JP3006272B2 - Planar heating element - Google Patents

Planar heating element

Info

Publication number
JP3006272B2
JP3006272B2 JP4084418A JP8441892A JP3006272B2 JP 3006272 B2 JP3006272 B2 JP 3006272B2 JP 4084418 A JP4084418 A JP 4084418A JP 8441892 A JP8441892 A JP 8441892A JP 3006272 B2 JP3006272 B2 JP 3006272B2
Authority
JP
Japan
Prior art keywords
heating element
electrode
planar heating
temperature
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4084418A
Other languages
Japanese (ja)
Other versions
JPH05159867A (en
Inventor
裕一 西▲島▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nok Corp
Original Assignee
Nok Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nok Corp filed Critical Nok Corp
Priority to JP4084418A priority Critical patent/JP3006272B2/en
Publication of JPH05159867A publication Critical patent/JPH05159867A/en
Application granted granted Critical
Publication of JP3006272B2 publication Critical patent/JP3006272B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/002Heaters using a particular layout for the resistive material or resistive elements
    • H05B2203/006Heaters using a particular layout for the resistive material or resistive elements using interdigitated electrodes

Landscapes

  • Surface Heating Bodies (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、面状発熱体素子に関す
る。更に詳しくは、均一な発熱分布を示す面状発熱体素
子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a planar heating element. More specifically, the present invention relates to a planar heating element having a uniform heat generation distribution.

【0002】[0002]

【従来の技術】従来の面状正温度特性発熱体は、例えば
図2に示されるように、高分子材料バインダーを用いて
形成させた導電性物質粉末層よりなる発熱体21の上面
(あるいは上下両面)側に、一組の電極22,23を形成さ
せ、これら電極間に通電することにより発熱させてい
る。このような面状発熱体素子に長時間通電し、発熱状
態を持続させると、素子の劣化、即ち抵抗値が徐々に増
加し、発熱不良を起こすに至るという問題がみられた。
2. Description of the Related Art As shown in FIG. 2, for example, a conventional planar positive temperature characteristic heating element has an upper surface of a heating element 21 made of a conductive material powder layer formed using a polymer material binder.
A pair of electrodes 22 and 23 are formed on the (or both upper and lower) side, and heat is generated by applying a current between these electrodes. If such a planar heating element is energized for a long time to maintain the heat generation state, there is a problem that the element is deteriorated, that is, the resistance value is gradually increased, and a heat generation failure occurs.

【0003】長時間の通電による抵抗値増加の原因や機
構は明らかではないが、抵抗値の増加速度は、印加電圧
および発熱時の素子温度に比例することは分かってい
る。例えば、図2に示される従来の素子に、230Vの電圧
を印加し続け、100℃に保ったとき、通電時間1000時間
で、その抵抗値は初期の値の約4倍迄増加する(図3)。
Although the cause and mechanism of the increase in the resistance value due to the long-term energization are not clear, it is known that the rate of increase in the resistance value is proportional to the applied voltage and the element temperature during heat generation. For example, when the voltage of 230 V is continuously applied to the conventional device shown in FIG. 2 and kept at 100 ° C., the resistance value increases to about four times the initial value after 1000 hours of energization (FIG. 3). ).

【0004】また、従来の面状発熱体素子では、通電発
熱時の素子表面の温度分布が均一ではないという問題が
みられた。例えば、図11に切断面端面図として示される
ように、導電性物質粉末層よりなる面状発熱体24の上面
側に一組のくし形電極25を形成させ、これら電極間に通
電して発熱させた場合、電極部位26,26´,・・・・と
電極間部位27,27´,・・・・とでは、サーモトレーサ
ーによる測定で発熱温度に約5℃程度の差がみられる(図
12)。
Further, in the conventional planar heating element, there has been a problem that the temperature distribution on the element surface during energization and heating is not uniform. For example, as shown in FIG. 11 as a cross-sectional end view, a pair of comb-shaped electrodes 25 is formed on the upper surface side of a planar heating element 24 made of a conductive material powder layer, and heat is generated by supplying electricity between these electrodes. , And the inter-electrode portions 27, 27 ',..., A difference of about 5 ° C. is observed in the heat generation temperature measured by a thermo tracer (see FIG.
12).

【0005】このような温度差をなくし、均一な温度分
布を得るために、発熱体28と電極29,30とが金属板31な
どの均熱板に接着させて用いられることも多く行われて
いるが(図13)、この場合には用いられた金属板などのた
め、面状発熱体素子本来のフレキシビリティーが失われ
るという問題をもたらしている。
In order to eliminate such a temperature difference and obtain a uniform temperature distribution, the heating element 28 and the electrodes 29 and 30 are often used by being adhered to a heat equalizing plate such as a metal plate 31. However, in this case, there is a problem that the original flexibility of the planar heating element is lost due to the used metal plate or the like (FIG. 13).

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、高分
子材料バインダーを用いて形成させた導電性物質粉末層
よりなる面状正温度特性発熱体よりなる面状発熱体素子
に長時間通電したときの素子の劣化を抑え、耐久性を向
上せしめると共に、均一な発熱分布を示すものを提供す
ることにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a long-term energization to a planar heating element comprising a planar positive temperature characteristic heating element comprising a conductive material powder layer formed using a polymer material binder. It is an object of the present invention to provide a device which suppresses deterioration of the element at the time of the heat treatment, improves durability, and shows a uniform heat generation distribution.

【0007】[0007]

【課題を解決するための手段】かかる本発明の目的は、
絶縁体薄膜の上下両面に、高分子材料バインダーを用い
て形成させた導電性物質粉末層よりなる面状正温度特性
発熱体を積層させ、各面状正温度特性発熱体上に形成さ
せた一組ずつの電極を直列回路に接続した面状発熱体素
において、下面側に設けられる電極部位を、上面側に
設けられた電極部位-電極部位間に相当する位置になる
ように、上下両面側のくし形電極の電極部位を互いにず
らして設けた面状発熱体素子によって達成される。
SUMMARY OF THE INVENTION The object of the present invention is as follows.
On the upper and lower surfaces of the insulator thin film, a planar positive temperature characteristic heating element composed of a conductive substance powder layer formed using a polymer material binder was laminated, and formed on each planar positive temperature characteristic heating element. In a planar heating element in which each pair of electrodes is connected to a series circuit, the electrode portion provided on the lower surface is
It will be the position corresponding to the provided electrode part-electrode part
The electrode parts of the comb-shaped electrode on both upper and lower sides
This is attained by the planar heating element provided in the above manner .

【0008】本発明者は、かかる解決手段に到達する前
に、面状正温度特性発熱体(PTC材)を変えずに、電極の
配置を工夫して、一つの面状発熱体素子の上面側と下面
側の電路を直列に接続し、PTC材にかかる電圧を下げる
ことを検討した。例えば、このようなPTC材をn個直列
に接続した回路を考えると、PTC材1個当りにかかる電
圧は、素子全体にかけた電圧の1/nに低下する。
Before reaching the above solution, the inventor of the present invention devised the arrangement of the electrodes without changing the planar positive temperature characteristic heating element (PTC material) to obtain the upper surface of one planar heating element. We considered connecting the electric circuits on the side and the bottom side in series to reduce the voltage applied to the PTC material. For example, considering a circuit in which n PTC materials are connected in series, the voltage applied to each PTC material is reduced to 1 / n of the voltage applied to the entire device.

【0009】ところが、PTC材では、温度の上昇と共に
抵抗値が増加するという正温度特性を有するため、例え
ばn個のPTC材の内、どれか1個でも他のPTC材に比べ高
温となると、発熱量=電流×(抵抗値)2、電流=一定な
ので、その1個の素子だけが高温になってしまい、均一
な発熱分布が得られなくなるという問題がみられた。こ
のため、n個の素子の温度が、どれも同じになるような
構成上の工夫が必要である。
However, since the PTC material has a positive temperature characteristic in which the resistance value increases with an increase in temperature, for example, when any one of n PTC materials becomes higher in temperature than other PTC materials, Since the calorific value = current × (resistance value) 2 , and the current = constant, only one of the elements has a high temperature, and a problem has been observed that a uniform heat distribution cannot be obtained. For this reason, it is necessary to devise a configuration such that the temperatures of the n elements become the same.

【0010】 図1に示される本発明の基本となる面状
発熱体素子は、絶縁体薄膜1の上下両面に、高分子材料
バインダーを用いて形成させた導電性物質よりなるPTC
材2,3を積層させ、上面側のPTC材2上には一組の電極
4,5を、また下面側のPTC材3上には一組の電極6,7
をそれぞれ形成させ、電極4と6および電極5と7とを
それぞれ接続することにより、PTC材2と3とを直列に
接続し、電流が矢印の方向に流れる回路を形成させてお
り、これらのPTC材2と3との間に温度差が生じた場合
にも、絶縁体薄膜1を通した熱伝導により、PTC材間の
温度差は殆んどなくなり、均一な発熱分布を有する面状
発熱体素子が得られるようになる。
[0010] Underlying the planar heating element of the present invention shown in FIG. 1, the upper and lower surfaces of the insulator thin film 1, made of a conductive material is formed using a polymeric material binder PTC
Materials 2 and 3 are laminated, and a set of electrodes 4 and 5 is provided on the upper PTC material 2 and a set of electrodes 6 and 7 is provided on the lower PTC material 3.
Respectively, and by connecting the electrodes 4 and 6 and the electrodes 5 and 7, respectively, the PTC materials 2 and 3 are connected in series to form a circuit in which a current flows in the direction of the arrow. Even when a temperature difference occurs between the PTC materials 2 and 3, the temperature difference between the PTC materials hardly disappears due to heat conduction through the insulating thin film 1, and a planar heat generation having a uniform heat generation distribution. A body element can be obtained.

【0011】 図4〜6には、本発明の基本となる面状
発熱体素子の態様が、平面図、底面図およびI−I線端面
図として示されている。絶縁体薄膜11の上面側には、PT
C材 12が積層されており、このPTC材上には一組の対向
くし形電極14,15が形成されており、また下面側に積層
されたPTC材13には、一組の対向くし形電極16,17が形成
されている。そして、電極15と17との間は、ハトメ18,1
8´,18´´、リベット、導線などによって導通させてい
る。
[0011] 4-6, embodiments of the underlying sheet heating element of the present invention is shown as a plan view, a bottom view and I-I line end view. On the upper surface side of the insulating thin film 11, PT
C material 12 is laminated, a pair of opposing comb-shaped electrodes 14 and 15 are formed on the PTC material, and a pair of opposing comb-shaped electrodes is formed on the PTC material 13 laminated on the lower surface side. Electrodes 16 and 17 are formed. And between the electrodes 15 and 17, eyelets 18,1
Conduction is achieved by 8 ', 18', rivets, conducting wires, and the like.

【0012】絶縁体薄膜としては、低密度ポリエチレン
フィルムなどのプラスチックフィルムであって、その抵
抗値が1010Ω・cm以上のものが用いられる。その厚さ
は、約0.01μm以上であれば特に制限がないが、当然PTC
材の厚さより薄いものが用いられる。
As the insulator thin film, a plastic film such as a low-density polyethylene film having a resistance value of 10 10 Ω · cm or more is used. The thickness is not particularly limited as long as it is about 0.01 μm or more.
A material thinner than the thickness of the material is used.

【0013】PTC材は、カーボンブラック、グラファイ
ト、金属粉末、金属メッキ粉末などの約10〜1000重量部
を樹脂状または未加硫ゴム状の高分子材料バインダー10
0重量部とロールミル、ニーダ、インタミックスなどの
混練機で混練した後、プレス成形する方法、あるいは導
電性物質粉末および高分子材料バインダーを湿式分散機
で溶媒と共に分散させ、インク状のものとしてコーティ
ング法またはスクリーン印刷法などで絶縁体薄膜上に塗
布し、乾燥させるなどの任意の方法で行うことができ
る。
The PTC material is composed of about 10 to 1000 parts by weight of carbon black, graphite, metal powder, metal plating powder, etc., as a resinous or unvulcanized rubbery polymer binder.
0 parts by weight and kneading with a kneading machine such as a roll mill, kneader, intermix, etc., and then press molding, or disperse the conductive material powder and polymer material binder with a solvent with a wet dispersing machine and coat as an ink. It can be carried out by any method such as coating on an insulating thin film by a method or screen printing method and drying.

【0014】PTC材上への電極の形成は、銅箔などの電
極形成材料の上に、PTC材、絶縁体薄膜、PTC材および電
極形成材料を重ね、加熱プレスして積層した後、積層体
上下両面の電極形成材料をエッチングする方法などによ
って行われる。
The electrode is formed on the PTC material by laminating the PTC material, the insulator thin film, the PTC material and the electrode forming material on the electrode forming material such as a copper foil, and then pressing and laminating the laminate. It is performed by a method of etching the electrode forming material on the upper and lower surfaces.

【0015】 このようにして構成される本発明の基本
となる面状発熱体素子は、PTC材間の温度差をなるべく
小さくし、またフレキシビリティ、絶縁性などを保持す
る目的から、全体の厚さが約30μm〜2mm、好ましくは約
100〜500μmが適当である。そして、それの使用に際し
ては、直流だけではなく、交流の電流も用いることがで
きる。
The basics of the present invention configured as described above
The planar heating element to be formed has a total thickness of about 30 μm to 2 mm, preferably about 30 μm, for the purpose of minimizing the temperature difference between the PTC materials and maintaining flexibility and insulation.
100-500 μm is appropriate. When using it, not only direct current but also alternating current can be used.

【0016】 図4〜6に示される態様にあっては、く
し形電極の電極部位が、例えば図6の14-17、15-16の関
係のように、下面側に設けられる電極部位17,16がそれ
ぞれ上面側に設けられた電極部位14,15に相当する位置
に設けられている。この場合、面状発熱体素子は上面側
(実線)および下面側(点線)共、温度差が約5℃以内とい
うほぼ均一な発熱分布を示しており(図7)、しかも電極
素子の端部(図6の左端側)で発熱不良を起しているよう
な傾向も見られない。また、上下両側面での温度差も、
約1℃以下にとどまっている。
In the embodiment shown in FIGS. 4 to 6, the electrode portions of the comb-shaped electrode are provided on the lower surface side, for example, as shown in the relationship of 14-17 and 15-16 in FIG. Reference numerals 16 are provided at positions corresponding to the electrode portions 14 and 15 provided on the upper surface side, respectively. In this case, the planar heating element is
Both the (solid line) and the lower side (dotted line) show a substantially uniform heat distribution with a temperature difference of about 5 ° C. or less (FIG. 7), and a heat generation defect at the end of the electrode element (left end in FIG. 6). There is no such tendency. Also, the temperature difference between the upper and lower sides,
It stays below about 1 ℃.

【0017】 本発明の態様である図4および図8〜9
では、下面側に設けられる電極部位が、上面側に設けら
れた電極部位-電極部位間に相当する位置になるよう
に、上下両面側のくし形電極の電極部位を互いにずらし
て設けられている。具体的には、上面側の電極部位14-1
5間に相当する位置に、下面側の電極部位17が設けられ
る。この場合には、面状発熱体素子の上面側の電極部位
と電極間部位との温度差は、約1℃以下と大幅に低減さ
れる(図10)
FIGS. 4 and 8 to 9, which are embodiments of the present invention .
In the above, the electrode portions of the comb-shaped electrodes on the upper and lower surfaces are shifted from each other so that the electrode portions provided on the lower surface side are located at positions corresponding to the electrode portions provided on the upper surface side-electrode portions. . Specifically, the electrode part 14-1 on the upper surface side
An electrode portion 17 on the lower surface side is provided at a position corresponding to the position between the five. In this case, the temperature difference between the electrode part on the upper surface side of the planar heating element and the part between the electrodes is greatly reduced to about 1 ° C. or less (FIG. 10) .

【0018】この結果、より低温部となる電極部位(熱
伝導率の高い電極を通じての廃熱が大きいため、電極付
近の発熱体部分は温度が低くなる)の反対面側は、より
高温部となる電極部位-電極部位間(換言すれば、電極か
ら離れた電極部位が設けられていない部分の発熱体は温
度が高くなる)となるので、PTC材12と13との間に温度差
が生じても、熱伝導は薄い絶縁体薄膜を通して反対面側
のより低温部に伝わり、面状発熱体素子全面の温度分布
が均一化されることになる。
As a result, the opposite side of the electrode portion which becomes a lower temperature portion (the temperature of the heating element portion near the electrode becomes lower because the waste heat through the electrode having high thermal conductivity is large) is the same as that of the higher temperature portion. (In other words, the temperature of the heating element in the portion where the electrode portion away from the electrode is not provided becomes higher), so that a temperature difference occurs between the PTC materials 12 and 13. However, the heat conduction is transmitted to the lower temperature portion on the opposite side through the thin insulator thin film, and the temperature distribution over the entire surface of the planar heating element is made uniform.

【0019】[0019]

【発明の効果】本発明に係る面状発熱体素子は、次のよ
うな効果を奏する。 (1)素子の上面側と下面側のPTC材(面状正温度特性発熱
体)は、熱伝導により温度差を殆んど生じないので、片
面側だけの加熱を防ぎ、両面にわたって均一な発熱分布
を示すようになる。 (2)このような効果は、上下両面側のくし形電極の電極
部位を互いにずらして設け、電極部位−電極部位間の温
度差をほとんどなくした場合に顕著であり、その結果均
一な発熱分布を得るために従来は必要とされていた金属
板などの均熱板が不要となり、面状発熱体素子が本来有
するフレキシビリティをそのまま有効に使用することを
可能とさせる。 (3)素子の上面側と下面側で、PTC材の電極を直列回路と
したため、PTC材にかかる電圧は従来の半分になり、同
一PTC材を用いた場合にそれの耐久性を約2倍に向上さ
せることができる。 (4)例えば、230Vといった高電圧印加時の素子の耐久性
が向上する結果、海外向け面状発熱体素子としての使用
を可能とする。 (5)加熱器、結露防止装置などの面状発熱体として有効
に使用し得る。
The planar heating element according to the present invention has the following effects. (1) The PTC material (positive positive temperature characteristic heating element) on the upper and lower sides of the element hardly generates a temperature difference due to heat conduction, so heating on only one side is prevented and uniform heat generation on both sides It shows the distribution. (2) Such an effect is remarkable when the electrode portions of the comb-shaped electrodes on the upper and lower surfaces are provided shifted from each other, and the temperature difference between the electrode portions and the electrode portions is almost eliminated, and as a result, uniform heat generation distribution This eliminates the need for a heat equalizing plate such as a metal plate, which has been required in the past, and makes it possible to effectively use the original flexibility of the planar heating element. (3) Since the electrodes of the PTC material are arranged in a series circuit on the upper and lower sides of the element, the voltage applied to the PTC material is halved compared to the conventional type, and the durability of the same PTC material is approximately doubled. Can be improved. (4) For example, the durability of the element when a high voltage such as 230 V is applied is improved, so that the element can be used as a planar heating element for overseas. (5) It can be effectively used as a sheet heating element such as a heater or a dew condensation prevention device.

【0020】[0020]

【実施例】次に、実施例について本発明を説明する。Next, the present invention will be described with reference to examples.

【0021】実施例1(参考例) 低密度ポリエチレン(アドマー社製品NE060)に、それに
対して23容量%(36重量%)のカーボンブラック(中部カー
ボン製品HTC#20)を加え、加熱ロールで混合した後、180
℃で30秒間プレスして、厚さ0.3mmのPTC材を得た。ま
た、この低密度ポリエチレン単体を、180℃で30秒間プ
レスして、厚さ0.2mmの絶縁体薄膜を得た。
Example 1 (Reference Example) 23% by volume (36% by weight) of carbon black (central carbon product HTC # 20) was added to low-density polyethylene (NE060 manufactured by Admer) and mixed with a heating roll. After 180
By pressing at 30 ° C. for 30 seconds, a PTC material having a thickness of 0.3 mm was obtained. The low-density polyethylene alone was pressed at 180 ° C. for 30 seconds to obtain an insulator thin film having a thickness of 0.2 mm.

【0022】銅箔(厚さ約30μm)上に、上記PTC材、絶縁
体薄膜、PTC材および銅箔を重ね、180℃で10分間プレス
して、厚さ0.5mmの積層体を得た。この積層体をマスキ
ングした後、ヨウ素1.2gおよびヨウ化アンモニウム8gを
60容量%エタノ-ル水溶液に溶かした溶液中でエッチング
して、図4〜6に示される形状の対向くし形電極(電極
幅4mm、電極間ピッチ間隔2mm)を形成させた。
On the copper foil (thickness: about 30 μm), the above-mentioned PTC material, insulating thin film, PTC material and copper foil were laminated and pressed at 180 ° C. for 10 minutes to obtain a laminate having a thickness of 0.5 mm. After masking this laminate, 1.2 g of iodine and 8 g of ammonium iodide
Etching was performed in a solution dissolved in a 60% by volume aqueous ethanol solution to form opposed comb-shaped electrodes (electrode width: 4 mm, pitch between electrodes: 2 mm) shown in FIGS.

【0023】このようにして作製された面状発熱体素子
(5×20cm)は、PTC材を得る際、カーボンブラックのロー
ルによる配合時間を調節することにより、初期の発熱温
度が230V印加時に100℃になるようにした。1000時間通
電後の抵抗増加は約2倍で、従来のものの約半分であっ
た(図3)。
The planar heating element thus manufactured
For (5 × 20 cm), when the PTC material was obtained, the initial exothermic temperature was adjusted to 100 ° C. when 230 V was applied by adjusting the compounding time of the carbon black roll. The resistance increase after 1000 hours of energization was about twice that of the conventional one (Fig. 3).

【0024】また、このときの各電極部位および電極部
位−電極部位間の上面側(実線)および下面側(点線)の各
表面温度をサ−モトレ−サにより測定すると、図7のグ
ラフに示される結果が得られた。
FIG. 7 is a graph showing the surface temperature of each electrode part and the upper surface (solid line) and the lower surface (dotted line) between the electrode parts. Results were obtained.

【0025】実施例2(本発明) 実施例1において、図4および図8〜9に示される形状
の対向くし形電極を形成させ、作製された面状発熱体素
子の初期発熱温度を230V印加時に100℃になるようにし
た。このときの各電極部位および電極部位-電極部位間
の上面側表面温度をサーモトレーサにより測定すると、
図10のグラフに示されるような結果が得られ、すべての
部分での温度差は1℃以内に収まり、図7および図12の
温度差の約1/5になった。
Example 2 (Invention) In Example 1, an opposing comb-shaped electrode having the shape shown in FIGS. 4 and 8 to 9 was formed, and the initial heating temperature of the manufactured planar heating element was 230 V. It was sometimes 100 ° C. When the upper surface temperature between each electrode part and the electrode part-electrode part at this time is measured by a thermo tracer,
The results as shown in the graph of FIG. 10 were obtained, and the temperature differences in all parts were within 1 ° C., which was about / 5 of the temperature differences in FIGS. 7 and 12.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の基本となる面状発熱体素子の概要図で
ある。
FIG. 1 is a schematic view of a planar heating element which is the basis of the present invention.

【図2】従来の面状発熱体素子の概要図である。FIG. 2 is a schematic view of a conventional planar heating element.

【図3】実施例1(参考例)および従来の面状発熱体素
子の通電時間による抵抗変化を示すグラフである。
FIG. 3 is a graph showing a resistance change according to a conduction time of Example 1 (Reference Example) and a conventional planar heating element.

【図4】本発明面状発熱体素子一態様の平面図であ
る。
FIG. 4 is a plan view of one embodiment of the planar heating element of the present invention .

【図5】本発明の基本となる面状発熱体素子の態様の底
面図である。
FIG. 5 is a bottom view of an embodiment of a planar heating element which is the basis of the present invention.

【図6】図5のI−I線断面の端面図である。FIG. 6 is an end view of a cross section taken along line II of FIG. 5;

【図7】図6に対応する部位の素子表面温度を上下両面
について測定したグラフである。
FIG. 7 is a graph showing the measured element surface temperatures at the site corresponding to FIG.

【図8】本発明面状発熱体素子一態様の底面図であ
る。
FIG. 8 is a bottom view of one embodiment of the planar heating element of the present invention .

【図9】図8のII−II線断面の端面図である。9 is an end view of a cross section taken along line II-II of FIG.

【図10】図9に対応する部位の上面側素子表面温度の
測定グラフである。
10 is a measurement graph of the upper surface side element surface temperature of a portion corresponding to FIG. 9;

【図11】従来の面状発熱体素子の断面の端面図であ
る。
FIG. 11 is an end view of a cross section of a conventional planar heating element.

【図12】図11に対応する部位の上面側素子表面温度の
測定グラフである。
12 is a measurement graph of the upper surface side element surface temperature of a portion corresponding to FIG. 11;

【図13】均熱板を取り付けた従来の面状発熱体素子の
断面図である。
FIG. 13 is a sectional view of a conventional planar heating element to which a heat equalizing plate is attached.

【符号の説明】[Explanation of symbols]

1 絶縁体薄膜 2,3 PTC材 4,5 電極 6,7 電極 11 絶縁体薄膜 12,13 PTC材 14,15 対向くし形電極の電極部位 16,17 対向くし形電極の電極部位 DESCRIPTION OF SYMBOLS 1 Insulator thin film 2, 3 PTC material 4, 5 electrode 6, 7 electrode 11 Insulator thin film 12, 13 PTC material 14, 15 Electrode part of opposing comb electrode 16, 17 Electrode part of opposing comb electrode

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 絶縁体薄膜の上下両面に、高分子材料バ
インダーを用いて形成させた導電性物質粉末層よりなる
面状正温度特性発熱体を積層させ、各面状正温度特性発
熱体上に形成させた一組ずつの電極を直列回路に接続し
てなる面状発熱体素子において、下面側に設けられる電
極部位を、上面側に設けられた電極部位-電極部位間に
相当する位置になるように、上下両面側のくし形電極の
電極部位を互いにずらして設けたことを特徴とする面状
発熱体素子。
1. A sheet-like positive temperature characteristic heating element comprising a conductive material powder layer formed using a polymer material binder is laminated on both upper and lower surfaces of an insulating thin film. In a planar heating element formed by connecting a pair of electrodes formed in
The pole part is placed between the electrode part provided on the top side and the electrode part.
Of the comb-shaped electrodes on both the upper and lower sides so that
A planar heating element, wherein electrode portions are provided shifted from each other .
JP4084418A 1991-10-09 1992-03-06 Planar heating element Expired - Fee Related JP3006272B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4084418A JP3006272B2 (en) 1991-10-09 1992-03-06 Planar heating element

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP3-290702 1991-10-09
JP29070291 1991-10-09
JP4084418A JP3006272B2 (en) 1991-10-09 1992-03-06 Planar heating element

Publications (2)

Publication Number Publication Date
JPH05159867A JPH05159867A (en) 1993-06-25
JP3006272B2 true JP3006272B2 (en) 2000-02-07

Family

ID=26425456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4084418A Expired - Fee Related JP3006272B2 (en) 1991-10-09 1992-03-06 Planar heating element

Country Status (1)

Country Link
JP (1) JP3006272B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0864352A (en) * 1994-08-24 1996-03-08 Tokyo Cosmos Electric Co Ltd Sheet heating element for mirror

Also Published As

Publication number Publication date
JPH05159867A (en) 1993-06-25

Similar Documents

Publication Publication Date Title
CA1296043C (en) Electrical devices comprising conductive polymers
EP0417097B1 (en) Heating element and method for making such a heating element
US5938957A (en) Planar heating device for a mirror and method of producing the same
SE8402366L (en) LAYER SELF-CONTROL HEATING DEVICE
GB1562085A (en) Electrical heater and proxesses using it
JP3006272B2 (en) Planar heating element
US5015986A (en) Organic positive temperature coefficient thermistor
JP4793053B2 (en) Planar heating element
JPH05217711A (en) Ptc composition
JP4935526B2 (en) Planar heating element
JPS60184836A (en) Laminated conductive polymer device
JP2000040579A (en) Sheet heating element
KR950005280B1 (en) Seat heater and method to manufacture with copolymer carbon block
RU2019065C1 (en) Process of manufacture of flexible resistive heater
JP4674564B2 (en) Planar heating element
JPH046787A (en) Planar heater
JP2531025B2 (en) Planar heating element
JP4760470B2 (en) Planar heating element
JPH05101872A (en) Plane heater
JPH05226065A (en) Surface heating body
JPH062234Y2 (en) Sheet heating element
JPS5857284A (en) Panel heating laminate
JP3817488B2 (en) Composite heating element and design method thereof
JPH0679499B2 (en) Positive resistance temperature coefficient heating element
JP3052342B2 (en) Heater using a planar switch

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071126

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081126

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081126

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091126

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091126

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101126

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111126

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees