JP2990871B2 - Optical equipment for microscope - Google Patents

Optical equipment for microscope

Info

Publication number
JP2990871B2
JP2990871B2 JP3185904A JP18590491A JP2990871B2 JP 2990871 B2 JP2990871 B2 JP 2990871B2 JP 3185904 A JP3185904 A JP 3185904A JP 18590491 A JP18590491 A JP 18590491A JP 2990871 B2 JP2990871 B2 JP 2990871B2
Authority
JP
Japan
Prior art keywords
optical system
optical
magnification
image
field lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3185904A
Other languages
Japanese (ja)
Other versions
JPH0511191A (en
Inventor
由美子 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP3185904A priority Critical patent/JP2990871B2/en
Publication of JPH0511191A publication Critical patent/JPH0511191A/en
Application granted granted Critical
Publication of JP2990871B2 publication Critical patent/JP2990871B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、顕微鏡の対物光学系に
よる空間像を、検出面へリレーしてTVカメラ等で撮影
する際に用いる顕微鏡用光学装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical device for a microscope which is used when a space image by an objective optical system of a microscope is relayed to a detection surface and photographed by a TV camera or the like.

【0002】[0002]

【従来の技術】顕微鏡による被検体の像をテレビカメラ
(TVカメラ)等で観察される場合、対物光学系による
像を直接的にTVカメラ等の検出面に結像させる手法
と、対物光学系による像をリレー光学系を介してTVカ
メラ等の検出面に再結像させる手法とがある。後者の場
合におけるリレー光学系は、TVの特性上、テレセント
リックな光学系が要求される。
2. Description of the Related Art When an image of a subject by a microscope is observed by a television camera (TV camera) or the like, a method of directly forming an image by an objective optical system on a detection surface of the TV camera or the like, There is a method of re-imaging an image by a relay optical system on a detection surface of a TV camera or the like via a relay optical system. In the latter case, the relay optical system requires a telecentric optical system due to TV characteristics.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、対物光
学系の射出瞳は、対物光学系の倍率の変更に伴い変動す
る。すなわち、対物光学系の対物レンズの交換等による
倍率の変更、あるいは対物光学系内で互いに異なる焦点
距離のレンズが交換可能に設けられた中間変倍系によ
り、対物光学系の射出瞳は変動する。これによってリレ
ー系の瞳位置も変動してしまいテレセントリック条件が
保たれない。このような瞳位置の変動量はリレー光学系
の倍率の2乗に逆比例する。
However, the exit pupil of the objective optical system changes with a change in the magnification of the objective optical system. That is, the exit pupil of the objective optical system fluctuates due to a change in magnification due to replacement of the objective lens of the objective optical system or an intermediate magnification system in which lenses having different focal lengths are interchangeably provided in the objective optical system. . As a result, the pupil position of the relay system also varies, and the telecentric condition cannot be maintained. Such a variation in the pupil position is inversely proportional to the square of the magnification of the relay optical system.

【0004】また近年、HD(高品位)カメラの開発な
どTVカメラの画質がかなり向上しており、顕微鏡観察
においても、TVカメラの使用頻度が高くなりつつある
なかで高画質及び大画面による広視野像の要求が高まっ
ている。また撮像素子のサイズも小型化の方向にあり、
リレー系の倍率としては縮小の方向にある。
In recent years, the image quality of a TV camera has been considerably improved, for example, with the development of an HD (high-definition) camera. The demand for a visual field image is increasing. In addition, the size of the image sensor is in the direction of miniaturization,
The magnification of the relay system is in the direction of reduction.

【0005】しかしながら、リレー光学系の射出瞳位置
の変動量は、上述の如く、リレー光学系の倍率の2乗に
逆比例するため、あらゆる対物レンズの交換による倍率
変更や中間変倍系の倍率変更にも十分に対応できるよう
な、低倍率のリレー光学系を実現することは困難であっ
た。
However, as described above, the amount of change in the exit pupil position of the relay optical system is inversely proportional to the square of the magnification of the relay optical system. It has been difficult to realize a low-magnification relay optical system that can sufficiently respond to changes.

【0006】そこで本発明では、上記問題を解消し、対
物光学系の倍率を変更させてもリレー光学系の入射瞳位
置を常に一定に保ち、テレセントリック条件が保たれる
高性能な顕微鏡用光学装置を得ることを目的とする。
In view of the above, the present invention solves the above-mentioned problem, and keeps the position of the entrance pupil of the relay optical system constant even when the magnification of the objective optical system is changed, and maintains a telecentric condition. The purpose is to obtain.

【0007】[0007]

【課題を解決するための手段】上記目的達成のために、
請求項1に記載の発明に係る顕微鏡用光学装置では、対
物光学系による空間像を検出面へリレーするテレセント
リックリレー光学系を備えた顕微鏡用光学装置におい
て、前記空間像またはその近傍位置に、対物光学系の倍
率の変更あるいは中間変倍系の倍率の変更に伴う射出瞳
位置の変化に対して前記リレー光学系の入射瞳を同一位
置に保つ光学手段が交換可能に光路内に配置されてい
る。
In order to achieve the above object,
In the optical device for a microscope according to the first aspect of the present invention, in the optical device for a microscope including a telecentric relay optical system that relays an aerial image by an objective optical system to a detection surface, an objective device is provided at the aerial image or a position near the aerial image. Optical means for keeping the entrance pupil of the relay optical system at the same position with respect to a change in the exit pupil position accompanying a change in the magnification of the optical system or a change in the magnification of the intermediate magnification system is exchangeably arranged in the optical path. .

【0008】また、請求項2に記載の発明に係る顕微鏡
用光学装置では、請求項1に記載の顕微鏡用光学装置に
おいて、前記光学手段が、前記対物光学系の射出瞳が前
記空間像の位置から比較的遠い場合の第1の倍率状態で
の光路内へ配置される第1の光学要素と、前記対物光学
系の射出瞳が前記空間像の位置に比較的近い場合の第2
の倍率状態での光路内へ配置される第2の光学要素とを
含み、これら第1と第2の光学要素が相互に交換可能に
光路内に配置されるように構成されている。
According to a second aspect of the present invention, in the optical device for a microscope according to the first aspect, the optical means may be configured such that an exit pupil of the objective optical system is positioned at the position of the spatial image. A first optical element disposed in the optical path at the first magnification when the distance is relatively far from the first optical element, and a second optical element when the exit pupil of the objective optical system is relatively close to the position of the aerial image.
And a second optical element arranged in the optical path at the magnification of the second optical element, and the first and second optical elements are arranged in the optical path so as to be interchangeable with each other.

【0009】また、請求項3に記載の発明に係る顕微鏡
用光学装置では、請求項2に記載の顕微鏡用光学装置に
おいて、前記第1及び第2の光学要素の内、一方が平行
平面板であり、他方が視野レンズであり、前記視野レン
ズの主点間隔をS、前記視野レンズの前側主点から対物
光学系により形成される空間像までの距離をD0 、前記
視野レンズの焦点距離をf,前記平行平面板の厚さを
d,前記平行平面板の屈折率をnとするとき、次式をほ
ぼ満足するよう構成されている。 SーD0 2/(f+D0 )=d(1ー1/n)
According to a third aspect of the present invention, in the optical device for a microscope according to the second aspect, one of the first and second optical elements is a plane-parallel plate. The other is a field lens, the distance between the principal points of the field lens is S, the distance from the front principal point of the field lens to the aerial image formed by the objective optical system is D 0 , and the focal length of the field lens is f, the thickness of the plane-parallel plate is d, and the refractive index of the plane-parallel plate is n. S−D 0 2 / (f + D 0 ) = d (1-1 / n)

【0010】[0010]

【作用】本発明では、対物レンズの交換に伴う倍率の変
更や、対物光学系内の中間変倍系等の倍率の変更に伴う
射出瞳の位置の変化に応じて、対物光学系の空間像また
はその近傍位置に、リレー光学系の入射瞳位置を一定に
するような光学手段を交換可能に光路内に配置するよう
構成されたものであるため、リレー光学系の倍率を変化
させることなく撮像装置側を常にテレセントリックに保
つことができる。
According to the present invention, the spatial image of the objective optical system is changed in accordance with the change in the magnification accompanying the exchange of the objective lens or the change in the position of the exit pupil accompanying the change in the magnification of the intermediate magnification system in the objective optical system. Or, in the vicinity thereof, the optical means for keeping the entrance pupil position of the relay optical system constant can be exchangeably arranged in the optical path, so that the imaging can be performed without changing the magnification of the relay optical system. The device side can always be kept telecentric.

【0011】さらに本発明では、前記光学手段として視
野レンズと光路長補正用の平行平面板とが交換可能に配
置されるよう構成され、視野レンズに応じて平行平面板
を適切な屈折率,厚さに設定することでこのリレー光学
系による像の位置変動を防ぐことができる。
Further, in the present invention, a field lens and a parallel plane plate for correcting an optical path length are interchangeably arranged as the optical means, and the parallel plane plate has an appropriate refractive index and thickness depending on the field lens. With this setting, it is possible to prevent the position of the image from fluctuating due to the relay optical system.

【0012】[0012]

【実施例】以下に、本発明の一実施例に係る顕微鏡用光
学装置を図1を用いて説明する。本実施例の顕微鏡用光
学装置では、対物光学系(図示せず)による空間像I
は図1の光線Lに示される如く、平行平面板2あるいは
視野レンズ3を介してリレー光学系1により再結像さ
れ、この光学系1により像 を撮像装置で撮影させる
ものである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A microscope optical device according to an embodiment of the present invention will be described below with reference to FIG. In the microscope optical device of the present embodiment, the aerial image I 1 by the objective optical system (not shown).
As shown by a ray L in FIG. 1, the image is re-imaged by the relay optical system 1 through the parallel plane plate 2 or the field lens 3, and the image I 2 is photographed by the image pickup apparatus by the optical system 1.

【0013】ここで、対物光学系により形成される空間
像Iの位置あるいはその近傍において、平行平面板2
及び視野レンズは互いに交換可能に設けられており、
リレー光学系1は、像I側(検出面側)がテレセント
リックとなるように構成されている。
[0013] Here, in the position or its vicinity of the aerial image I 1 which is formed by the objective optical system, a plane parallel plate 2
And the field lens 3 are provided interchangeably with each other,
Relay optical system 1, the image I 2 side (detection side) is configured to be telecentric.

【0014】図1において、(a)は対物光学系の射出
瞳位置が空間像I1 の位置から比較的遠い場合の様子を
示す。対物光学系により形成される射出瞳位置を示すと
共にリレー光学系1の入射瞳位置を示す瞳中心位置P1
からの主光線LP は、平行平面板2、リレー光学系1を
介し、再結像された像I2 上に配置された撮像素子(図
示せず)に対して垂直に入射する。なお、撮像素子に達
する主光線は、光軸と平行(テレセントリック)となっ
ているため、リレー光学系1の射出瞳P2 は無限遠の位
置となる。
[0014] In FIG 1 shows (a) shows the case where the exit pupil position of the objective optical system is relatively far from the position of the aerial image I 1 state. A pupil center position P 1 indicating the exit pupil position formed by the objective optical system and indicating the entrance pupil position of the relay optical system 1.
The principal ray L P from the plane-parallel plate 2, via the relay optical system 1 is incident perpendicularly to the re-imaging has been placed on the image I 2 an imaging device (not shown). The main light beam reaches the image pickup device, because are parallel to the optical axis (telecentric), the exit pupil P 2 of the relay optical system 1 becomes infinity position.

【0015】一方、図1の(b)は、対物光学系の射出
瞳位置が空間像I1 の位置から比較的近い場合の様子を
示している。対物光学系の倍率の変更等に伴い変位した
状態での対物光学系の射出瞳の中心位置P1'からの主光
線LP'は、対物光学系により形成される空間像I1 の位
置もしくはそれの近傍に配置された視野レンズ3の屈折
作用により屈折される。
Meanwhile, the (b) is 1, the exit pupil position of the objective optical system is showing a case relatively close to the position of the aerial image I 1. 'Principal ray L P from the' objective center position P 1 of the exit pupil of the optical system in a state of being displaced with the change of magnification of the objective optical system, the position or the aerial image I 1 which is formed by the objective optical system It is refracted by the refraction action of the field lens 3 arranged near it.

【0016】これにより、図1の(a)の場合と実質的
に等しい位置P1にリレー光学系1の入射瞳を位置させ
ている。従って、視野レンズ3を介した主光線は、図1
の(a)と同様にリレー光学系1を介して、再結像され
た像I2 上に配置された撮像素子に対して垂直に入射す
る。よって、対物光学系の射出瞳が変化した際にも、リ
レー光学系1でのテレセントリック性が常に維持され
る。
[0016] Thereby, by positioning the entrance pupil of the relay optical system 1 in the case of (a) substantially equal to the position P 1 FIG. Therefore, the principal ray passing through the field lens 3 is shown in FIG.
Through (a) and likewise the relay optical system 1 is incident perpendicularly to the re-imaging is an imaging element arranged on the image I 2. Therefore, even when the exit pupil of the objective optical system changes, the telecentricity of the relay optical system 1 is always maintained.

【0017】なお、視野レンズ3への切換においても、
リレー光学系の倍率は変化しない。また、視野レンズ3
に応じて平行平面板2の屈析率と厚さとを適切に設定し
ておくことで像 の位置も変動しない。
In switching to the field lens 3,
The magnification of the relay optical system does not change. Also, the field lens 3
Also it does not change the position of the image I 2 by properly setting the屈析index and thickness of the parallel flat plate 2 in accordance with the.

【0018】次に、平行平面板2及び視野レンズ3の配
置により撮像素子等にて検出される像I2 が変動しない
条件について図2,図3をもって説明する。図2は対物
光学系により空間像が形成される位置近傍に視野レンズ
3が配置された状態での結像関係を示す図である。
Next, the conditions under which the image I 2 detected by the image pickup device or the like does not fluctuate due to the arrangement of the parallel plane plate 2 and the field lens 3 will be described with reference to FIGS. FIG. 2 is a diagram showing an image forming relationship in a state where the field lens 3 is arranged near a position where a spatial image is formed by the objective optical system.

【0019】図2に示す如く、視野レンズ3の配置によ
る像面移動は、テレセントリックリレー系1の物点が
空間像11(第1次像面)から△Dだけ移動すること
に起因する。このとき、視野レンズ3の前側主点H0か
ら空間像(視野レンズ3の物点)までの軸上距離を
、視野レンズ3の後側主点Hから視野レンズ3の
像点までの軸上距離をD、視野レンズ3の焦点距離を
fとすると、視野レンズ3において次式の如き結像関係
が成立する。
As shown in FIG. 2, the movement of the image plane due to the arrangement of the field lens 3 is caused by the fact that the object point of the telecentric relay system 1 moves by ΔD 0 from the aerial image 11 (primary image plane). . In this case, the aerial image from the front side principal point H0 of the field lens 3 axial distance D 0 of (the object point field lens 3) until the rear principal point H 1 after the field lens 3 to the image point of the field lens 3 Assuming that the on-axis distance is D 1 and the focal length of the field lens 3 is f, the field lens 3 has the following imaging relationship.

【0020】 1/D1 =1/f+1/D0 ・・・・・・・(1) そして、(1)式を変形すると以下の(2)式となる。 D1 =fD0 /(f+D0 )・・・・・・・(2) また、視野レンズ3の主点間隔をSとすると、図2より
以下の(3)式の関係が成立する。 ΔD0 =−D0 +S+D1 ・・・・・・・・(3) そこで、式(3)を式(2)に代入して変形すると、以
下の(4)式が導入できる。 ΔD0 =S−D0 2/(f+D0 )・・・・・(4)
1 / D 1 = 1 / f + 1 / D 0 (1) Then, when the equation (1) is modified, the following equation (2) is obtained. D 1 = fD 0 / (f + D 0 ) (2) Also, assuming that the interval between the principal points of the field lens 3 is S, the following equation (3) is established from FIG. ΔD 0 = −D 0 + S + D 1 (3) Then, by substituting equation (3) into equation (2) and transforming it, the following equation (4) can be introduced. ΔD 0 = S−D 0 2 / (f + D 0 ) (4)

【0021】一方、図3は対物光学系により空間像I1
が形成される位置近傍に平行平面板2が配置された状態
での結像関係を示す図である。図3に示す如く、平行平
面板2の配置による像面の移動は、テレセントリックリ
レー光学系1の物点が空間像I1 (第1次像面)からΔ
0 だけ移動することに起因する。
FIG. 3 shows an aerial image I 1 by the objective optical system.
FIG. 4 is a diagram showing an image forming relationship in a state where the parallel flat plate 2 is arranged in the vicinity of the position where the image is formed. As shown in FIG. 3, the movement of the image plane due to the arrangement of the plane-parallel plate 2 is such that the object point of the telecentric relay optical system 1 is shifted from the aerial image I 1 (primary image plane) by Δ
Due to the fact that the moves by X 0.

【0022】このとき、平行平面板2の厚さをd、平行
平面板2の屈折率をnとすると、次式(5)の関係が成
立する。 ΔX0 =d(1−1/n)・・・・・・・・(5) 従って、視野レンズ3と平行平面板2との各々の配置に
よる像面移動を同時に補正するためには、(4)式及び
(5)式より、以下の(6)式を満足することが望まし
い。 S−D0 2/(f+D0 )=d(1−1/n)・・・(6)
At this time, if the thickness of the plane-parallel plate 2 is d and the refractive index of the plane-parallel plate 2 is n, the following equation (5) is established. ΔX 0 = d (1-1 / n) (5) Therefore, in order to simultaneously correct the image plane movement due to the arrangement of the field lens 3 and the parallel plane plate 2, From the expressions 4) and (5), it is desirable to satisfy the following expression (6). S−D 0 2 / (f + D 0 ) = d (1-1 / n) (6)

【0023】なお、以上の実施例においては、対物光学
系の射出瞳がこの対物光学系により形成される空間像か
ら比較的遠い場合において平行平面板が配置され、対物
光学系の射出瞳がこの対物光学系により形成される空間
像から比較的近い場合において視野レンズが配置されて
いるが、本発明はこれに限るものではない。即ち、場合
に応じて、対物光学系の射出瞳がこの対物光学系により
形成される空間像から比較的遠い場合において視野レン
ズを配置し、対物光学系の射出瞳がこの対物光学系によ
り形成される空間像から比較的近い場合において平行平
面板を配置しても良い。
In the above embodiment, the plane-parallel plate is arranged when the exit pupil of the objective optical system is relatively far from the aerial image formed by the objective optical system. Although the field lens is arranged in a case relatively close to the aerial image formed by the objective optical system, the present invention is not limited to this. That is, if necessary, the field lens is arranged when the exit pupil of the objective optical system is relatively far from the aerial image formed by the objective optical system, and the exit pupil of the objective optical system is formed by the objective optical system. A parallel plane plate may be arranged when the image is relatively close to the aerial image.

【0024】[0024]

【発明の効果】以上説明したように、本発明では、対物
光学系の射出瞳位置が変化しても、対物光学系の空間像
またはその近傍位置に交換可能に配置された平行平面板
および視野レンズによって、リレー光学系への入射瞳位
置を一定にし、リレー光学系の倍率を変化させないで撮
像装置側を常にテレセントリックに保つことができる。
As described above, according to the present invention, even if the position of the exit pupil of the objective optical system changes, the plane-parallel plate and the field of view which are exchangeably arranged at the aerial image of the objective optical system or at a position near the aerial image. With the lens, the position of the entrance pupil to the relay optical system can be kept constant, and the imaging device side can always be kept telecentric without changing the magnification of the relay optical system.

【0025】また、視野レンズに応じて平行平面板を適
切な屈折率,厚さに設定したことでこのリレー光学系に
よる像の位置変動を防ぐことができる。従って、より低
倍率のリレー光学系が達成でき、より広視野の像が提供
できる。また、空間像の瞳の変動を気にしなくてもすむ
ので、対物レンズや中間変倍などの設計の自由度も向上
するなどの利点がある。
Further, by setting the parallel flat plate to an appropriate refractive index and an appropriate thickness according to the field lens, it is possible to prevent the position of an image from being changed by the relay optical system. Therefore, a lower magnification relay optical system can be achieved, and an image with a wider field of view can be provided. Further, since there is no need to worry about the pupil fluctuation of the aerial image, there is an advantage that the degree of freedom in designing the objective lens, intermediate magnification, and the like is improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例に係る顕微鏡用光学装置の概
略光路図である。
FIG. 1 is a schematic optical path diagram of a microscope optical device according to an embodiment of the present invention.

【図2】図1で示した実施例の光学系に視野レンズを配
置した場合を示す概略光路図である。
FIG. 2 is a schematic optical path diagram showing a case where a field lens is arranged in the optical system of the embodiment shown in FIG.

【図3】図1で示した実施例の光学系に平行平面板を配
置した場合を示す概略光路図である。
FIG. 3 is a schematic optical path diagram showing a case where a parallel plane plate is arranged in the optical system of the embodiment shown in FIG. 1;

【符号の説明】[Explanation of symbols]

1:リレー光学系 2:平行平面板 3:視野レンズ P1 :リレー光学系の入射瞳 P2 :リレー光学系の射出瞳 I1 :対物光学系による空間像 I2 :顕微鏡用光学装置のリレー光学系による像1: the relay optical system 2: parallel flat plate 3: field lens P 1: the relay optical system of the entrance pupil P 2: the exit pupil of the relay optical system I 1: objective optical system space image I 2 by: relay microscope optics Image by optical system

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 対物光学系による空間像を検出面へリレ
ーするテレセントリックリレー光学系を備えた顕微鏡用
光学装置において、 前記空間像またはその近傍位置に、対物光学系の倍率の
変更あるいは中間変倍系の倍率の変更に伴う射出瞳位置
の変化に対して前記リレー光学系の入射瞳を同一位置に
保つ光学手段が交換可能に光路内に配置されるように構
成されていることを特徴とする顕微鏡用光学装置。
1. An optical device for a microscope comprising a telecentric relay optical system for relaying a spatial image by an objective optical system to a detection surface, wherein a magnification of the objective optical system is changed or an intermediate magnification is changed at or near the spatial image. Optical means for keeping the entrance pupil of the relay optical system at the same position with respect to a change in the exit pupil position accompanying a change in the magnification of the system is configured so as to be interchangeably arranged in the optical path. Optical device for microscope.
【請求項2】 前記光学手段が、前記対物光学系の射出
瞳が前記空間像の位置から比較的遠い場合の第1の倍率
状態での光路内へ配置される第1の光学要素と、前記対
物光学系の射出瞳が前記空間像の位置に比較的近い場合
の第2の倍率状態での光路内へ配置される第2の光学要
素とを含み、これら第1と第2の光学要素が相互に交換
可能に光路内に配置されるように構成されていることを
特徴とする請求項1に記載の顕微鏡用光学装置。
A first optical element disposed in an optical path at a first magnification when an exit pupil of the objective optical system is relatively far from a position of the aerial image; A second optical element disposed in an optical path at a second magnification when the exit pupil of the objective optical system is relatively close to the position of the aerial image, wherein the first and second optical elements are The optical device for a microscope according to claim 1, wherein the optical device is configured to be interchangeably arranged in the optical path.
【請求項3】 前記第1及び第2の光学要素の内、一方
が平行平面板であり、他方が視野レンズであり、前記視
野レンズの主点間隔をS、前記視野レンズの前側主点か
ら対物光学系により形成される空間像までの距離を
0、前記視野レンズの焦点距離をf、前記平行平面板
の厚さをd、前記平行平面板の屈折率をnとするとき、
次式をほぼ満足することを特徴とする請求項2に記載の
顕微鏡用光学装置。 S−D0 2/(f+D0)=d(1−1/n)
3. One of the first and second optical elements is a plane-parallel plate, the other is a field lens, and the distance between the principal points of the field lens is S, and the distance from the front principal point of the field lens is When the distance to the aerial image formed by the objective optical system is D 0 , the focal length of the field lens is f, the thickness of the parallel plane plate is d, and the refractive index of the parallel plane plate is n,
The optical device for a microscope according to claim 2, wherein the following expression is substantially satisfied. S−D 0 2 / (f + D 0 ) = d (1-1 / n)
JP3185904A 1991-07-01 1991-07-01 Optical equipment for microscope Expired - Lifetime JP2990871B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3185904A JP2990871B2 (en) 1991-07-01 1991-07-01 Optical equipment for microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3185904A JP2990871B2 (en) 1991-07-01 1991-07-01 Optical equipment for microscope

Publications (2)

Publication Number Publication Date
JPH0511191A JPH0511191A (en) 1993-01-19
JP2990871B2 true JP2990871B2 (en) 1999-12-13

Family

ID=16178921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3185904A Expired - Lifetime JP2990871B2 (en) 1991-07-01 1991-07-01 Optical equipment for microscope

Country Status (1)

Country Link
JP (1) JP2990871B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006088109A1 (en) 2005-02-21 2006-08-24 Olympus Corporation Weak-light specimen imaging unit and weak-light specimen imaging device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7410701B2 (en) * 2019-12-09 2024-01-10 株式会社ミツトヨ Adapter optics and variable focal length optics

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006088109A1 (en) 2005-02-21 2006-08-24 Olympus Corporation Weak-light specimen imaging unit and weak-light specimen imaging device
US7630065B2 (en) 2005-02-21 2009-12-08 Olympus Corporation Low-light specimen image pickup unit and low-light specimen image pickup apparatus
EP2594983A1 (en) 2005-02-21 2013-05-22 Olympus Corporation Low-light specimen image pickup unit and low-light specimen image pickup apparatus

Also Published As

Publication number Publication date
JPH0511191A (en) 1993-01-19

Similar Documents

Publication Publication Date Title
US10359606B2 (en) Optical image capturing system
US10247913B2 (en) Optical image capturing system
US9835831B2 (en) Optical image capturing system
US9958648B2 (en) Optical image capturing system
US10288844B2 (en) Optical image capturing system
US10254512B2 (en) Optical image capturing system
US20170131521A1 (en) Optical image capturing system
US20160356991A1 (en) Optical image capturing system
US10095006B2 (en) Optical image capturing system
US20160377832A1 (en) Optical image capturing system
US9739980B2 (en) Optical image capturing system
US20170254984A1 (en) Optical image capturing system
US11137572B2 (en) Optical image capturing system
US10852508B2 (en) Optical image capturing module
US10852506B2 (en) Optical image capturing system
TW201935065A (en) Optical image capturing system
US20210231918A1 (en) Optical image capturing system
JP2990871B2 (en) Optical equipment for microscope
US5703716A (en) Re-imaging converter lens apparatus and method
US2838601A (en) Optical system
US20210231921A1 (en) Optical image capturing system
US10901186B2 (en) Optical image capturing module
US6272291B2 (en) Focus detecting device
US20210239945A1 (en) Optical image capturing system
JP2506197B2 (en) Focus detection device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990914

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081015

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111015

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111015

Year of fee payment: 12