JP2995693B2 - Safety device for pressurized fluidized bed boiler - Google Patents

Safety device for pressurized fluidized bed boiler

Info

Publication number
JP2995693B2
JP2995693B2 JP3290390A JP29039091A JP2995693B2 JP 2995693 B2 JP2995693 B2 JP 2995693B2 JP 3290390 A JP3290390 A JP 3290390A JP 29039091 A JP29039091 A JP 29039091A JP 2995693 B2 JP2995693 B2 JP 2995693B2
Authority
JP
Japan
Prior art keywords
fluidized bed
fluidized
bed boiler
gas
relief valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3290390A
Other languages
Japanese (ja)
Other versions
JPH0599401A (en
Inventor
明雄 西山
太郎 坂田
勝彌 大木
恭功 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP3290390A priority Critical patent/JP2995693B2/en
Publication of JPH0599401A publication Critical patent/JPH0599401A/en
Application granted granted Critical
Publication of JP2995693B2 publication Critical patent/JP2995693B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Fluidized-Bed Combustion And Resonant Combustion (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は流動層燃焼装置に係り、
特に加圧流動層ボイラの緊急停止時に流動層ボイラの保
護を行なうのに好適な加圧流動層ボイラの安全装置に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fluidized bed combustion apparatus,
In particular, the present invention relates to a safety device for a pressurized fluidized-bed boiler suitable for protecting a fluidized-bed boiler when the pressurized fluidized-bed boiler is stopped in an emergency.

【0002】[0002]

【従来の技術】石炭火力発電の高効率化の要求から従来
のスチームタービンによる発電だけでなく、このスチー
ムタービンに加えてガスタービンによる発電も可能な加
圧流動層ボイラ複合サイクル発電プラントの開発が進め
られている。
2. Description of the Related Art The demand for higher efficiency of coal-fired power generation has led to the development of a pressurized fluidized-bed boiler combined cycle power generation plant that can generate not only a conventional steam turbine but also a gas turbine in addition to the conventional steam turbine. Is underway.

【0003】図6に従来技術の加圧流動層ボイラ複合サ
イクル発電プラントの概略系統図を示す。
FIG. 6 shows a schematic diagram of a conventional pressurized fluidized bed boiler combined cycle power plant of the prior art.

【0004】10ないし15kg/cm2g 程度までの
所定の圧力に加圧された加圧容器1の中に流動層ボイラ
2が収納され、流動層ボイラ2内には脱硫剤である石炭
石粒子を主体とする流動媒体が充填されている。この流
動媒体は炉底に設けられた空気分散板3から供給される
燃焼用空気Aによって流動化されて、流動層4を形成す
る。
[0004] A fluidized-bed boiler 2 is housed in a pressurized container 1 pressurized to a predetermined pressure of about 10 to 15 kg / cm 2 g, and in the fluidized-bed boiler 2, coal stone particles serving as a desulfurizing agent are contained. Is filled with a fluid medium mainly composed of This fluidized medium is fluidized by combustion air A supplied from an air distribution plate 3 provided at the furnace bottom to form a fluidized bed 4.

【0005】燃料Fの石炭粒子は燃料供給ノズル5から
流動層4内に吹き込まれて流動層4内で前述の燃焼用空
気Aによって燃焼する。流動層4内にはほぼ全領域に亘
って伝熱管6が配置され、石炭燃料Fの燃焼熱は伝熱管
6を通してボイラ給水Wの加熱、スチームSの発生によ
って除去される。これによって流動層4は所定の温度、
典型的には860℃に保持される。流動層ボイラ2で発
生したスチームSは蒸気管7、蒸気タービン入口止弁8
を経て蒸気タービン9に供給され、蒸気タービン発電機
10による発電を行なう。
[0005] The coal particles of the fuel F are blown into the fluidized bed 4 from the fuel supply nozzle 5 and burned in the fluidized bed 4 by the combustion air A described above. The heat transfer tubes 6 are arranged in substantially the entire area in the fluidized bed 4, and the heat of combustion of the coal fuel F is removed through the heat transfer tubes 6 by heating the boiler feed water W and generating steam S. Thereby, the fluidized bed 4 has a predetermined temperature,
Typically, it is kept at 860 ° C. The steam S generated in the fluidized bed boiler 2 is supplied to the steam pipe 7 and the steam turbine inlet stop valve 8.
And is supplied to the steam turbine 9 to generate electric power by the steam turbine generator 10.

【0006】蒸気タービン9からのスチームSは復水器
11で冷却され、給水ポンプ12を経て給水管13から
ボイラ給水Wとして再供給される。
[0006] Steam S from the steam turbine 9 is cooled by a condenser 11 and re-supplied as boiler feed water W from a feed pipe 13 via a feed water pump 12.

【0007】一方、流動層ボイラ2からの燃焼ガスGは
流動層4の上部の空間、いわゆるフリーボード14を通
って流動層ボイラ2の出口から排ガス煙道15へ排出さ
れサイクロン16で燃焼ガスG中のダストを除去し、排
ガス煙道15、ガスタービン入口止弁17を経てガスタ
ービン18に供給されガスタービン発電機19による発
電を行なう。
On the other hand, the combustion gas G from the fluidized bed boiler 2 passes through the space above the fluidized bed 4, that is, the so-called free board 14, and is discharged from the outlet of the fluidized bed boiler 2 to the exhaust gas flue 15, The dust inside is removed and supplied to a gas turbine 18 via an exhaust gas flue 15 and a gas turbine inlet stop valve 17 to generate electric power by a gas turbine generator 19.

【0008】ガスタービン18からの燃焼ガスGは排ガ
ス管20、排熱回収装置21、集塵器22、煙突23へ
排気される。
The combustion gas G from the gas turbine 18 is exhausted to an exhaust gas pipe 20, an exhaust heat recovery device 21, a dust collector 22, and a chimney 23.

【0009】他方、燃焼用空気Aはガスタービン18に
直結されたコンプレッサ24により圧縮され、コンプレ
ッサ出口弁25、空気管26、加圧容器1を経て空気分
散板3へ供給され、空気分散板3から流動層ボイラ2へ
供給される。
On the other hand, the combustion air A is compressed by a compressor 24 directly connected to the gas turbine 18, and is supplied to the air distribution plate 3 through a compressor outlet valve 25, an air pipe 26 and the pressurized container 1, and is supplied to the air distribution plate 3. To the fluidized bed boiler 2.

【0010】27は排ガス煙道15のガス圧力逃し弁、
28は蒸気管7の蒸気安全弁、29は補給水タンク、3
0は非常用補給水ポンプ、31は補給水管で、加圧流動
層ボイラ複合サイクル発電プラントの緊急停止時には流
動層ボイラ2へ補給水タンク29から冷却水を供給する
ものである。
Reference numeral 27 denotes a gas pressure relief valve of the exhaust gas flue 15,
28 is a steam safety valve of the steam pipe 7, 29 is a makeup water tank, 3
Reference numeral 0 denotes an emergency make-up water pump, and 31 denotes a make-up water pipe, which supplies cooling water from the make-up water tank 29 to the fluidized-bed boiler 2 when the pressurized fluidized-bed boiler combined cycle power plant is stopped in an emergency.

【0011】32は流動媒体タンク、33は流動媒体タ
ンク32内のガス抜き弁、34はガス抜き出し管、35
は送電系統である。
Reference numeral 32 denotes a fluid medium tank; 33, a gas vent valve in the fluid medium tank 32; 34, a gas vent pipe;
Is a transmission system.

【0012】この様な構造において、送電系統35に事
故等が発生した場合は、送電する事ができないため、ガ
スタービン18、蒸気タービン9共に運転を停止しなけ
ればならないのでガスタービン18のガスタービン入口
止弁17、蒸気タービン9の蒸気タービン入口止弁8を
瞬時に閉じる。流動層ボイラ2内の残熱で伝熱管6内の
ボイラ給水Wの蒸発がこの後も進むため蒸気管7内の蒸
気圧力が上昇した場合には蒸気管7の蒸気安全弁28を
開く。
In such a structure, if an accident or the like occurs in the power transmission system 35, power cannot be transmitted, and the operation of both the gas turbine 18 and the steam turbine 9 must be stopped. The inlet stop valve 17 and the steam turbine inlet stop valve 8 of the steam turbine 9 are instantaneously closed. When the steam pressure in the steam pipe 7 rises, the steam safety valve 28 of the steam pipe 7 is opened when the boiler feed water W in the heat transfer pipe 6 continues to evaporate due to residual heat in the fluidized bed boiler 2.

【0013】一方、ガスタービン18の停止と共にコン
プレッサ24も停止し、コンプレッサ出口弁25も閉じ
られるためにガス側の圧力が上昇することはないが、復
旧操作に入るためには系内のガス圧力を逃さなければな
らない。
On the other hand, the compressor 24 also stops when the gas turbine 18 stops, and the compressor outlet valve 25 is also closed, so that the pressure on the gas side does not increase. Must be missed.

【0014】ところが、図6に示す様に、排ガス煙道1
5に圧力放出用のガス圧力逃し弁27が設けられている
が、このガス圧力逃し弁27は従来の蒸気安全弁28と
同じ様にガス圧力が上昇し上限設定値を超えると開き、
系内のガス圧力が下がって下限設定値以下になると自動
的に閉るON−OFF弁であった。
However, as shown in FIG.
5 is provided with a gas pressure relief valve 27 for releasing pressure. This gas pressure relief valve 27 opens when the gas pressure rises and exceeds the upper limit set value, similarly to the conventional steam safety valve 28,
The ON-OFF valve automatically closes when the gas pressure in the system drops below the lower limit set value.

【0015】この間伝熱管6は850℃前後の高温下に
さらされているため、伝熱管6のメタル保護のために非
常用補給水ポンプ30を起動し、メタル温度が設計温度
を越えないよう補給水タンク29から補給水管31を経
て補給水による冷却操作を行なうと同時に、流動層4内
の高温の流動媒体をガス抜き出し弁33を開いて流動媒
体タンク32への緊急抜き出し操作に入る。
During this time, since the heat transfer tube 6 is exposed to a high temperature of about 850 ° C., the emergency make-up water pump 30 is started to protect the metal of the heat transfer tube 6 and replenishment is performed so that the metal temperature does not exceed the design temperature. At the same time as performing the cooling operation using the make-up water from the water tank 29 through the make-up water pipe 31, the high-temperature fluid medium in the fluidized bed 4 is opened by opening the gas extracting valve 33 and the emergency extracting operation into the fluid medium tank 32 is started.

【0016】[0016]

【発明が解決しようとする課題】従来技術の安全装置で
あるガス圧力逃し弁27がON−OFF弁であるため
に、流動層内のガス流速を適正な範囲に制御できない欠
点があった。
Since the gas pressure relief valve 27, which is a safety device of the prior art, is an ON-OFF valve, there is a disadvantage that the gas flow rate in the fluidized bed cannot be controlled within an appropriate range.

【0017】つまり、ガス流速が過大になると流動層内
の流動媒体が飛散、消失して迅速な再起動ができない。
That is, when the gas flow velocity becomes excessive, the fluid medium in the fluidized bed scatters and disappears, and rapid restart cannot be performed.

【0018】また、伝熱管6の伝熱系数が増加するため
伝熱管6を冷却するための補給水設備が膨大な容量とな
る。
Further, since the number of heat transfer systems of the heat transfer tubes 6 increases, the capacity of a makeup water facility for cooling the heat transfer tubes 6 becomes enormous.

【0019】逆にガス流速が流動化開始速度以下になる
と、流動媒体の流動化が停止し、流動層4の残炭がおき
燃焼することによって層内温度が上昇して灰が溶融す
る。
Conversely, when the gas flow rate becomes equal to or lower than the fluidization start speed, fluidization of the fluidized medium is stopped, and the residual coal in the fluidized bed 4 is burned to increase the temperature in the bed and melt the ash.

【0020】また、流動媒体が安息角のために円滑に抜
き出せない。
Further, the fluid medium cannot be removed smoothly due to the angle of repose.

【0021】本発明はかかる従来技術の欠点を解消しよ
うとするもので、その目的とするところは、プラント全
停電、ガスタービンのトリップ等の緊急停止時であって
も流動層内のガス流速を適正に制御することができ、し
かも、流動媒体を抜き出すことができる加圧流動層ボイ
ラの安全装置を提供するにある。
The present invention is intended to solve the above-mentioned drawbacks of the prior art, and aims at reducing the gas flow rate in the fluidized bed even during an emergency stop such as a total power failure of a plant or a gas turbine trip. An object of the present invention is to provide a safety device for a pressurized fluidized-bed boiler that can be appropriately controlled and can extract a fluid medium.

【0022】[0022]

【課題を解決するための手段】本発明は前述の目的を達
成するために、流動層ボイラに流動層内温度を検出する
流動層内温度検出器、炉内圧力を検出する炉内圧力検出
器と、排ガス煙道に排ガス流量を検出する排ガス温度検
出器と、これらの検出信号からガス圧力逃し弁の開、閉
信号を演算する演算器を設け、緊急停止時には流動層内
のガス流速を流動化開始速度の1〜3倍の範囲で運転さ
れるようにガス圧力逃し弁を開、閉するように制御する
ものである。
SUMMARY OF THE INVENTION In order to achieve the above-mentioned object, the present invention provides a fluidized-bed boiler, a fluidized-bed temperature detector for detecting a fluidized-bed temperature, and a furnace pressure detector for detecting a furnace pressure. And an exhaust gas temperature detector that detects the flow rate of the exhaust gas in the exhaust gas flue, and a calculator that calculates the opening and closing signals of the gas pressure relief valve based on these detection signals. The gas pressure relief valve is controlled to be opened and closed so that the gas pressure relief valve is operated in a range of 1 to 3 times the gasification start speed.

【0023】[0023]

【作用】緊急停止時であっても流動層内のガス流速が流
動化開始速度の1〜3倍の範囲になるようにガス圧力逃
し弁によって制御されるので、流動媒体の飛散、消失を
させることがなくなり、流動媒体を円滑に抜き出すこと
ができる。
The gas pressure in the fluidized bed is controlled by the gas pressure relief valve so that the gas flow rate in the fluidized bed is in the range of 1 to 3 times the fluidization start speed even during an emergency stop, so that the fluidized medium is scattered and disappears. And the fluid medium can be smoothly extracted.

【0024】[0024]

【実施例】以下、本発明の実施例を図面を用いて説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

【0025】図1は本発明の実施例に係る加圧流動層ボ
イラの概略構成図、図2は図1の他の実施例を示す加圧
流動層ボイラの概略構成図、図3は縦軸に重量割合、横
軸に流動媒体の粒径を示した特性曲線図、図4は縦軸に
流動化開始速度比、横軸に流動媒体の粒径を示した特性
曲線図、図5は縦軸に弁開度、火炉圧力、空塔速度を示
し、横軸に時間を示した本発明の実施例に係る特性曲線
図、図7は縦軸に弁開度、火炉圧力、空塔速度を示し、
横軸に時間を示した従来技術の特性曲線図である。
FIG. 1 is a schematic configuration diagram of a pressurized fluidized bed boiler according to an embodiment of the present invention, FIG. 2 is a schematic configuration diagram of a pressurized fluidized bed boiler showing another embodiment of FIG. 1, and FIG. Is a characteristic curve diagram showing the weight ratio, the horizontal axis shows the particle size of the fluid medium, FIG. 4 is a characteristic curve diagram showing the fluidization start speed ratio on the vertical axis, the particle size of the fluid medium on the horizontal axis, and FIG. The axis represents the valve opening, the furnace pressure, and the superficial velocity, and the horizontal axis represents the time according to the embodiment of the present invention, in which the vertical axis represents the valve opening, the furnace pressure, and the superficial velocity. Show,
FIG. 5 is a characteristic curve diagram of the related art in which time is shown on the horizontal axis.

【0026】図1から図2において、符号1から符号3
5までは従来のものと同一のものを示す。
In FIGS. 1 and 2, reference numerals 1 to 3
Up to 5 are the same as conventional ones.

【0027】36は流動層4の温度を検出する流動層内
温度検出器、37は流動層内温度検出器36で検出され
た流動層内温度検出信号、38は流動層4の圧力を検出
する炉内圧力検出器、39は炉内圧力検出器38によっ
て検出された炉内圧力検出信号、40は排ガス煙道15
に設けた排ガス流量を検出する排ガス流量検出器、41
は排ガス流量検出器40によって検出される排ガス流量
検出信号、42は流動層内温度検出信号37、炉内圧力
検出信号39および排ガス流量検出信号41からガス圧
力逃し弁27の開、閉信号43を演算する演算器であ
る。
Reference numeral 36 denotes a fluidized bed temperature detector for detecting the temperature of the fluidized bed 4, 37 denotes a fluidized bed temperature detection signal detected by the fluidized bed temperature detector 36, and 38 detects the pressure of the fluidized bed 4. A furnace pressure detector 39 is a furnace pressure detection signal detected by the furnace pressure detector 38, and 40 is an exhaust gas flue 15
Exhaust gas flow rate detector for detecting the exhaust gas flow rate provided in
Is an exhaust gas flow rate detection signal detected by the exhaust gas flow rate detector 40; 42 is an open / close signal 43 of the gas pressure relief valve 27 from the fluidized bed temperature detection signal 37, the furnace pressure detection signal 39 and the exhaust gas flow rate detection signal 41. This is a computing unit that performs computation.

【0028】この様な構造において、緊急停止時には流
動層内温度検出器36、炉内圧力検出器38、排ガス流
量検出器40からの各信号37,39,41は演算器4
2へ送られる。そしてこれらの各信号37,39,41
は演算器42で層内ガス流速が演算され流動層4内のガ
ス流速を流動化開始速度の1〜3倍の範囲でガス圧力逃
しが行なわれるようガス圧力逃し弁27の開度が演算器
42からの開、閉信号43で制御される。
In such a structure, at the time of emergency stop, signals 37, 39 and 41 from the fluidized bed temperature detector 36, the furnace pressure detector 38 and the exhaust gas flow rate detector 40 are used by the arithmetic unit 4
Sent to 2. And these signals 37, 39, 41
The arithmetic unit 42 calculates the gas flow rate in the bed, and adjusts the opening degree of the gas pressure relief valve 27 so that the gas flow rate in the fluidized bed 4 is released in a range of 1 to 3 times the fluidization start speed. It is controlled by an open / close signal 43 from the controller 42.

【0029】以下、図3および図4を用いて流動化開始
速度の1〜3倍の範囲について説明する。
Hereinafter, the range of 1 to 3 times the fluidization start speed will be described with reference to FIGS.

【0030】図3は、流動層内媒体粒子の粒径と重量割
合及び図4は粒径と流動化開始速度比の関係を示したも
のである。尚、ここで流動化開始速度比とは、粒径によ
って流動化開始速度が異なるので、各粒径の流動化開始
速度(Umf)を平均粒径に対する流動化開始速度に対す
る比率で表したものである。
FIG. 3 shows the relationship between the particle size and the weight ratio of the medium particles in the fluidized bed, and FIG. 4 shows the relationship between the particle size and the fluidization start speed ratio. Here, the fluidization start speed ratio is a ratio of the fluidization start speed (U mf ) of each particle size to the fluidization start speed with respect to the average particle size because the fluidization start speed varies depending on the particle size. It is.

【0031】流動層内の流動媒体の粒径分布特性は供給
する石炭灰及び石炭石の硬さによって異なり、石炭灰、
石灰石の比較的硬いものほど、勾配の立った粒径分布特
性を示す。石炭灰、石灰石の硬さによる粒径分布特性の
バラ付きは、図3のハッチングで示す範囲になることが
これまでの経験から分かっている。
The particle size distribution characteristics of the fluidized medium in the fluidized bed depend on the hardness of the supplied coal ash and coal ash,
The relatively hard limestone shows a gradient particle size distribution characteristic. Experience has shown that the variation in particle size distribution characteristics due to the hardness of coal ash and limestone falls within the range indicated by hatching in FIG.

【0032】この粒径分布の違いを考慮すると、Umf
当の流速で運転することにより、平均粒径以下の流動媒
体粒子は流動化できる(系外へ媒体粒子の抜き出しが可
能)が、全体を流動化し抜き出しを行なおうとした場合
には、図4に示すように3×Umf程度のガス流速で運転
することによって可能となる。
Considering this difference in the particle size distribution, by operating at a flow rate equivalent to U mf , the fluidizing medium particles having an average particle size or less can be fluidized (the medium particles can be extracted out of the system). When fluidization is to be performed and extraction is to be performed, this can be achieved by operating at a gas flow rate of about 3 × U mf as shown in FIG.

【0033】以下、図5および図7を用いて弁開度、火
炉内圧力および空塔速度について、従来技術と本発明の
実施例を比較して説明する。
Hereinafter, the valve opening, the furnace pressure and the superficial velocity will be described in comparison with the prior art and the embodiment of the present invention with reference to FIG. 5 and FIG.

【0034】図7は従来技術によるガス圧力逃し弁を用
いて、プラント緊急停止後の加力容器系内の減圧操作を
行なった場合の停止特性を示し、図5は本発明の実施例
に係るガス圧力逃し弁を用いた場合の停止特性を示す。
FIG. 7 shows a stop characteristic in a case where a pressure reducing operation in a pressure vessel system after an emergency stop of a plant is performed using a gas pressure relief valve according to the prior art, and FIG. 5 shows an embodiment of the present invention. 3 shows a stop characteristic when a gas pressure relief valve is used.

【0035】従来技術では、図7に示すとおり、ガス圧
力逃し弁はON−OFF操作であるため、ガス圧力逃し
弁を開いた操作直後の火炉圧力が高いときは、ガス圧力
逃し弁の吐出ガス量も過大となり、この時の流動層内の
空塔速度は粒子の飛散速度(Ut )以上の運転となる。
そのため、層内媒体が飛散、消失する問題があった。ま
た、時間経過とともに火炉圧力が減少すると、ガス圧力
逃し弁からの吐出ガス量が減少するので最後には流動化
開始速度(Umf)以下になり、層内媒体の抜出し不能と
なるといった問題があった。
In the prior art, as shown in FIG. 7, since the gas pressure relief valve is an ON-OFF operation, when the furnace pressure is high immediately after the operation of opening the gas pressure relief valve, the gas discharged from the gas pressure relief valve is discharged. The amount is also excessive, and the superficial velocity in the fluidized bed at this time becomes an operation higher than the particle scattering velocity (U t ).
Therefore, there was a problem that the medium in the layer was scattered and disappeared. Further, when the furnace pressure decreases with the passage of time, the amount of gas discharged from the gas pressure relief valve decreases, so that the fluidization speed finally becomes lower than the fluidization start speed (U mf ). there were.

【0036】しかしながら、本発明の実施例によれば、
図5に示すとおり、ガス圧力逃し弁の開度調整により空
塔速度が常に適正な範囲に保たれるので、従来技術の問
題は解決できる。
However, according to the embodiment of the present invention,
As shown in FIG. 5, since the superficial velocity is always kept in an appropriate range by adjusting the opening of the gas pressure relief valve, the problem of the prior art can be solved.

【0037】図5は、層内媒体の粒径の分布幅が少ない
場合の運転の例を示したものであり、ガス圧力逃し弁
は、空塔速度がUmf一定になるように制御され層内媒体
の粒度分布の幅が大きい場合は、円滑に層内媒体を抜き
出すために、空塔速度は3×Umf程度まで高めた運転を
する必要がある。
FIG. 5 shows an example of the operation in the case where the distribution width of the particle size of the medium in the layer is small. The gas pressure relief valve is controlled so that the superficial velocity becomes constant Umf. When the width of the particle size distribution of the inner medium is large, it is necessary to increase the superficial velocity to about 3 × U mf in order to smoothly extract the inner medium.

【0038】図2は図1の他の実施例を示す。FIG. 2 shows another embodiment of FIG.

【0039】本実施例では、演算器42の開、閉信号4
3でガス圧力逃し弁27の開度を制御するのではなく、
容量の異なるガス圧力逃し弁27を複数個設置し、それ
らの容量の異なるガス圧力逃し弁27の開閉操作によっ
て層内ガス流速をUmf〜3×Umfの範囲に制御するもの
である。
In this embodiment, the open / close signal 4
Rather than controlling the opening of the gas pressure relief valve 27 in step 3,
A plurality of gas pressure relief valves 27 having different capacities are provided, and the gas flow rate in the formation is controlled in the range of U mf to 3 × U mf by opening and closing the gas pressure relief valves 27 having different capacities.

【0040】この実施例の効果は、ガス圧力逃し弁は開
閉動作のみであるため、ガス圧力逃し弁の信頼性が増
す。
The effect of this embodiment is that the reliability of the gas pressure relief valve increases because the gas pressure relief valve is only an open / close operation.

【0041】[0041]

【発明の効果】本発明によれば、緊急停止時であっても
流動層内のガス流速を適正な範囲に制御することがで
き、しかも流動媒体を抜き出すことができる。
According to the present invention, the gas flow velocity in the fluidized bed can be controlled to an appropriate range even during an emergency stop, and the fluid medium can be extracted.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例に係る加圧流動層ボイラの概略
構成図である。
FIG. 1 is a schematic configuration diagram of a pressurized fluidized bed boiler according to an embodiment of the present invention.

【図2】図1の他の実施例に係る加圧流動層ボイラの概
略構成図である。
FIG. 2 is a schematic configuration diagram of a pressurized fluidized-bed boiler according to another embodiment of FIG.

【図3】縦軸に重量割合、横軸に流動媒体の粒径を示し
た特性曲線図である。
FIG. 3 is a characteristic curve diagram showing a weight ratio on a vertical axis and a particle diameter of a fluid medium on a horizontal axis.

【図4】縦軸に流動化開始速度比、横軸に流動媒体の粒
径を示した特性曲線図である。
FIG. 4 is a characteristic curve diagram showing the fluidization start speed ratio on the vertical axis and the particle size of the fluid medium on the horizontal axis.

【図5】縦軸に弁開度、火炉圧力および空塔速度、横軸
に時間を示した実施例に係る特性曲線図である。
FIG. 5 is a characteristic curve diagram according to the embodiment, in which the vertical axis indicates valve opening, furnace pressure and superficial velocity, and the horizontal axis indicates time.

【図6】従来技術の加圧流動層ボイラの概略構成図であ
る。
FIG. 6 is a schematic configuration diagram of a conventional pressurized fluidized bed boiler.

【図7】縦軸に弁開度、火炉圧力および空塔速度、横軸
に時間を示した従来技術の特性曲線図である。
FIG. 7 is a characteristic curve diagram of the prior art, in which the vertical axis represents valve opening, furnace pressure and superficial velocity, and the horizontal axis represents time.

【符号の説明】[Explanation of symbols]

1 加圧容器 2 流動層ボイラ 4 流動層 6 伝熱管 15 排ガス煙道 27 ガス圧力逃し弁 36 流動層内温度検出器 37 流動層内温度検出信号 38 炉内圧力検出器 39 炉内圧力検出信号 40 排ガス流量検出器 41 排ガス流量検出信号 42 演算器 43 開、閉信号 DESCRIPTION OF SYMBOLS 1 Pressurized container 2 Fluidized bed boiler 4 Fluidized bed 6 Heat transfer tube 15 Exhaust gas flue 27 Gas pressure relief valve 36 Fluidized bed temperature detector 37 Fluidized bed temperature detecting signal 38 Furnace pressure detector 39 Furnace pressure detecting signal 40 Exhaust gas flow rate detector 41 Exhaust gas flow rate detection signal 42 Computing unit 43 Open / close signal

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山本 恭功 広島県呉市宝町3番36号 バブコツク日 立株式会社 呉工場内 (56)参考文献 特開 平1−237325(JP,A) (58)調査した分野(Int.Cl.6,DB名) F22B 1/02 F23C 11/02 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Yasuyuki Yamamoto 3-36 Takara-cho, Kure City, Hiroshima Pref. ) Surveyed field (Int.Cl. 6 , DB name) F22B 1/02 F23C 11/02

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 流動層内に伝熱管を配置した流動層ボイ
ラを加圧容器内に収納し、加圧下で運転する流動層ボイ
ラの排ガス煙道にガス圧力逃し弁を設け、流動層ボイラ
内のガス圧力を逃すものにおいて、 前記流動層ボイラに流動層内温度を検出する流動層内温
度検出器、炉内圧力を検出する炉内圧力検出器と、排ガ
ス煙道に排ガス流量を検出する排ガス流量検出器と、こ
れらの検出信号からガス圧力逃し弁の開、閉信号を演算
する演算器を設け、緊急停止時には流動層内のガス流速
を流動化開始速度1〜3倍の範囲で運転されるようにガ
ス圧力逃し弁を開、閉するように制御することを特徴と
する加圧流動層ボイラの安全装置。
1. A fluidized bed boiler in which a heat transfer tube is disposed in a fluidized bed is housed in a pressurized container, and a gas pressure relief valve is provided in an exhaust gas flue of the fluidized bed boiler operated under pressure. In the fluidized-bed boiler, the fluidized-bed boiler detects the temperature in the fluidized bed, the pressure in the furnace detects the pressure in the furnace, and the exhaust gas detects the flow rate of the exhaust gas in the exhaust gas flue. A flow rate detector and a calculator for calculating the opening and closing signals of the gas pressure relief valve from these detection signals are provided. During an emergency stop, the gas flow rate in the fluidized bed is operated at a fluidization start speed of 1 to 3 times. A safety device for a pressurized fluidized-bed boiler, characterized in that the gas pressure relief valve is controlled so as to open and close.
JP3290390A 1991-10-11 1991-10-11 Safety device for pressurized fluidized bed boiler Expired - Fee Related JP2995693B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3290390A JP2995693B2 (en) 1991-10-11 1991-10-11 Safety device for pressurized fluidized bed boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3290390A JP2995693B2 (en) 1991-10-11 1991-10-11 Safety device for pressurized fluidized bed boiler

Publications (2)

Publication Number Publication Date
JPH0599401A JPH0599401A (en) 1993-04-20
JP2995693B2 true JP2995693B2 (en) 1999-12-27

Family

ID=17755395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3290390A Expired - Fee Related JP2995693B2 (en) 1991-10-11 1991-10-11 Safety device for pressurized fluidized bed boiler

Country Status (1)

Country Link
JP (1) JP2995693B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6712534B2 (en) * 2016-11-04 2020-06-24 住友重機械工業株式会社 Boiler system

Also Published As

Publication number Publication date
JPH0599401A (en) 1993-04-20

Similar Documents

Publication Publication Date Title
CA2097886A1 (en) Pressurized internal circulating fluidized-bed boiler
PL179305B1 (en) Method of and apparatus for controlling temperature of a reaction bed in reactors with circulating fluidised beds
CN101398167A (en) Black plant steam furnace injection
JP2995693B2 (en) Safety device for pressurized fluidized bed boiler
EP0234265B1 (en) A method of controlling a pfbc power plant and pfbc power plant for carrying out the method
US5375409A (en) Pressurized fluidized bed combined gas turbine and steam turbine power plant with steam injection
CN108350369B (en) Gasification device, control device, gasification combined power generation facility, and control method
JPH0126397B2 (en)
JP3219294B2 (en) Fluidized bed boiler
JPH09503576A (en) Pressurized fluidized bed reactor and its operating method
JPH0674419A (en) Pressurized fluidized bed boiler
JP3794074B2 (en) Steam temperature control method and apparatus in pressurized fluidized bed boiler
JP3322503B2 (en) Fluidized bed height control device
JPS6337281B2 (en)
JP2675704B2 (en) Pressurized fluidized bed boiler
JP2928678B2 (en) Pressurized fluidized bed plant and its operation method
JP2902625B1 (en) Fluid bed furnace heat recovery method and apparatus
JP2659499B2 (en) Pressurized fluidized bed boiler power plant
JP2560005Y2 (en) Pressurized fluidized bed boiler
JP2634358B2 (en) Pressurized fluidized bed boiler
US9989244B2 (en) Furnace cooling by steam and air injection
JPH06281103A (en) Emergency water supplying device for fluidized bed type boiler
WO2018083889A1 (en) Boiler system
JPH06272816A (en) Pressurized fluidized bed type combustion furnace
JPH04350401A (en) Fluidized bed boiler and its operating method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071029

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081029

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees