数変化の軌跡を表わしており、VSWR<2となる帯域幅
77は15%強の性能が得られている。しかし、帯域幅は改
善されたものの、3層構造の1/2程度が達成されたのみ
で、広帯域性としては未だ十分で無い。また、同図
(a)の放射特性に見られるように、周波数により英字
符Fで示すようにビーム方向が変化するという不都合も
生ずる。
In the figure, reference numeral 80 denotes a locus of a frequency change of the antenna input impedance, and a bandwidth satisfying VSWR <2.
The 77 has over 15% performance. However, although the bandwidth has been improved, only about half of the three-layer structure has been achieved, and the bandwidth is not yet sufficient. Further, as shown in the radiation characteristics of FIG. 3A, there is also a disadvantage that the beam direction changes as indicated by the letter F depending on the frequency.

本発明はこのような従来の問題点に鑑み、給電素子の
前方に1層の無給電素子を配置する簡単な2層構造によ
って、これまで3層構造で達成されたと同程度の広帯域
性能を得ることの可能な平面アンテナを実現することを
目的としている。
In view of such a conventional problem, the present invention obtains the same broadband performance as that achieved by a three-layer structure by using a simple two-layer structure in which a single-layer parasitic element is disposed in front of the power-supplying element. The purpose of the present invention is to realize a planar antenna capable of performing such operations.

〔課題を解決するための手段〕[Means for solving the problem]

本発明によれば、上述の目的は、前記特許請求の範囲
に記載した手段により達成される。
According to the present invention, the above-mentioned object is achieved by the means described in the claims.

すなわち、本発明は、平面の金属板からなるアース板
の前面に誘電体板をはさんで、短冊形状の金属平板の給
電素子(A)を該給電素子と前記アース板の面とが平行
と成るように配置し、更にその前面に1つの金属平板の
導波素子(B)を有する平面アンテナにおいて、給電素
子と同一面に、金属平板(C)を複数個、給電素子に対
して対称となるように配置し、前記導波素子(B)の共
振周波数が前記給電素子(A)及び前記金属平板(C)
の各共振周波数のうち最高周波数と最低周波数の間に設
定した広帯域平面アンテナである。
That is, in the present invention, the feeding element (A) of a strip-shaped metal flat plate is sandwiched between the dielectric plate and the ground plate made of a flat metal plate so that the feeding element is parallel to the surface of the ground plate. In a planar antenna having a single metal plate waveguide element (B) on the front surface thereof, a plurality of metal flat plates (C) are provided on the same plane as the feed element, and are symmetrical with respect to the feed element. So that the resonance frequency of the waveguide element (B) is equal to that of the feed element (A) and the metal plate (C).
Is a broadband planar antenna set between the highest frequency and the lowest frequency among the respective resonance frequencies.

〔作 用〕(Operation)

比帯域15%以上の広帯域特性を達成するためには、最
低限3つの共振周波数が必要となるが、本発明において
は、給電素子と同一面内に複数個の無給電素子を配置す
ることにより、給電素子の周波数に加えて無給電素子の
種類に応じた数の共振周波数を、一つの層で得ることが
できるようにしている。
At least three resonance frequencies are required to achieve a wideband characteristic of 15% or more of the fractional band. In the present invention, however, by disposing a plurality of parasitic elements in the same plane as the feed element. The number of resonance frequencies corresponding to the type of the parasitic element in addition to the frequency of the feeding element can be obtained in one layer.

すなわち、本発明においては、第1層の給電素子およ
び無給電素子の周波数を目標帯域の両端に設定し、これ
らの素子の真上に当たる位置に、目標帯域の中心付近の
共振周波数を有する無給電素子を配置し、これら複数の
周波数の合成により、簡単な2層構造により広帯域化を
達成している。
That is, in the present invention, the frequencies of the feeder element and the parasitic element of the first layer are set at both ends of the target band, and the parasitic element having a resonance frequency near the center of the target band is provided at a position directly above these elements. By arranging elements and synthesizing these plural frequencies, a wide band is achieved by a simple two-layer structure.

〔実施例〕〔Example〕

第1図は本発明の一実施例を示す図であって、(a)
は構造図を示している。同図に示すように、アース板1
で裏打ちされた誘電体板2の表面に、給電素子3および
その両側に対称位置に配置された無給電素子5,6を形成
し、その上方に、無給電素子5の外側から無給電素子6
の外側までの寸法(図中に英字符Gで示す)と同程度の
幅(G′)を有する第2の無給電素子7を給電素子と0.
1波長程度の間隔を保って配置し、さらに必要に応じて
支持板8を有するように構成されている。
FIG. 1 is a view showing one embodiment of the present invention, in which (a)
Shows a structural diagram. As shown in FIG.
The feed element 3 and the parasitic elements 5 and 6 arranged symmetrically on both sides of the feed element 3 are formed on the surface of the dielectric plate 2 lined with
The second parasitic element 7 having a width (G ') substantially equal to the dimension up to the outside (indicated by the letter G in the figure) is referred to as a feeding element.
It is arranged so as to keep an interval of about one wavelength, and further has a support plate 8 as necessary.

同図(b)は動作原理図である。給電素子の共振周波
数をf0、両側の同寸法の無給電素子の共振周波数をf2と
して、各々を帯域の上下端に位置するように各素子寸法
を選定する。また、給電素子上方の無給電素子7は、共
振周波数f1がf0とf2の中間に位置するように素子寸法を
選定する。ここで、f0とf2は薄い誘電体板2を介した共
振であるため狭帯域であるが、f1はアース板1と無給電
素子7の広い間隔を挟んだ共振であるため広帯域であ
る。f1の有する広帯域性に対し、f0とf2を合わせる方法
は、3層構造による広帯域化と同様の原理に基づくもの
で、3層と同程度の広帯域特性を実現できる。
FIG. 3B is a diagram illustrating the operation principle. Assuming that the resonance frequency of the feeding element is f0 and the resonance frequencies of the parasitic elements having the same dimensions on both sides are f2, the dimensions of the respective elements are selected so as to be positioned at the upper and lower ends of the band. The element size of the parasitic element 7 above the feed element is selected such that the resonance frequency f1 is located between f0 and f2. Here, f0 and f2 have a narrow band because of resonance through the thin dielectric plate 2, but f1 has a wide band because it is resonance with a wide space between the ground plate 1 and the parasitic element 7. The method of matching f0 and f2 with the broadband property of f1 is based on the same principle as the broadband with the three-layer structure, and can realize the same broadband characteristics as the three layers.

第2図は上記実施例の電気的特性を示す図であって、
(a)は反射量と周波数の関係を示しており、(b)は
インピーダンスの周波数特性を示している。反射量が−
14dB以下(VSWR<1.5)となる帯域で見ると、中心周波
数のfcに対し0.9fcから1.07fcまで即ち0.17fcの17%の
帯域を有しており、第6図に示した3層から成る構造の
平面アンテナと等価な広帯域特性が実現されていること
がわかる。
FIG. 2 is a diagram showing electrical characteristics of the above embodiment,
(A) shows the relationship between the amount of reflection and the frequency, and (b) shows the frequency characteristics of the impedance. The amount of reflection is-
When viewed in a band of 14 dB or less (VSWR <1.5), it has a band from 0.9 fc to 1.07 fc, that is, 17% of 0.17 fc with respect to fc of the center frequency, and has three layers shown in FIG. It can be seen that broadband characteristics equivalent to a planar antenna having a structure are realized.

この時の、fcは900MHzで、f0=0.95fc,f1=0.99fc,f2
=1.04fcであり、また、各部の寸法は誘電体板が厚さ6m
mのBTレジン(比誘電率3.7)、給電素子は幅15mm、長さ
97mmで給電点位置が下端より30mm、無給電素子は幅10m
m、長さ91mmであり、給電素子との間隔は5mmである。
At this time, fc is 900 MHz, f0 = 0.95fc, f1 = 0.99fc, f2
= 1.04 fc, and the dimensions of each part are as follows:
m BT resin (Relative permittivity 3.7), feed element 15 mm wide, length
97 mm, feed point 30 mm from lower end, passive element 10 m width
m, the length is 91 mm, and the distance from the feeding element is 5 mm.

また上方の無給電素子は幅40mm、長さ126mmで誘電体
面から30mmの間隔で係着してある。
The upper parasitic element has a width of 40 mm, a length of 126 mm, and is fixed at a distance of 30 mm from the dielectric surface.

第8図に示す従来の1層構造の広帯域平面アンテナの
例では、図中に示す給電素子および無給電素子の幅Wは
波長の約1/3が必要であり、従って中心周波数fcが900MH
zであればWは110mm程度となるから、無給電素子75の外
側から無給電素子76の外側までの寸法は330mm以上とい
う非常に大きなものとなっていた。
In the example of the conventional single-layer wideband planar antenna shown in FIG. 8, the width W of the feed element and the parasitic element shown in the figure needs to be about 1/3 of the wavelength, and therefore, the center frequency fc is 900 MHz.
In the case of z, W is about 110 mm, and the dimension from the outside of the parasitic element 75 to the outside of the parasitic element 76 is as large as 330 mm or more.

これに対し、本実施例の広帯域平面アンテナでは、上
述のように給電素子の幅は15mm、無給電素子の幅は10m
m、給電素子と無給電素子との間隔は5mmであるから無給
電素子5の外側から無給電素子6の外側までの寸法Gは
45mmであり、本発明によれば、前記従来のものに比べて
非常に小形に広帯域平面アンテナを構成できることが分
かる。
On the other hand, in the broadband planar antenna of this embodiment, the width of the feeding element is 15 mm and the width of the parasitic element is 10 m as described above.
m, the distance between the feeding element and the parasitic element is 5 mm, so the dimension G from the outside of the parasitic element 5 to the outside of the parasitic element 6 is
This is 45 mm, which indicates that the present invention allows a very wide band planar antenna to be constructed in comparison with the conventional one.

第3図には、本アンテナの磁界面内の放射特性を示
す。アース板の幅は150mmとしている。全帯域に亘りア
ンテナの正面方向を中心とした対称性の良いビームが実
現されており、第7図、第8図の構造で問題となってい
たビームシフトは解消されている。
FIG. 3 shows the radiation characteristics in the magnetic field plane of the present antenna. The width of the ground plate is 150 mm. A beam with good symmetry around the front direction of the antenna is realized over the entire band, and the beam shift which has been a problem in the structures of FIGS. 7 and 8 has been solved.

第4図は本発明の他の実施例を示す図であって、第1
図に示した実施例の無給電素子5,6と同一面の外側にf3
の共振周波数を有する短冊形の金属板9,10を添着せしめ
たものである。
FIG. 4 is a view showing another embodiment of the present invention.
F3 is outside the same plane as the parasitic elements 5 and 6 of the embodiment shown in the figure.
In this example, strip-shaped metal plates 9 and 10 having the above resonance frequency are attached.

本実施例の平面アンテナでは同図(b)に示すよう
に、f3をf2に近接して帯域の外側に来るように設定する
ことにより、先の実施例に較べ、一層の広帯域化が可能
となる。
In the planar antenna according to the present embodiment, as shown in FIG. 4B, by setting f3 to be close to f2 and outside the band, it is possible to further increase the bandwidth as compared with the previous embodiment. Become.

以上の実施例では、無給電素子の形状を総て短冊形の
ものを示しているが、これらは短冊形に限定されるもの
ではなく例えば、第5図(a),(b)の11〜14に示す
ような形状のものでも良く、所定の周波数を満足し得る
ものであれば、如何なる形状のものであっても良い。
In the above embodiments, the shapes of the parasitic elements are all strip-shaped. However, these are not limited to the strip shape, and for example, 11 to 11 in FIGS. 5 (a) and 5 (b). The shape shown in FIG. 14 may be used, and any shape may be used as long as a predetermined frequency can be satisfied.

〔発明の効果〕〔The invention's effect〕

以上述べたように、本発明によれば、給電素子と同一
面に複数個の無給電素子を配置することにより2層分の
共振特性を実現でき、2層構造の平面アンテナにも拘わ
らず3層構造に匹敵する広帯域特性を達成できる利点が
ある。
As described above, according to the present invention, by arranging a plurality of parasitic elements on the same surface as the feed element, resonance characteristics of two layers can be realized, and despite the fact that the planar antenna has a two-layer structure, three antennas can be realized. There is an advantage that a broadband characteristic comparable to a layer structure can be achieved.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例を示す図、第2図は実施例の
電気的特性を示す図、第3図は実施例の広帯域平面アン
テナの磁界面内の放射特性を示す図、第4図は本発明の
他の実施例を示す図、第5図は無給電素子の形状を短冊
形以外のものとした例を示す図、第6図は従来の3層構
造の広帯域平面アンテナの例を示す図、第7図は従来の
1層構造の広帯域平面アンテナの例を示す図、第8図は
従来の1層構造の広帯域平面アンテナの他の例を示す図
である。 1……金属板、2……誘電体板、3……放射素子、4…
…給電点、5,6,9〜14……無給電素子
FIG. 1 is a diagram showing an embodiment of the present invention, FIG. 2 is a diagram showing electrical characteristics of the embodiment, FIG. 3 is a diagram showing radiation characteristics in a magnetic field plane of the broadband planar antenna of the embodiment, 4 is a diagram showing another embodiment of the present invention, FIG. 5 is a diagram showing an example in which the shape of the parasitic element is other than a strip shape, and FIG. 6 is a diagram of a conventional broadband planar antenna having a three-layer structure. FIG. 7 is a diagram showing an example, FIG. 7 is a diagram showing an example of a conventional one-layer wideband planar antenna, and FIG. 8 is a diagram showing another example of a conventional single-layer wideband planar antenna. 1 ... metal plate, 2 ... dielectric plate, 3 ... radiation element, 4 ...
… Feed point, 5,6,9 ~ 14 …… parasitic element

───────────────────────────────────────────────────── フロントページの続き (72)発明者 木島 誠 東京都千代田区内幸町1丁目1番6号 日本電信電話株式会社内 (72)発明者 木村 英章 東京都千代田区内幸町1丁目1番6号 日本電信電話株式会社内 (56)参考文献 特開 昭63−88904(JP,A) 実開 平4−27609(JP,U) テレビジョン学会誌 Vol.38,N o.11.1984,pp.976−984 (58)調査した分野(Int.Cl.7,DB名) H01Q 13/08 JOIS────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Makoto Kijima 1-1-6 Uchisaiwaicho, Chiyoda-ku, Tokyo Nippon Telegraph and Telephone Corporation (72) Eiji Kimura Inventor 1-16-1 Uchisaiwaicho, Chiyoda-ku, Tokyo Nippon Telegraph and Telephone Corporation (56) References JP-A-63-88904 (JP, A) JP-A-4-27609 (JP, U) Journal of the Institute of Television Engineers of Japan Vol. 38, No. 11.1984, pp. 976-984 (58) Field surveyed (Int. Cl. 7 , DB name) H01Q 13/08 JOIS

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】平面の金属板からなるアース板の前面に誘
電体板をはさんで、短冊形状の金属平板の給電素子
(A)を該給電素子と前記アース板の面とが平行と成る
ように配置し、更にその前面に1つの金属平板の導波素
子(B)を有する平面アンテナにおいて、 給電素子と同一面に、金属平板(C)を複数個、給電素
子に対して対称となるように配置し、 前記導波素子(B)の共振周波数が前記給電素子(A)
及び前記金属平板(C)の各共振周波数のうち最高周波
数と最低周波数の間に設定したことを特徴とする、広帯
域平面アンテナ。
1. A strip-shaped metal plate feed element (A) is sandwiched between a dielectric plate and a ground plate made of a flat metal plate so that the feed element and the surface of the ground plate are parallel to each other. And a planar antenna having one metal plate waveguide element (B) on the front surface thereof, and a plurality of metal flat plates (C) on the same plane as the feed element, which are symmetric with respect to the feed element. So that the resonance frequency of the waveguide element (B) is equal to the power supply element (A).
And a resonance frequency of the metal plate (C) set between a highest frequency and a lowest frequency.
JP2283737A 1990-10-22 1990-10-22 Broadband planar antenna Expired - Lifetime JP3006867B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2283737A JP3006867B2 (en) 1990-10-22 1990-10-22 Broadband planar antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2283737A JP3006867B2 (en) 1990-10-22 1990-10-22 Broadband planar antenna

Publications (2)

Publication Number Publication Date
JPH04157905A JPH04157905A (en) 1992-05-29
JP3006867B2 true JP3006867B2 (en) 2000-02-07

Family

ID=17669454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2283737A Expired - Lifetime JP3006867B2 (en) 1990-10-22 1990-10-22 Broadband planar antenna

Country Status (1)

Country Link
JP (1) JP3006867B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7315283B2 (en) 2006-04-06 2008-01-01 Tatung Company Dual-band circularly polarized antenna

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2806350B2 (en) * 1996-03-14 1998-09-30 日本電気株式会社 Patch type array antenna device
JPH1032422A (en) * 1996-07-16 1998-02-03 N T T Ido Tsushinmo Kk Plane circuit type notched antenna
JP4070645B2 (en) * 2003-03-20 2008-04-02 クラリオン株式会社 Planar antenna
KR100781933B1 (en) * 2005-12-16 2007-12-04 주식회사 이엠따블유안테나 Single layer dual band antenna with circular polarization and single feed point
JP4208025B2 (en) * 2006-07-12 2009-01-14 Toto株式会社 High frequency sensor device
WO2009013817A1 (en) 2007-07-25 2009-01-29 Fujitsu Limited Wireless tag
JP5310552B2 (en) * 2007-07-25 2013-10-09 富士通株式会社 Wireless tag and manufacturing method thereof
KR101032029B1 (en) * 2008-03-31 2011-05-02 주식회사 이엠따블유 Wide-band Printed-Monopole Antenna using parasitic elements
JP5788548B2 (en) 2014-03-03 2015-09-30 株式会社フジクラ Microstrip antenna
DE102018219986A1 (en) * 2018-11-22 2020-05-28 Robert Bosch Gmbh Printed circuit board for radar sensors with a metallic filling structure and method for producing a printed circuit board for radar sensors with a metallic filling structure

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
テレビジョン学会誌 Vol.38,No.11.1984,pp.976−984

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7315283B2 (en) 2006-04-06 2008-01-01 Tatung Company Dual-band circularly polarized antenna

Also Published As

Publication number Publication date
JPH04157905A (en) 1992-05-29

Similar Documents

Publication Publication Date Title
JP5983760B2 (en) Array antenna
US7099686B2 (en) Microstrip patch antenna having high gain and wideband
TWI702757B (en) Multi-band endfire antennas and arrays
US20160294068A1 (en) Dielectric Resonator Antenna Element
JP3340271B2 (en) Omnidirectional antenna
JP4620018B2 (en) Antenna device
US7307587B2 (en) High-gain radiating element structure using multilayered metallic disk array
JP2862265B2 (en) Planar antenna
JP2846081B2 (en) Triplate type planar antenna
JPH09107226A (en) Antenna system, its production, and its design method
JP3006867B2 (en) Broadband planar antenna
US10680332B1 (en) Hybrid multi-band antenna array
US20180294567A1 (en) Patch antenna system with parasitic edge-aligned elements
JP3628668B2 (en) Multi-frequency dipole antenna device
CN108923112B (en) Antenna device and terminal equipment
JPH0586681B2 (en)
JP2765556B2 (en) Microstrip antenna
KR102487335B1 (en) Lightweight patch antenna
JP3064395B2 (en) Microstrip antenna
JPH0983241A (en) Semiconductor device
TW202027337A (en) Hybrid multi-band antenna array
US20230361469A1 (en) Wideband microstrip antenna array based antenna system for ghz communications
Ziolkowski Superdirective Broadside-Radiating Unidirectional Mixed-Multipole Antenna Arrays
US20220368030A1 (en) Antenna device and communication device
US11817625B2 (en) Electromagnetic wave radiator

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071126

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081126

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091126

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091126

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101126

Year of fee payment: 11

EXPY Cancellation because of completion of term