JP2990249B2 - Wake detection method and wake detection device - Google Patents

Wake detection method and wake detection device

Info

Publication number
JP2990249B2
JP2990249B2 JP9169839A JP16983997A JP2990249B2 JP 2990249 B2 JP2990249 B2 JP 2990249B2 JP 9169839 A JP9169839 A JP 9169839A JP 16983997 A JP16983997 A JP 16983997A JP 2990249 B2 JP2990249 B2 JP 2990249B2
Authority
JP
Japan
Prior art keywords
signal
circuit
wake
level
outputs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP9169839A
Other languages
Japanese (ja)
Other versions
JPH1114751A (en
Inventor
詮 大坪
公 石橋
辰雄 末続
悟弘 黒田
則光 星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BOEICHO GIJUTSU KENKYU HONBUCHO
TOOKIN KK
Mitsubishi Heavy Industries Ltd
Original Assignee
BOEICHO GIJUTSU KENKYU HONBUCHO
TOOKIN KK
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BOEICHO GIJUTSU KENKYU HONBUCHO, TOOKIN KK, Mitsubishi Heavy Industries Ltd filed Critical BOEICHO GIJUTSU KENKYU HONBUCHO
Priority to JP9169839A priority Critical patent/JP2990249B2/en
Publication of JPH1114751A publication Critical patent/JPH1114751A/en
Application granted granted Critical
Publication of JP2990249B2 publication Critical patent/JP2990249B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、水中音響を用いて
水中又は水上の目標航走体の航跡及びその方向を追尾検
知する航跡検知方法及び航跡検知装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wake detection method and a wake detection device for detecting the wake and direction of a target vehicle underwater or on water using underwater acoustics.

【0002】[0002]

【従来の技術】従来、水中や水上での目標航走体を検知
する装置としては、目標航走体に送信音波を発射し、そ
こで反射して戻ったエコー(送信音波の目標航走体から
反射された受信音波)を受信して目標を探知するアクテ
ィブソーナーや、目標航走体の放射雑音を受信して目標
を探知するパッシブソーナー等が知られている。
2. Description of the Related Art Conventionally, as a device for detecting a target vehicle underwater or on water, a transmitted sound wave is emitted to the target vehicle, and an echo reflected therefrom and returned (from the target vehicle of the transmitted sound wave). There are known an active sonar that receives a reflected received sound wave to detect a target, a passive sonar that receives radiation noise of a target marine vehicle to detect a target, and the like.

【0003】又、最近では、このような目標航走体の航
跡を検知する方法として、アクティブソーナーを応用す
ることが検討されている。これは航跡を構成する水中気
泡群に関して、アクティブソーナーにおける送信音波に
対する反射率が高く、検知するために必要なレベルのエ
コーを得ることができるためである。このような用途の
アクティブソーナーは、自走航走体に搭載されると共
に、一般に自走航走体の前方先端部に取り付けられた電
気音響変換器の送受波器で送信音波,エコーの送受を行
ない、前方の航跡を航跡の外側から検知することにな
る。
Recently, application of an active sonar has been studied as a method of detecting the wake of such a target vehicle. This is because the underwater bubbles forming the wake have a high reflectivity to the transmitted sound wave in the active sonar, and an echo of a level necessary for detection can be obtained. Active sonars for such applications are mounted on a self-propelled marine vehicle, and generally transmit and receive transmitted sound waves and echoes using a transducer of an electroacoustic transducer attached to the front end of the self-propelled marine vehicle. The wake is detected from outside the wake.

【0004】因みに、パッシブソーナーの場合では信号
源となる水中気泡群の放射雑音が殆ど無いため、航跡の
検知への応用は困難なものとなっている。
[0004] Incidentally, in the case of a passive sonar, since there is almost no radiated noise of underwater bubbles as a signal source, it is difficult to apply it to the detection of a wake.

【0005】[0005]

【発明が解決しようとする課題】上述したアクティブソ
ーナーを目標航走体の航跡検知に適用した場合、送信音
波の周波数帯域が狭いため、航跡内の大きさが種々異な
った気泡群のエコーを得ようとすると、気泡の共振周波
数が広帯域に及んで不規則に分散していることや、航跡
の時間経過に従って気泡群の水に対する体積比率が低下
すること等の要因により、反射率が低下して十分なエコ
ーが得られないという問題がある。
When the above-mentioned active sonar is applied to the detection of the track of a target vehicle, echoes of bubbles having various sizes in the track are obtained because the frequency band of the transmitted sound wave is narrow. If so, the reflectance decreases due to factors such as the fact that the resonance frequency of the bubbles is irregularly distributed over a wide band, and the volume ratio of bubbles to water decreases with the passage of time. There is a problem that sufficient echo cannot be obtained.

【0006】そこで、送信音波を広帯域化したとして
も、自走航走体であるが故に制限される電源容量からは
十分な送信音波の音圧レベルが得られず、結果として十
分なエコーが得られなくなってしまう。
Therefore, even if the transmission sound wave is widened, a sufficient sound pressure level of the transmission sound wave cannot be obtained from the power supply capacity limited due to the self-propelled body, and as a result, a sufficient echo can be obtained. I will not be able to.

【0007】本発明は、このような問題点を解決すべく
なされたもので、その技術的課題は、広帯域な音源によ
り航跡内の気泡群による航跡情報を効率良く得られる航
跡検知方法及び航跡検知装置を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made to solve such problems, and a technical problem thereof is to provide a wake detection method and a wake detection capable of efficiently obtaining wake information by bubbles in a wake by a broadband sound source. It is to provide a device.

【0008】[0008]

【課題を解決するための手段】本発明によれば、水中又
は水面上で航走して気泡群を航跡として発生する目標航
走体を水中音波を用いて自走航走体により追尾検知する
航跡検知方法において、自走航走体側では、追尾検知時
に自体の放射雑音を受波受信すると共に、気泡群を含ま
ない航跡の外にあっては水中音波の伝搬損失である拡散
損失及び吸収損失に対応する受信レベルを検出し、該気
泡群を含む該航跡の内にあっては該水中音波の伝搬損失
である吸収損失に対応する受信レベルを検出することに
より、該航跡の内における該受信レベルが該航跡の外に
おける該受信レベルに比べて大きく減少することに基づ
いて該自走航走体が該航跡内にあることを検知する航跡
検知方法が得られる。
According to the present invention, a tracking target is detected by a self-propelled vehicle using underwater sound waves for a target vehicle that travels underwater or on the water surface and generates bubbles as a wake. In the track detection method, the self-propelled body receives and receives its own radiated noise at the time of tracking detection, and the diffusion loss and absorption loss, which are the propagation loss of underwater sound waves, outside the track containing no bubbles. And detecting a reception level corresponding to an absorption loss that is a propagation loss of the underwater sound wave in the wake including the bubble group, thereby detecting the reception level in the wake. A wake detection method is provided for detecting that the self-propelled vehicle is within the wake based on the fact that the level is significantly reduced compared to the reception level outside the wake.

【0009】又、本発明によれば、上記航跡検知方法に
おいて、自走航走体が気泡群の概ね連続して連らなるも
のの延在方向に沿って該気泡群を複数回交叉したときの
該交叉毎に得られる放射雑音に関する受信レベルの変化
に基づいて目標航走体の進行方向を検知する航跡検知方
法が得られる。
Further, according to the present invention, in the wake detection method, the self-propelled vehicle may be configured such that when the self-propelled vehicle crosses the air bubble group a plurality of times along the extending direction of the substantially continuous air bubble group. A wake detection method for detecting the traveling direction of the target hull based on the change in the reception level related to the radiation noise obtained at each intersection can be obtained.

【0010】一方、本発明によれば、水中又は水面上で
航走して気泡群を航跡として発生する目標航走体を水中
音波を用いて追尾検知する自走航走体に備えられる航跡
検知装置において、追尾検知時に自体の放射雑音を含む
航跡の内外における気泡群の有無に応じた水中音波を受
波して受信信号に変換する受波器と、受信信号のレベル
に応じて受信処理して受信処理信号を出力する受信器と
を備え、更に、受信器は、受信信号における放射雑音を
増幅整形して雑音整形信号を出力する電圧増幅回路と、
雑音整形信号を帯域濾波して濾波信号を出力する帯域濾
波回路と、濾波信号を検波して検波信号を出力する検波
回路と、検波信号のレベルの変化に応じて平均化した平
均化信号を出力する平均化回路と、平均化信号に応じて
検波信号のレベルの変化を判定するための基準閾値設定
に要する閾値設定信号を出力する閾値設定回路と、検波
信号及び閾値設定信号を比較して該検波信号のレベルの
変化が該閾値設定信号のレベルを超過したものを航跡外
信号として出力する比較回路と、航跡外信号を反転した
航跡内信号を受信処理信号として出力する反転回路とか
ら成る航跡検知装置が得られる。
[0010] On the other hand, according to the present invention, a wake detection provided in a self-propelled marine vehicle that detects a target marine vehicle that generates bubbles as a wake by traversing underwater or on the water surface using underwater sound waves. At the time of tracking detection, the receiver receives underwater sound waves according to the presence or absence of bubbles inside and outside the wake including its own radiation noise and converts it to a received signal, and performs reception processing according to the level of the received signal. Further comprising a receiver for outputting a reception processing signal, the receiver further comprises a voltage amplification circuit for amplifying and shaping radiation noise in the reception signal and outputting a noise shaping signal;
A band-pass filter circuit that band-filters the noise shaping signal and outputs a filtered signal, a detection circuit that detects the filtered signal and outputs a detected signal, and outputs an averaged signal that is averaged according to a change in the level of the detected signal. An averaging circuit, a threshold setting circuit that outputs a threshold setting signal required for setting a reference threshold for determining a change in the level of the detection signal in accordance with the averaged signal, and a comparison between the detection signal and the threshold setting signal. A wake-up circuit comprising: a comparison circuit that outputs a change in the level of a detection signal exceeding the level of the threshold setting signal as an off-track signal; and an inverting circuit that outputs an in-track signal obtained by inverting the off-track signal as a reception processing signal. A sensing device is obtained.

【0011】又、本発明によれば、水中又は水面上で航
走して気泡群を航跡として発生する目標航走体を水中音
波を用いて追尾検知する自走航走体に備えられる航跡検
知装置において、追尾検知時に自体の放射雑音を含む航
跡の内外における気泡群の有無に応じた水中音波を受波
して受信信号に変換する受波器と、受信信号のレベルに
応じて受信処理して受信処理信号を出力する受信器とを
備え、更に、受信器は、受信信号における放射雑音を増
幅整形して雑音整形信号を出力する電圧増幅回路と、雑
音整形信号を帯域濾波して濾波信号を出力する帯域濾波
回路と、濾波信号を検波して検波信号を出力する第1の
検波回路と、検波信号のレベルに応じて動作して該レベ
ルが所定の閾値を超過しているときに航跡外信号を出力
する双安定マルチバイブレータと、航跡外信号を反転し
て航跡内信号を出力する反転回路と、航跡外信号の入力
に応じて増幅切り替え指令信号を切り替え出力する切替
回路と、増幅切り替え指令信号の有無に応じて濾波信号
の低いレベルのものだけを高利得で増幅整形して濾波整
形信号を出力する利得可変増幅回路と、濾波整形信号を
検波して低レベル検波信号を出力する第2の検波回路
と、航跡内信号に関して低いレベルのものだけを低レベ
ル検波信号に基づいて平均化換算して平均化信号を出力
するゲート回路と、航跡内信号に関して低いレベルのも
のだけの繰返し回数を計数して計数信号を出力する計数
回路と、航跡内信号に関して低いレベルのものだけを積
分した結果を示す第1の累積信号を出力する第1の積分
回路と、平均化信号を積分した結果を示す第2の累積信
号を出力する第2の積分回路と、第1の累積信号及び第
2の累積信号を割算した結果を示す割算信号を出力する
割算回路と、計数信号を参照して割算信号から回次毎の
平均レベルを順次記憶すると共に、1回次遅れで読出し
て回次平均レベル信号を出力する回次平均処理回路と、
回次平均レベル信号を参照して割算信号から回次毎に1
回次前の平均レベルとの差を計算した減算信号を受信処
理信号として出力する減算回路とから成る航跡検知装置
が得られる。
According to the present invention, there is provided a wake detection device provided in a self-propelled marine vehicle for tracking and detecting a target marine vehicle which generates bubbles as a wake by traversing underwater or on the water surface using underwater sound waves. At the time of tracking detection, the device receives underwater sound waves according to the presence or absence of bubbles inside and outside the wake including its own radiation noise and converts it to a received signal, and performs reception processing according to the level of the received signal. A voltage amplification circuit for amplifying and shaping radiation noise in the received signal to output a noise shaping signal; and a band-pass filtering the noise shaping signal to obtain a filtered signal. , A first detection circuit that detects the filtered signal and outputs a detection signal, and operates according to the level of the detection signal and performs wake-up when the level exceeds a predetermined threshold. Bistable multi that outputs external signal An inverter that inverts the off-track signal to output an in-track signal, a switching circuit that switches and outputs an amplification switching command signal in response to the input of the out-of-track signal, and filtering in accordance with the presence or absence of the amplification switching command signal A variable gain amplifier circuit for amplifying and shaping only a low-level signal at a high gain to output a filtered shaping signal, a second detecting circuit for detecting the filtered shaping signal and outputting a low-level detected signal, A gate circuit that averages and converts only low-level signals with respect to low-level detection signals and outputs an averaged signal, and outputs a count signal by counting the number of repetitions of low-level signals only for wake signals. Counting circuit, a first integrating circuit for outputting a first accumulated signal indicating a result of integrating only a low level signal with respect to the in-track signal, and a result of integrating the averaged signal. A second integration circuit that outputs a second accumulation signal, a division circuit that outputs a division signal indicating a result of dividing the first accumulation signal and the second accumulation signal, and a counting signal. A sequential averaging processing circuit for sequentially storing the average level for each round from the divided signal, reading out the first-order delay, and outputting a round-average level signal;
1 for each round from the division signal with reference to the round average level signal
A wake detection device including a subtraction circuit that outputs a subtraction signal, which has calculated the difference from the average level before the successive rotation, as a reception processing signal, is obtained.

【0012】更に、本発明によれば、水中又は水面上で
航走して気泡群を航跡として発生する目標航走体を水中
音波を用いて追尾検知する自走航走体に備えられる航跡
検知装置において、追尾検知時に自体の放射雑音を含む
航跡の内外における気泡群の有無に応じた水中音波を受
波して受信信号に変換する受波器と、受信信号のレベル
に応じて受信処理して受信処理信号を出力する受信器と
を備え、更に、受信器は、受信信号における放射雑音を
増幅整形して雑音整形信号を出力する電圧増幅回路と、
雑音整形信号を帯域濾波して濾波信号を出力する帯域濾
波回路と、濾波信号を増幅整形して濾波整形信号を出力
する利得可変増幅回路と、濾波信号をレベル検出してレ
ベル検出信号を出力するレベル検出回路と、レベル検出
信号に応じて利得可変増幅回路における増幅整形を連続
的に制御するための利得制御信号を出力する利得調整電
圧回路と、利得制御信号をデジタル化したデジタル利得
制御信号を利得演算及び計時,回次計数した結果を用い
て濾波整形信号をデジタル化したデジタル濾波整形信号
のレベルを演算処理により補正して得た回次間減算信号
を受信処理信号として出力するデジタル信号処理回路と
から成る航跡検知装置が得られる。
Further, according to the present invention, a wake detection provided in a self-propelled marine vehicle that detects a target marine vehicle that generates bubbles as a wake by traversing underwater or on the water surface using underwater sound waves. At the time of tracking detection, the device receives underwater sound waves according to the presence or absence of bubbles inside and outside the wake including its own radiation noise and converts it to a received signal, and performs reception processing according to the level of the received signal. Further comprising a receiver for outputting a reception processing signal, the receiver further comprises a voltage amplification circuit for amplifying and shaping radiation noise in the reception signal and outputting a noise shaping signal;
A band-pass filter circuit for band-filtering the noise shaping signal and outputting a filtered signal; a variable gain amplifier circuit for amplifying and shaping the filtered signal to output a filtered shaping signal; and detecting the level of the filtered signal and outputting a level detection signal A level detection circuit, a gain adjustment voltage circuit that outputs a gain control signal for continuously controlling amplification shaping in the variable gain amplifier circuit according to the level detection signal, and a digital gain control signal obtained by digitizing the gain control signal. Digital signal processing for outputting as a reception processing signal an inter-round subtraction signal obtained by correcting the level of a digital filtering shaping signal obtained by digitizing a filtering shaping signal using a result of gain calculation, timing, and time counting by an arithmetic processing. A wake detection device comprising a circuit and a circuit is obtained.

【0013】加えて、本発明によれば、上記航跡検知装
置において、デジタル信号処理回路は、演算処理として
デジタル濾波整形信号をフーリエ変換して周波数分析を
行うフーリエ変換演算回路を含む航跡検知装置が得られ
る。
[0013] In addition, according to the present invention, in the wake detection device, the wake detection device includes a Fourier transform operation circuit that performs Fourier transform on the digitally filtered shaping signal and performs frequency analysis as arithmetic processing. can get.

【0014】[0014]

【作用】本発明の航跡検知方法では、自走航走体の放射
雑音を音源として利用するため、非常に広帯域の送信音
波を得ることができ、このために航跡内に存在する大き
さの種々異なった気泡群が示す気泡共振による吸収減衰
を広帯域に及んで得ることができる。気泡を含む水中音
波の減衰係数は気泡の大きさで決まる共振周波数で極大
値を示し、その値は水の単位体積当りの気泡の体積比率
が10-4〜10-5の場合、概ね1〜10[dB/cm]
程度である。即ち、受波器を放射雑音源から約1m程離
せば、水中音波の減衰量として100〜1000[d
B]という大きなレベル差を得ることができるので、放
射雑音の小さくない10dB前後の変動はレベル差検出
に支障を来たすことはなく、気泡群である航跡を容易に
検知することができる。又、気泡の共振による急峻な減
衰特性はその気泡の量を敏感に反映して変化するため、
気泡の生成後に暫時減少する気泡の変化を十分なレベル
差として得ることができるため、航跡の方向を容易に検
出することができる。
According to the wake detection method of the present invention, since the radiation noise of the self-propelled vehicle is used as a sound source, a very wide band transmitted sound wave can be obtained. It is possible to obtain absorption attenuation due to bubble resonance indicated by different bubble groups over a wide band. The attenuation coefficient of the underwater sound wave containing bubbles shows a maximum value at the resonance frequency determined by the size of the bubbles, and the value is approximately 1 to 4 when the volume ratio of bubbles per unit volume of water is 10 -4 to 10 -5 . 10 [dB / cm]
It is about. That is, if the receiver is separated from the radiation noise source by about 1 m, the attenuation of the underwater sound wave is 100 to 1000 [d
B], a fluctuation of about 10 dB, which is not small, does not hinder the detection of the level difference, and the wake as a group of bubbles can be easily detected. In addition, since the steep damping characteristic due to the resonance of the bubble changes sensitively reflecting the amount of the bubble,
Since a change in the air bubbles that temporarily decreases after the generation of the air bubbles can be obtained as a sufficient level difference, the direction of the wake can be easily detected.

【0015】[0015]

【発明の実施の形態】以下に実施例を挙げ、本発明の航
跡検知方法及び航跡検知装置について、図面を参照して
詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a wake detection method and a wake detection device according to the present invention will be described in detail with reference to the drawings.

【0016】最初に、本発明の航跡検知方法の概要を簡
単に説明する。この航跡検知方法は、水中又は水面上で
航走して気泡群を航跡として発生する目標航走体を水中
音波を用いて自走航走体により追尾検知する際、自走航
走体側では、追尾検知時に自体の放射雑音を受波受信す
ると共に、気泡群を含まない航跡の外にあっては水中音
波の伝搬損失である拡散損失及び吸収損失に対応する受
信レベルを検出し、気泡群を含む航跡の内にあっては水
中音波の伝搬損失である吸収損失に対応する受信レベル
を検出することにより、航跡の内における受信レベルが
航跡の外における受信レベルに比べて大きく減少するこ
とに基づいて自走航走体が航跡内にあることを検知する
ものである。但し、ここで目標航走体に関する進行方向
の検知は、自走航走体が気泡群の概ね連続して連らなる
ものの延在方向に沿って気泡群を複数回交叉したときの
交叉毎に得られる放射雑音に関する受信レベルの変化に
基づいて行う。
First, the outline of the wake detection method of the present invention will be briefly described. This wake detection method, when tracking the target trajectory that generates bubbles as a wake by traveling underwater or on the surface of the water using the underwater sound wave, the self-propelled marine vehicle side, At the time of tracking detection, it receives and receives its own radiated noise, and detects the reception level corresponding to the diffusion loss and absorption loss, which are the propagation loss of underwater sound waves, outside the wake that does not contain bubbles, and detects the bubbles. By detecting the reception level corresponding to the absorption loss, which is the propagation loss of the underwater sound wave, within the wake, the reception level inside the wake greatly decreases compared to the reception level outside the wake To detect that the self-propelled body is within the wake. However, the detection of the traveling direction with respect to the target cruising body is performed at each crossing when the self-propelled cruising body crosses the bubble group a plurality of times along the extending direction of the substantially continuous series of the bubble groups. This is performed based on a change in the reception level related to the obtained radiation noise.

【0017】図1は、この航跡検知方法を説明するため
に示した簡易様態図であり、同図(a)は航跡8a外に
おける自走航走体1a側の様態に関するもの,同図
(b)は航跡8a内における自走航走体1a側の様態に
関するものである。
FIG. 1 is a simplified diagram showing the wake detection method, and FIG. 1 (a) shows a state of the self-propelled body 1a outside the wake 8a, and FIG. ) Relates to the state of the self-propelled body 1a in the track 8a.

【0018】図1(a)を参照すれば、自走航走体1a
においては、目標航走体を追尾するためのエンジン等が
放射雑音源5となるため、ここでは自体に装備した受波
器2a,受信器3aによって放射雑音波4を受信しなが
ら航走する。ここで受信される放射雑音は、放射雑音源
5から受波器2aまでの伝搬経路6による距離を水中音
波の伝搬損失(Ao )で減衰した周波数成分のレベルを
有する。航跡のない通常の水中における伝搬損失
(Ao )は、距離に比例して減衰する拡散損失と、距離
と周波数の二乗とに比例して減衰する吸収損失とから成
るが、吸収損失を与える減衰係数は10kHzから10
0kHzの範囲で約0.5[dB/km]から50[d
B/km]程度であり、水中通話器や測深儀等の水中音
響装置はこの範囲及び前後の減衰係数による伝搬損失を
持っている。
Referring to FIG. 1 (a), the self-propelled vehicle 1a
In, an engine or the like for tracking the target cruising body becomes the radiation noise source 5, so that the marine vessel travels while receiving the radiation noise wave 4 by the receivers 2a and 3a provided in itself. The radiation noise received here has a level of a frequency component in which the distance along the propagation path 6 from the radiation noise source 5 to the receiver 2a is attenuated by the propagation loss ( Ao ) of the underwater sound wave. The propagation loss (A o ) in normal water without a wake consists of a diffusion loss that attenuates in proportion to distance, and an absorption loss that attenuates in proportion to the square of distance and frequency. The coefficient is 10 kHz to 10
0.5 [dB / km] to 50 [d] in the range of 0 kHz
B / km], and an underwater acoustic device such as an underwater speech device or sounding bath has a propagation loss due to the attenuation coefficient in this range and before and after.

【0019】このような自走航走体1aが図1(b)に
示されるように、気泡群を含む航跡8a内に入ると、航
跡8内の気泡群による減衰係数の大きな上昇により吸収
損失が増大し、こうした場合の伝搬損失(Ai )は大き
な減衰を示すようになって放射雑音波4を大きく減衰さ
せる。
As shown in FIG. 1B, when such a self-propelled body 1a enters the wake 8a including the bubbles, the absorption loss is increased due to a large increase in the attenuation coefficient of the bubbles in the wake 8. Is increased, and the propagation loss (A i ) in such a case shows a large attenuation, and the radiation noise wave 4 is greatly attenuated.

【0020】この値は上述したように気泡の体積比率が
10-4〜10-5で概ね100〜1000[dB/m]で
あるから、航跡8aのない場合の値に対してデシベル
(dB)で2000倍以上の減衰係数の比になり、これ
による伝搬損失のレベル変化分解能を10dB程度とし
ても気泡の体積比率で10-6〜10-7以下の差異まで検
出できることを示している。
Since this value is approximately 100 to 1000 [dB / m] when the volume ratio of bubbles is 10 -4 to 10 -5 as described above, the value is decibel (dB) with respect to the value without the wake 8a. Thus, the attenuation coefficient ratio becomes 2000 times or more, which indicates that even when the level change resolution of the propagation loss is about 10 dB, a difference of 10 -6 to 10 -7 can be detected in the volume ratio of bubbles.

【0021】一般に、伝搬経路6の距離は短かく、その
距離における拡散損失は吸収損失に比べて十分小さいの
で、航跡8a内での伝搬損失(Ai )は吸収損失,即
ち、減衰係数そのものと見做して良く、伝搬損失
(Ai )のレベル差や固有周波数の損失変化は気泡の体
積比率の変化を示す。
In general, the distance of the propagation path 6 is short, and the diffusion loss at that distance is sufficiently smaller than the absorption loss. Therefore, the propagation loss (A i ) in the wake 8a is the absorption loss, that is, the attenuation coefficient itself. The level difference of the propagation loss (A i ) and the change in the loss of the natural frequency indicate a change in the volume ratio of bubbles.

【0022】従って、図2に示されるように、航跡8b
に対して一地点にある自走航走体1b[伝搬損失
(Ao )]が追尾移動した結果、他の地点での自走航走
体1c[伝搬損失(A1 )]や別の地点での自走航走体
1d[伝搬損失(A2 )]が航跡8bに対して2点で交
叉したとき、放射雑音の受信出力は異なった様相を呈す
るものとなる。
Therefore, as shown in FIG.
The self-propelled vehicle 1b [propagation loss (A o )] at one point is tracked and the self-propelled vehicle 1c [propagation loss (A 1 )] at another point and another point When the self-propelled body 1d [propagation loss (A 2 )] crosses the wake 8b at two points, the reception output of the radiation noise has a different appearance.

【0023】図3は、この航跡検知方法に係る航跡8b
内の周波数(kHz)に対する受信出力OR (dB)を
説明するために示した特性図であり、同図(a)は自走
航走体側が目標航走体から遠い航跡8b内の位置にある
場合(自走航走体1c)に関するもの,(b)は自走航
走体側が目標航走体から近い航跡8b内の位置にある場
合(自走航走体1d)に関するものである。
FIG. 3 shows a wake 8b according to this wake detection method.
FIG. 6 is a characteristic diagram for explaining the reception output O R (dB) with respect to the frequency (kHz) in FIG. (B) relates to a case (self-propelled marine vehicle 1c) and a case (self-propelled marine vehicle 1d) in which the self-propelled marine vehicle side is located within the track 8b close to the target marine vehicle.

【0024】即ち、図3(a)を参照すれば、時間を経
て気泡群の少なくなった他の地点での自走航走体1cに
おける受信出力E1 (V1 ),E1 (V2 )は、航跡8
b外での受信出力E0 (V1 ),E0 (V2 )からの低
下が小さくなっているのに対し、図3(b)を参照すれ
ば、時間を経ないために気泡群が多い別の地点での自走
航走体1dにおける受信出力E2 (V1 ),E
2 (V2 )は、航跡8b外での受信出力E0 (V1 ),
0 (V2 )からの低下が大きくなっている。
That is, referring to FIG. 3A, the reception outputs E 1 (V 1 ) and E 1 (V 2 ) of the self-propelled body 1c at other points where the number of bubbles has decreased over time are shown. ) Is wake 8
3b, the reception outputs E 0 (V 1 ) and E 0 (V 2 ) outside the area b are small. On the other hand, referring to FIG. Received output E 2 (V 1 ), E at self-propelled carrier 1d at many different points
2 (V 2 ) is the reception output E 0 (V 1 ) outside the wake 8b,
The decrease from E 0 (V 2 ) is large.

【0025】この2点間の受信出力E1 (V1 ),E1
(V2 )並びにE2 (V1 ),E2(V2 )を比較する
ことにより、航跡が作られつつある方向,即ち、目標航
走体の航跡8b上での方向を判定できる。
The reception outputs E 1 (V 1 ) and E 1 between these two points
(V 2) and E 2 (V 1), by comparing E 2 a (V 2), the direction that is being track is made, that can determine the direction on the track 8b goal Wataru Hashikarada.

【0026】尚、自走航走体の速度Vが大きくなると放
射雑音が大きくなり、その結果として受信出力OR (d
B)も大きくなって観測可能なレベル範囲が増大するた
め、ここでの航跡検知方法は高速な程、性能が良くなる
という長所がある。
Incidentally, as the speed V of the self-propelled vehicle increases, the radiation noise increases, and as a result, the reception output O R (d
Since B) also increases and the observable level range increases, the wake detection method here has the advantage that the higher the speed, the better the performance.

【0027】図4は、この航跡検知方法を適用した実施
例1に係る航跡検知装置の基本構成を示したブロック図
である。又、図5はその主要部分における信号波形を時
間tに対する電圧Vの関係で示したタイミングチャート
であり、同図(a)は濾波信号に関するもの,同図
(b)は検波信号に関するもの,同図(c)は航跡外信
号に関するもの,同図(d)は航跡内信号に関するもの
である。
FIG. 4 is a block diagram showing a basic configuration of a wake detection device according to the first embodiment to which the wake detection method is applied. FIG. 5 is a timing chart showing the signal waveform in the main part in the relationship of the voltage V with respect to time t. FIG. 5 (a) relates to the filtered signal, FIG. 5 (b) relates to the detected signal, and FIG. FIG. 7C relates to an off-track signal, and FIG. 7D relates to an in-track signal.

【0028】この航跡検知装置は、水中又は水面上で航
走して気泡群を航跡として発生する目標航走体を水中音
波を用いて追尾検知する自走航走体に備えられるもの
で、追尾検知時に自体の放射雑音を含む航跡の内外にお
ける気泡群の有無に応じた水中音波を受波して受信信号
に変換する受波器2bと、受信信号のレベルに応じて受
信処理して受信処理信号を出力する受信器3bとから成
っている。
This wake detection device is provided in a self-propelled marine vehicle that detects the target marine vehicle that travels underwater or on the water surface and generates bubbles as a wake using underwater sound waves. A receiver 2b that receives underwater sound waves according to the presence or absence of air bubbles inside and outside the wake including its own radiation noise at the time of detection and converts the sound waves into a reception signal, and a reception processing according to the level of the reception signal. And a receiver 3b for outputting a signal.

【0029】このうち、受信器3bは、受信信号におけ
る放射雑音を増幅整形して雑音整形信号を出力する電圧
増幅回路11aと、雑音整形信号を帯域濾波して濾波信
号を出力する帯域濾波回路12aと、濾波信号を検波し
て検波信号を出力する検波回路13aと、検波信号のレ
ベルの変化に応じて平均化した平均化信号を出力する平
均化回路14と、平均化信号に応じて検波信号のレベル
の変化を判定するための基準閾値設定に要する閾値設定
信号を出力する閾値設定回路15と、検波信号及び閾値
設定信号を比較して検波信号のレベルの変化が閾値設定
信号のレベルを超過したものを航跡外信号として出力す
る比較回路16と、航跡外信号を反転した航跡内信号を
受信処理信号として出力する反転回路17aとを備えて
いる。
The receiver 3b includes a voltage amplifying circuit 11a for amplifying and shaping radiation noise in a received signal and outputting a noise shaping signal, and a band-pass filtering circuit 12a for band-filtering the noise shaping signal and outputting a filtered signal. A detection circuit 13a for detecting the filtered signal and outputting a detection signal, an averaging circuit 14 for outputting an averaged signal averaged according to a change in the level of the detection signal, and a detection signal according to the averaged signal. A threshold setting circuit 15 that outputs a threshold setting signal required for setting a reference threshold for determining a change in the level of the detection signal and the detection signal and the threshold setting signal are compared, and a change in the level of the detection signal exceeds the level of the threshold setting signal And a reverse circuit 17a for outputting, as a reception processing signal, an in-track signal obtained by inverting the out-of-track signal.

【0030】この航跡検知装置では、受波器2bで受波
した放射雑音の音波を電気信号に変換した受信信号を受
信器3bへ送出し、受信器3bでは航跡内外で変化する
受波器2bからの受信信号を信号処理して受波器2bが
航跡の内にあるか、或いは外にあるかを示す受信処理信
号を出力する。
In this wake detection device, a reception signal obtained by converting a sound wave of radiated noise received by the receiver 2b into an electric signal is transmitted to the receiver 3b, and the receiver 3b changes inside and outside the wake. And outputs a reception processing signal indicating whether the receiver 2b is inside or outside the wake.

【0031】受信器3bに入力された受信信号は、電圧
増幅回路11a及び帯域濾波回路12aで増幅整形,濾
波され、図5(a)に示されるような航跡内外で変化す
る濾波信号となる。
The received signal input to the receiver 3b is amplified and shaped by the voltage amplifier circuit 11a and the bandpass filter circuit 12a, and is filtered to be a filtered signal that changes inside and outside the wake as shown in FIG.

【0032】この濾波信号は検波回路13aを経て図5
(b)に実線で示されるような包絡線の検波信号に変換
されるが、更にこの検波信号からは平均化回路14及び
閾値設定回路15を経て図5(b)に点線で示されよう
な航跡内外での両レベルの中間に位置すると共に、短時
間での変動の少ない基準レベル(ET )の閾値設定信号
が生成される。
This filtered signal passes through a detection circuit 13a,
The signal is converted into an envelope detection signal as shown by a solid line in FIG. 5B, and further from this detection signal through an averaging circuit 14 and a threshold setting circuit 15, as shown by a dotted line in FIG. A threshold value setting signal of a reference level (E T ) which is located between the two levels inside and outside the wake and has little fluctuation in a short time is generated.

【0033】閾値設定回路15には航跡内で検波回路1
3aからの検波信号の出力が低レベルになるため、基準
レベル(ET )の下限値を補償するために閾値下限レベ
ル入力端子19が設けられており、この入力端子19へ
入力される閾値下限レベルは外部から与えられるが、こ
の閾値下限レベルが自走航走体の速度で制御された信号
とすれば一層検知確率の高い信号処理を行うことができ
る。
The threshold setting circuit 15 includes a detection circuit 1 within the wake.
Since the output of the detection signal from 3a becomes low, a threshold lower limit level input terminal 19 is provided to compensate for the lower limit of the reference level (E T ), and the threshold lower limit input to this input terminal 19 is provided. Although the level is given from the outside, if this threshold lower limit level is a signal controlled by the speed of the self-propelled body, signal processing with a higher detection probability can be performed.

【0034】閾値設定回路15からの閾値設定信号及び
検波回路13aからの検波信号は比較回路16に入力さ
れ、比較回路16では閾値設定信号の基準レベル
(ET )を越えた検波信号を図5(c)に示されるよう
な航跡外を示す航跡外信号として出力する。この航跡外
信号は反転回路17aに入力され、ここで反転処理が行
われた結果、図5(d)に示されるような航跡内を示す
航跡内信号に変換され、反転回路17aの航跡内信号出
力端子18aから出力される。
The threshold setting signal from the threshold setting circuit 15 and the detection signal from the detection circuit 13a are input to a comparison circuit 16. The comparison circuit 16 detects the detection signal exceeding the reference level (E T ) of the threshold setting signal in FIG. The signal is output as an off-track signal indicating out-of-track as shown in (c). The out-of-track signal is input to the inversion circuit 17a, where the inversion processing is performed. As a result, the signal is converted into an in-track signal indicating the inside of the track as shown in FIG. Output from the output terminal 18a.

【0035】図6は、上述した航跡検知方法を適用した
実施例2に係る航跡検知装置の基本構成を示したブロッ
ク図である。又、図7はその主要部分における信号波形
を時間tに対する電圧Vの関係で示したタイミングチャ
ートであり、同図(a)は濾波信号に関するもの,同図
(b)は検波信号に関するもの,同図(c)は航跡外信
号に関するもの,同図(d)は航跡内信号に関するも
の,同図(e)は平均化信号に関するもの,同図(f)
は累積信号に関するもの,同図(g)は割算信号に関す
るもの,同図(h)は回次平均レベル信号に関するも
の,同図(i)は減算信号に関するものである。
FIG. 6 is a block diagram showing a basic configuration of a wake detection device according to a second embodiment to which the above-described wake detection method is applied. FIG. 7 is a timing chart showing the signal waveform in the main part in the relationship of the voltage V with respect to time t. FIG. 7 (a) relates to the filtered signal, FIG. 7 (b) relates to the detected signal, and FIG. FIG. 3 (c) relates to an off-track signal, FIG. 4 (d) relates to an in-track signal, FIG. 5 (e) relates to an averaged signal, and FIG.
4 (g) relates to a division signal, FIG. 5 (h) relates to a time-averaged level signal, and FIG. 5 (i) relates to a subtraction signal.

【0036】この航跡検知装置は、図4で説明した実施
例1の装置の場合と同様な受波器2cを有するが、受信
器3cに関してはアナログ系回路構成により航跡交叉2
点間の受信出力差を出すための受信処理を行うようにな
っている。
This wake detecting device has a receiver 2c similar to that of the device of the first embodiment described with reference to FIG. 4, but the receiver 3c has a wake crossing 2 by an analog circuit configuration.
A reception process for obtaining a reception output difference between points is performed.

【0037】即ち、ここでの受信器3cは、受信信号に
おける放射雑音を増幅整形して雑音整形信号を出力する
電圧増幅回路11bと、雑音整形信号を帯域濾波して濾
波信号を出力する帯域濾波回路12bと、濾波信号を検
波して検波信号を出力する第1の検波回路13bと、検
波信号のレベルに応じて動作してレベルが所定の閾値を
超過しているときに航跡外信号を出力する双安定マルチ
バイブレータ20と、航跡外信号を反転して航跡内信号
を出力する反転回路17bと、航跡外信号の入力に応じ
て増幅切り替え指令信号を切り替え出力する切替回路7
と、増幅切り替え指令信号の有無に応じて濾波信号の低
いレベルのものだけを高利得で増幅整形して濾波整形信
号を出力する利得可変増幅回路21aとを備えている。
That is, the receiver 3c here includes a voltage amplifier circuit 11b that amplifies and shapes the radiation noise in the received signal and outputs a noise-shaped signal, and a band-pass filter that band-filters the noise-shaped signal and outputs a filtered signal. A circuit 12b, a first detection circuit 13b for detecting a filtered signal and outputting a detected signal, and operating according to the level of the detected signal to output an off-track signal when the level exceeds a predetermined threshold value A bi-stable multivibrator 20, an inverting circuit 17b for inverting an out-of-track signal and outputting an in-track signal, and a switching circuit 7 for switching and outputting an amplification switching command signal in accordance with the input of the out-of-track signal.
And a variable gain amplifier circuit 21a for amplifying and shaping only a low-level filtered signal at a high gain in accordance with the presence or absence of an amplification switching command signal and outputting a filtered shaped signal.

【0038】又、この受信器3cは、濾波整形信号を検
波して低レベル検波信号を出力する第2の検波回路13
cと、航跡内信号に関して低いレベルのものだけを低レ
ベル検波信号に基づいて平均化換算して平均化信号を出
力するゲート回路22と、航跡内信号に関して低いレベ
ルのものだけの繰返し回数を計数して計数信号を出力す
る計数回路24と、航跡内信号に関して低いレベルのも
のだけを積分した結果を示す第1の累積信号を出力する
第1の積分回路23aと、平均化信号を積分した結果を
示す第2の累積信号を出力する第2の積分回路23b
と、第1の累積信号及び第2の累積信号を割算した結果
を示す割算信号を出力する割算回路25と、計数信号を
参照して割算信号から回次毎の平均レベルを順次記憶す
ると共に、1回次遅れで読出して回次平均レベル信号を
出力する回次平均処理回路と、回次平均レベル信号を参
照して割算信号から回次毎に1回次前の平均レベルとの
差を計算した減算信号を受信処理信号として出力する減
算回路29とを備えている。
The receiver 3c detects a filtered signal and outputs a low-level detection signal to a second detection circuit 13c.
c, a gate circuit 22 for averaging and converting only low-level signals in the wake signal based on the low-level detection signal and outputting an averaged signal, and counting the number of repetitions of only low-level signals in the wake signal Counting circuit 24 for outputting a counting signal, a first integrating circuit 23a for outputting a first accumulated signal indicating a result of integrating only a low level signal with respect to the in-track signal, and a result of integrating the averaged signal Integration circuit 23b that outputs a second accumulation signal indicating
A division circuit 25 for outputting a division signal indicating a result of dividing the first accumulation signal and the second accumulation signal; and an average level for each time from the division signal with reference to the count signal. A time-average processing circuit for storing and reading out the time-average level signal by reading out the time-averaged one-time delay; And a subtraction circuit 29 that outputs a subtraction signal obtained by calculating the difference between the two as a reception processing signal.

【0039】この航跡検知装置では、受波器2cから受
信器3cに入力された受信信号が電圧増幅回路11b及
び帯域濾波回路12bで増幅整形,濾波され、図7
(a)に示されるような航跡内外で変化する濾波信号と
なる。
In this wake detection device, the received signal input from the receiver 2c to the receiver 3c is amplified and shaped by the voltage amplifier circuit 11b and the bandpass filter circuit 12b, and is filtered.
The filtered signal changes inside and outside the wake as shown in FIG.

【0040】この濾波信号は第1の検波回路13bを経
て図7(b)の実線で示されるような検波信号に変換さ
れ、航跡内外の相違による検波回路13bからの検波信
号の出力の有無に応じて双安定マルチバイブレーター2
0を動作させる。これにより、双安定マルチバイブレー
ター20は図7(c)に示されるような航跡外を示す航
跡外信号を出力する。
The filtered signal is converted into a detection signal as shown by a solid line in FIG. 7B through a first detection circuit 13b, and the presence or absence of the output of the detection signal from the detection circuit 13b due to a difference between inside and outside the track is determined. Bistable multivibrator 2 according to
Operate 0. As a result, the bistable multivibrator 20 outputs an off-track signal indicating an off-track as shown in FIG. 7C.

【0041】一方、帯域濾波回路12bから出力される
濾波信号は利得可変増幅回路21aで増幅されるが、利
得可変増幅回路21aは双安定マルチバイブレーター2
0から出力される航跡外信号があるときには切替回路7
から出力される増幅切り替え指令信号を受けて低い増幅
利得となり、航跡外信号が無いときの航跡内を示す航跡
内信号であるときには高い増幅利得となるように濾波信
号を可変増幅整形して濾波整形信号を出力する。こうし
て所定以上のレベルで増幅整形された濾波整形信号は、
第2の検波回路13cで検波されて低レベル検波信号に
変換されてからゲート回路22へ送出される。
On the other hand, the filtered signal output from the band-pass filter circuit 12b is amplified by the variable gain amplifier circuit 21a.
Switching circuit 7 when there is an off-track signal output from 0
Variable amplification and shaping of the filtered signal to obtain a low amplification gain in response to the amplification switching command signal output from the Output a signal. The filtered and shaped signal amplified and shaped at a predetermined level or more in this way
The signal is detected by the second detection circuit 13 c, converted into a low-level detection signal, and transmitted to the gate circuit 22.

【0042】他方、双安定マルチバイブレーター20か
ら出力された航跡外信号は反転回路17bを経て図7
(d)に示されるような航跡内信号に変換され、この航
跡内信号がゲート信号としてゲート回路22へ送出され
る。ゲート回路22では航跡内信号に関して低いレベル
のものだけを低レベル検波信号に基づいて平均化換算し
て図7(e)に示すような航跡内の包絡線の平均化信号
を出力する。
On the other hand, the off-track signal output from the bistable multivibrator 20 passes through the inverting circuit 17b, and
The signal is converted into an in-track signal as shown in (d), and the in-track signal is sent to the gate circuit 22 as a gate signal. The gate circuit 22 averages and converts only the low-level signals of the in-track signal based on the low-level detection signal, and outputs an average signal of the envelope in the track as shown in FIG.

【0043】又、反転回路17bからの航跡内信号は、
第1の積分回路23aに入力されてここで平均化に用い
る時間に変換した第1の累積信号として出力される他、
計数回路24にも入力されてここで交叉回次の繰り返し
回数を計数した計数信号に変換されて出力されたり、或
いは受信器3cに設けられた航跡内信号出力端子18b
から外部へ出力される。
The in-track signal from the inverting circuit 17b is
In addition to being input to the first integration circuit 23a and being output here as a first accumulated signal converted into a time used for averaging,
The signal is also input to the counting circuit 24, where it is converted into a count signal that counts the number of repetitions following the crossover and output, or the in-track signal output terminal 18b provided in the receiver 3c.
Output to the outside.

【0044】ゲート回路22から出力された航跡内の平
均化信号は第2の積分回路23bで積分されて図7
(f)に示すような第2の累積信号として出力され、積
分回路23aから出力された時間を表わす第1の累積信
号と共に割算回路25へ送出される。割算回路25では
第1の累積信号及び第2の累積信号を割算し、図7
(g)に示されるように、その結果として、これらの平
均レベルを表わす割算信号を出力する。
The averaging signal in the track output from the gate circuit 22 is integrated by the second integration circuit 23b, and FIG.
The signal is output as a second accumulated signal as shown in FIG. 9F, and sent to the dividing circuit 25 together with the first accumulated signal indicating the time outputted from the integrating circuit 23a. The division circuit 25 divides the first accumulated signal and the second accumulated signal, and
As a result, as shown in (g), a division signal representing these average levels is output.

【0045】この平均レベルを示す割算信号は減算回路
29及び書込切替回路26へ送出され、書込切替回路2
6では計数回路24からの計数信号が示す回次数が上る
毎に割算信号から回次毎の平均レベルを記憶回路27
a,27bに交互に記憶更新させるように切り替え動作
する。又、読出切替回路28では計数回路24からの計
数信号が示す回次により1回次遅れで記憶回路27a,
27bからそれぞれ記憶された平均レベルのデータを含
む記憶信号を読み出して図7(h)に示されるような回
次平均レベル信号として減算回路29へ送出する。従っ
て、書込切替回路26及び読出切替回路28と共に、記
憶回路27a,27bを合わせた回路構成は、合わせて
計数信号を参照して割算信号から回次毎の平均レベルを
順次記憶すると共に、1回次遅れで読出して回次平均レ
ベル信号を出力する回次平均処理回路として働く。
The division signal indicating the average level is sent to the subtraction circuit 29 and the write switch circuit 26, and the write switch circuit 2
In step 6, each time the number of times indicated by the count signal from the counting circuit 24 increases, the average level of each time from the divided signal is stored in the storage circuit 27.
The switching operation is performed so that the data a and 27b are alternately updated. In the read switching circuit 28, the storage circuits 27a,
A stored signal including the stored average level data is read from 27b and sent to the subtraction circuit 29 as a time-averaged level signal as shown in FIG. Accordingly, the circuit configuration including the storage circuits 27a and 27b together with the write switching circuit 26 and the read switching circuit 28 sequentially stores the average level of each time from the division signal with reference to the counting signal, and It functions as a time-average processing circuit that reads out with a first-order delay and outputs a time-average level signal.

【0046】これにより、減算回路29には記憶回路2
7a,27bを介さないで交叉回次及びその同一時間の
平均レベルを含む割算信号と、記憶回路27a,27b
を介することで1回次遅れとなった回次平均レベル信号
とが入力され、回次平均レベル信号を参照して割算信号
から回次毎に1回次前の平均レベルとの差を計算するこ
とにより、図7(i)に示されるような減算信号を受信
処理信号として航跡方向信号端子30aへ出力する。
尚、この減算信号における二つの平均レベルの差は、目
標航走体に関する航跡内の気泡群における進行方向を示
すものとなる。
Thus, the storage circuit 2 is stored in the subtraction circuit 29.
7a, 27b, without passing through, and a division signal including an average level at the same time, and a storage circuit 27a, 27b.
And the time-averaged level signal, which has been delayed by one time, is input, and the difference from the average signal before the next time is calculated for each time from the divided signal with reference to the time-averaged level signal. By doing so, a subtraction signal as shown in FIG. 7 (i) is output to the wake direction signal terminal 30a as a reception processing signal.
The difference between the two average levels in the subtraction signal indicates the traveling direction of the bubble group in the wake of the target vehicle.

【0047】図8は、上述した実施例2に係るアナログ
系航跡検知装置の要部構成をデジタル系に置換した実施
例3に係る航跡検知装置の基本構成を示したブロック図
である。
FIG. 8 is a block diagram showing a basic configuration of a wake detection device according to a third embodiment in which the main components of the analog wake detection device according to the second embodiment described above are replaced with digital systems.

【0048】即ち、この航跡検知装置は、図6に示した
アナログ系の航跡検知装置における一部の回路構成を共
通して使用し、デジタル信号処理回路33を設けて利得
調整方法及び利得調整の補償方法を相違させたものであ
るが、目的とする航跡交叉2点間の受信出力差を出すた
めの受信処理は同様な機能となっている。
That is, this wake detection device shares part of the circuit configuration of the analog wake detection device shown in FIG. 6 and has a digital signal processing circuit 33 to provide a gain adjustment method and gain adjustment. Although the compensation method is different, the reception processing for obtaining the target reception output difference between the two traverse intersections has the same function.

【0049】具体的に云えば、この航跡検知装置は、実
施例1及び実施例2と同様な受波器2dを有する他、受
信器3dにも各実施例と同様な電圧増幅回路11c,帯
域濾波回路12c,及び利得可変増幅回路21cが備え
られている。
More specifically, this wake detection device has a receiver 2d similar to those of the first and second embodiments, and a voltage amplifier circuit 11c and a band similar to those of the respective embodiments in the receiver 3d. A filtering circuit 12c and a variable gain amplifying circuit 21c are provided.

【0050】この受信器3dの場合、その他にアナログ
系回路構成として、濾波信号をレベル検出してレベル検
出信号を出力するレベル検出回路31と、レベル検出信
号に応じて利得可変増幅回路21bにおける増幅整形を
連続的に制御するための利得制御信号を出力する利得調
整電圧回路32とが備えられている。
In the case of the receiver 3d, as other analog circuit configurations, a level detection circuit 31 that detects a level of a filtered signal and outputs a level detection signal, and an amplification in a variable gain amplification circuit 21b according to the level detection signal. A gain adjustment voltage circuit 32 for outputting a gain control signal for continuously controlling the shaping.

【0051】又、上述したデジタル信号処理回路33
は、利得制御信号をデジタル化したデジタル利得制御信
号を利得演算及び計時,回次計数した結果を用いて濾波
整形信号をデジタル化したデジタル濾波整形信号のレベ
ルを演算処理により補正して得た回次間減算信号を受信
処理信号として出力する。
The digital signal processing circuit 33 described above
Is a digital gain control signal obtained by digitizing the gain control signal, performing a gain calculation, and using a result of time counting and sequential counting to correct the level of the digital filtered shaping signal obtained by digitizing the filtered shaping signal by arithmetic processing. The next-order subtraction signal is output as a reception processing signal.

【0052】このため、デジタル信号処理回路33は、
利得可変増幅回路21bからの濾波整形信号をA/D変
換してデジタル濾波整形信号を出力する第1のA/D変
換回路34aと、利得調整電圧回路32からの利得制御
信号をA/D変換してデジタル利得制御信号を出力する
第2のA/D変換回路34bと、基準クロックパルスを
発生するクロックパルス発生回路35と、基準クロック
パルスに従ってデジタル濾波整形信号を高速フーリエ変
換(FFT)して周波数分析した周波数分析信号を出力
するフーリエ変換(FFT)演算回路36と、基準クロ
ックパルスに従ってデジタル利得制御信号に基づいて利
得演算,計時,回次計数を行って各種の指示信号を発生
する利得演算/計時/回次計数回路37と、利得演算/
計時/回次計数回路37による利得演算の結果に応じた
指示信号を受けてアドレス制御信号を発生するアドレス
制御回路39とを備えている。尚、利得演算/計時/回
次計数回路37の指示信号には航跡内信号も含まれ、こ
の航跡内信号は航跡内信号出力端子18cへ送出され
る。
For this reason, the digital signal processing circuit 33
A / D conversion is performed on a first A / D conversion circuit 34a that performs A / D conversion of a filtered shaping signal from the variable gain amplifier circuit 21b and outputs a digital filtered shaping signal, and an A / D conversion of a gain control signal from the gain adjustment voltage circuit 32. A second A / D conversion circuit 34b for outputting a digital gain control signal, a clock pulse generation circuit 35 for generating a reference clock pulse, and performing a fast Fourier transform (FFT) on the digitally filtered shaping signal according to the reference clock pulse. A Fourier transform (FFT) operation circuit 36 for outputting a frequency analysis signal obtained by frequency analysis, and a gain operation for performing various kinds of instruction signals by performing gain operation, timing, and cyclic counting based on a digital gain control signal according to a reference clock pulse. / Time counting / time counting circuit 37 and gain calculation /
An address control circuit 39 that receives an instruction signal corresponding to the result of the gain calculation by the time counting / time counting circuit 37 and generates an address control signal. Note that the instruction signal of the gain calculation / timekeeping / time counting circuit 37 includes an in-track signal, and this in-track signal is sent to the in-track signal output terminal 18c.

【0053】又、デジタル信号処理回路33は、利得演
算/計時/回次計数回路37による利得演算の結果に応
じた指示信号及びアドレス制御信号を受けて周波数分析
信号のレベルを補正してレベル補正信号を出力するレベ
ル補正書込回路38と、レベル補正信号の補正値を記憶
する記憶回路27cと、利得演算/計時/回次計数回路
37による計時/回次の結果に応じた指示信号及びアド
レス制御信号を参照して補正値を示す記憶信号に従った
回次間減算を行って回次間減算信号を受信処理信号とし
て航跡方向信号端子30bへ出力する読出回次間減算回
路40とを備えている。尚、この回次間減算信号におけ
る二つの平均レベルの差も目標航走体に関する航跡内の
気泡群における進行方向を示すものとなる。
The digital signal processing circuit 33 corrects the level of the frequency analysis signal by receiving an instruction signal and an address control signal corresponding to the result of the gain calculation by the gain calculation / timekeeping / time counting circuit 37. A level correction writing circuit 38 for outputting a signal, a storage circuit 27c for storing a correction value of the level correction signal, and an instruction signal and an address corresponding to a result of timekeeping / times by the gain operation / timekeeping / times counting circuit 37. A read-out successive-time subtraction circuit 40 for performing successive-time subtraction in accordance with a storage signal indicating a correction value with reference to a control signal and outputting the successively-subtracted signal as a reception processing signal to the wake-direction signal terminal 30b; ing. Note that the difference between the two average levels in the successive subtraction signal also indicates the traveling direction of the bubble group in the wake of the target vehicle.

【0054】この航跡検知装置の場合、基本機能は実施
例2の装置と同等であるが、特に利得可変増幅回路21
bを自動利得制御回路(AGC)等の利得調整電圧回路
32で連続的に制御することで航跡内での受信レベルを
精度良く検出することができる他、利得の精度を上げる
ために多段的に制御することもできる。何れにしても後
段のデジタル信号処理回路33で利得制御信号を取り込
んでレベル補正の演算処理を行わせるように構成され
る。又、航跡内での受信レベルを示す濾波整形信号がそ
のままA/D変換回路34aでデジタル変換された後、
フーリエ変換(FFT)演算回路36で周波数分析され
るため、航跡内の気泡群における気泡の大きさに対応す
る共振周波数で受信レベルの変化を観測できる。この結
果、航跡内の気泡の体積比率が小さい場合,即ち、航跡
生成後の時間経過の大きい遠方の航跡内の気泡群であっ
ても検出できる。更に、デジタル信号処理回路33を使
用することにより記憶容量の増大が容易である上、1回
次遅れの平均レベル差だけでなく、種々の演算や統計処
理が可能となるため、航跡方向の判定確度を高くするこ
とができる。
In the case of this wake detecting device, the basic function is the same as that of the device of the second embodiment.
b is continuously controlled by a gain adjustment voltage circuit 32 such as an automatic gain control circuit (AGC), so that the reception level in the wake can be detected with high accuracy. It can also be controlled. In any case, the digital signal processing circuit 33 in the subsequent stage is configured to take in the gain control signal and perform the level correction arithmetic processing. After the filtered signal indicating the reception level in the wake is directly converted into a digital signal by the A / D conversion circuit 34a,
Since the frequency analysis is performed by the Fourier transform (FFT) operation circuit 36, a change in the reception level can be observed at the resonance frequency corresponding to the size of the bubbles in the bubble group in the wake. As a result, even when the volume ratio of the bubbles in the wake is small, that is, even in the distant wake where the lapse of time after the wake generation is large, it can be detected. Further, by using the digital signal processing circuit 33, the storage capacity can be easily increased, and not only the average level difference of the first-order delay but also various calculations and statistical processing can be performed, so that the determination of the wake direction can be performed. Accuracy can be increased.

【0055】[0055]

【発明の効果】以上に述べた通り、本発明によれば、自
走航走体側で追尾検知時に自体の放射雑音を受波,受信
し、その受信出力が航跡内に入ると共に急激かつ大幅に
減少することを利用して自走航走体が航跡内にあること
を検知すると共に、自走航走体が気泡群の連らなるもの
の延在方向に沿って気泡群を複数回交叉したときの交叉
毎に得られる放射雑音に関する受信レベルの変化に基づ
いて目標航走体の進行方向を検知するので、広帯域な音
源により航跡内の気泡群による航跡情報を効率良く得ら
れてS/N,即ち、検知確率の高い航跡検知が可能とな
る他、目標航走体の進行方向を確実性高く検知できる航
跡検知方法及び航跡検知装置が具現化されるようにな
る。
As described above, according to the present invention, the self-propelled vehicle receives and receives its own radiated noise at the time of tracking detection, and its received output enters the wake and sharply and significantly. When detecting that the self-propelled vehicle is within the wake by using the decrease, and when the self-propelled vehicle crosses the bubble group multiple times along the extension direction of the series of bubbles The traveling direction of the target vehicle is detected based on the change in the reception level related to the radiated noise obtained at each crossing of the trajectory. That is, a track detection with a high detection probability can be performed, and a track detection method and a track detection device capable of reliably detecting the traveling direction of a target vehicle can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の航跡検知方法を説明するために示した
簡易様態図であり、(a)は航跡外における自走航走体
側の様態に関するもの,(b)は航跡内における自走航
走体側の様態に関するものである。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a simplified mode diagram for explaining a wake detection method of the present invention, in which (a) relates to a mode of a self-propelled body outside a wake, and (b) is self-propelled voyage in a wake. It is related to the aspect of the running body.

【図2】本発明の航跡検知方法に含まれる目標航走体に
関する進行方向の検知を説明するために示した状態図で
ある。
FIG. 2 is a state diagram for explaining detection of a traveling direction of a target marine vehicle included in the wake detection method of the present invention.

【図3】本発明の航跡検知方法に係る航跡内の周波数に
対する受信出力を説明するために示した特性図であり、
(a)は自走航走体側が目標航走体から遠い航跡内の位
置にある場合に関するもの,(b)は自走航走体側が目
標航走体から近い航跡内の位置にある場合に関するもの
である。
FIG. 3 is a characteristic diagram shown for explaining a reception output with respect to a frequency in a wake according to the wake detection method of the present invention;
(A) relates to the case where the self-propelled cruising vehicle is located at a position within a wake far from the target cruising vehicle, and (b) relates to the case where the self-propelled cruising vehicle is located at a position within a wake close to the target cruising vehicle. Things.

【図4】本発明の航跡検知方法を適用した実施例1に係
る航跡検知装置の基本構成を示したブロック図である。
FIG. 4 is a block diagram showing a basic configuration of a wake detection device according to a first embodiment to which the wake detection method of the present invention is applied.

【図5】図4に示す航跡検知装置の主要部分における信
号波形を時間に対する電圧の関係で示したタイミングチ
ャートであり、(a)は濾波信号に関するもの,(b)
は検波信号に関するもの,(c)は航跡外信号に関する
もの,(d)は航跡内信号に関するものである。
5 is a timing chart showing a signal waveform in a main part of the wake detection device shown in FIG. 4 in relation to a voltage with respect to time, wherein (a) relates to a filtered signal and (b)
(C) relates to the signal outside the track, and (d) relates to the signal inside the track.

【図6】本発明の航跡検知方法を適用した実施例2に係
る航跡検知装置の基本構成を示したブロック図である。
FIG. 6 is a block diagram showing a basic configuration of a wake detection device according to a second embodiment to which the wake detection method of the present invention is applied.

【図7】図6に示す航跡検知装置の主要部分における信
号波形を時間に対する電圧の関係で示したタイミングチ
ャートであり、(a)は濾波信号に関するもの,(b)
は検波信号に関するもの,(c)は航跡外信号に関する
もの,(d)は航跡内信号に関するもの,(e)は平均
化信号に関するもの,(f)は累積信号に関するもの,
(g)は割算信号に関するもの,(h)は回次平均レベ
ル信号に関するもの,(i)は減算信号に関するもので
ある。
7 is a timing chart showing a signal waveform in a main part of the wake detection device shown in FIG. 6 in relation to a voltage with respect to time, wherein (a) relates to a filtered signal and (b)
Is related to the detected signal, (c) is related to the signal outside the track, (d) is related to the signal inside the track, (e) is related to the averaged signal, (f) is related to the accumulated signal,
(G) relates to a division signal, (h) relates to a time-averaged level signal, and (i) relates to a subtraction signal.

【図8】図6に示す航跡検知装置要部のアナログ系回路
構成をデジタル系回路構成にした実施例3に係る航跡検
知装置の基本構成を示したブロック図である。
8 is a block diagram illustrating a basic configuration of a wake detection device according to a third embodiment in which an analog circuit configuration of a main part of the wake detection device illustrated in FIG. 6 is changed to a digital circuit configuration.

【符号の説明】[Explanation of symbols]

1a,1b,1c,1d 自走航走体 2a,2b,2c,2d 受波器 3a,3b,3c,3d 受信器 4 放射雑音波 5 放射雑音源 7 切替回路 6 伝搬経路 8a,8b 航跡 11a,11b,11c 電圧増幅回路 12a,12b,12c 帯域濾波回路 13a,13b,13c 検波回路 14 平均化回路 15 閾値設定回路 16 比較回路 17a,17b 反転回路 18a,18b,18c 航跡内信号出力端子 19 閾値下限レベル入力端子 20 双安定マルチバイブレータ 21a,21b 利得可変増幅回路 22 ゲート回路 23a,23b 積分回路 24 計数回路 25 割算回路 26 書込切替回路 27a,27b,27c 記憶回路 28 読出切替回路 29 減算回路 30a,30b 航跡方向信号出力端子 31 レベル検出回路 32 利得調整電圧回路 33 デジタル信号処理回路 34a,34b A/D変換回路 35 クロックパルス発生回路 36 フーリエ変換(FFT)演算回路 37 利得演算/計時/回次計数回路 38 レベル補正書込回路 39 アドレス制御回路 40 読出回次間減算回路 1a, 1b, 1c, 1d Self-propelled carrier 2a, 2b, 2c, 2d Receiver 3a, 3b, 3c, 3d Receiver 4 Radiated noise wave 5 Radiated noise source 7 Switching circuit 6 Propagation path 8a, 8b Wake 11a , 11b, 11c Voltage amplifying circuits 12a, 12b, 12c Bandpass filtering circuits 13a, 13b, 13c Detection circuits 14 Averaging circuits 15 Threshold setting circuits 16 Comparison circuits 17a, 17b Inverting circuits 18a, 18b, 18c Signals within wake signal terminals 19 Threshold values Lower limit level input terminal 20 bistable multivibrator 21a, 21b variable gain amplifier circuit 22 gate circuit 23a, 23b integration circuit 24 counting circuit 25 division circuit 26 write switching circuit 27a, 27b, 27c storage circuit 28 read switching circuit 29 subtraction circuit 30a, 30b Wake direction signal output terminal 31 Level detection circuit 32 Gain Voltage regulator circuit 33 Digital signal processing circuit 34a, 34b A / D conversion circuit 35 Clock pulse generation circuit 36 Fourier transform (FFT) calculation circuit 37 Gain calculation / timekeeping / time counting circuit 38 Level correction writing circuit 39 Address control circuit 40 Readout time subtraction circuit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 末続 辰雄 長崎県長崎市飽の浦町一番一号 三菱重 工業株式会社長崎造船所内 (72)発明者 黒田 悟弘 宮城県仙台市太白区郡山六丁目7番1号 株式会社トーキン内 (72)発明者 星 則光 宮城県仙台市太白区郡山六丁目7番1号 株式会社トーキン内 (56)参考文献 特開 平7−311267(JP,A) 特開 平7−229963(JP,A) (58)調査した分野(Int.Cl.6,DB名) G01S 15/66 G01S 7/526 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Tatsuo Suesuichi No. 1 Akunoura-cho, Nagasaki City, Nagasaki Prefecture Mitsubishi Heavy Industries, Ltd. Nagasaki Shipyard (72) Inventor Gohiro Kuroda 6-7 Koriyama, Koriyama, Taishiro-ku, Sendai City, Miyagi Prefecture No. 1 Tokinnai Co., Ltd. (72) Inventor Norimitsu Hoshi 7-7-1, Koriyama, Taishiro-ku, Sendai City, Miyagi Prefecture Tokinnai Co., Ltd. (56) References JP-A-7-311267 (JP, A) Hei 7-229963 (JP, A) (58) Field surveyed (Int. Cl. 6 , DB name) G01S 15/66 G01S 7/526

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 水中又は水面上で航走して気泡群を航跡
として発生する目標航走体を水中音波を用いて自走航走
体により追尾検知する航跡検知方法において、前記自走
航走体側では、前記追尾検知時に自体の放射雑音を受波
受信すると共に、前記気泡群を含まない前記航跡の外に
あっては前記水中音波の伝搬損失である拡散損失及び吸
収損失に対応する受信レベルを検出し、該気泡群を含む
該航跡の内にあっては該水中音波の伝搬損失である吸収
損失に対応する受信レベルを検出することにより、該航
跡の内における該受信レベルが該航跡の外における該受
信レベルに比べて大きく減少することに基づいて該自走
航走体が該航跡内にあることを検知することを特徴とす
る航跡検知方法。
1. A wake detection method in which a self-propelled cruising body detects and tracks a target cruising body that generates bubbles as wakes by traversing underwater or on the surface of the water. The body receives and receives its own radiated noise at the time of the tracking detection, and receives a reception level corresponding to a diffusion loss and an absorption loss, which are propagation losses of the underwater sound wave outside the wake that does not include the bubble group. And detecting the reception level corresponding to the absorption loss, which is the propagation loss of the underwater sound wave, in the wake including the bubble group, whereby the reception level in the wake becomes A wake detection method, comprising: detecting that the self-propelled body is within the wake based on a large decrease compared to the reception level outside.
【請求項2】 請求項1記載の航跡検知方法において、
前記自走航走体が前記気泡群の概ね連続して連らなるも
のの延在方向に沿って該気泡群を複数回交叉したときの
該交叉毎に得られる前記放射雑音に関する受信レベルの
変化に基づいて前記目標航走体の進行方向を検知するこ
とを特徴とする航跡検知方法。
2. The wake detection method according to claim 1, wherein
When the self-propelled body crosses the air bubble group a plurality of times along the direction in which the air bubble group extends substantially continuously, the change in the reception level related to the radiation noise obtained at each crossing is shown. A wake detection method comprising: detecting a traveling direction of the target cruiser based on the detected trajectory.
【請求項3】 水中又は水面上で航走して気泡群を航跡
として発生する目標航走体を水中音波を用いて追尾検知
する自走航走体に備えられる航跡検知装置において、前
記追尾検知時に自体の放射雑音を含む前記航跡の内外に
おける前記気泡群の有無に応じた前記水中音波を受波し
て受信信号に変換する受波器と、前記受信信号のレベル
に応じて受信処理して受信処理信号を出力する受信器と
を備え、更に、前記受信器は、前記受信信号における前
記放射雑音を増幅整形して雑音整形信号を出力する電圧
増幅回路と、前記雑音整形信号を帯域濾波して濾波信号
を出力する帯域濾波回路と、前記濾波信号を検波して検
波信号を出力する検波回路と、前記検波信号のレベルの
変化に応じて平均化した平均化信号を出力する平均化回
路と、前記平均化信号に応じて前記検波信号のレベルの
変化を判定するための基準閾値設定に要する閾値設定信
号を出力する閾値設定回路と、前記検波信号及び前記閾
値設定信号を比較して該検波信号のレベルの変化が該閾
値設定信号のレベルを超過したものを航跡外信号として
出力する比較回路と、前記航跡外信号を反転した航跡内
信号を前記受信処理信号として出力する反転回路とから
成ることを特徴とする航跡検知装置。
3. A wake detection device provided in a self-propelled marine vehicle that detects a target marine vehicle that generates bubbles as a wake by traversing underwater or on the surface of a water by using underwater sound waves, wherein the tracking detection is performed. Sometimes a receiver that receives the underwater sound wave according to the presence or absence of the bubble group inside and outside the wake including its own radiation noise and converts it into a reception signal, and performs reception processing according to the level of the reception signal A receiver for outputting a reception processing signal, the receiver further comprising: a voltage amplifier circuit for amplifying and shaping the radiation noise in the reception signal to output a noise shaping signal; and a band-pass filter for the noise shaping signal. A band-pass filtering circuit that outputs a filtered signal, a detection circuit that detects the filtered signal and outputs a detection signal, and an averaging circuit that outputs an averaged signal averaged according to a change in the level of the detection signal. , The averaged signal A threshold setting circuit that outputs a threshold setting signal required for setting a reference threshold for determining a change in the level of the detection signal in accordance with the signal, and compares the detection signal and the threshold setting signal to determine a level of the detection signal. A comparison circuit that outputs a signal whose change exceeds the level of the threshold setting signal as an off-track signal, and an inversion circuit that outputs an in-track signal obtained by inverting the out-of-track signal as the reception processing signal. Wake detection device.
【請求項4】 水中又は水面上で航走して気泡群を航跡
として発生する目標航走体を水中音波を用いて追尾検知
する自走航走体に備えられる航跡検知装置において、前
記追尾検知時に自体の放射雑音を含む前記航跡の内外に
おける前記気泡群の有無に応じた前記水中音波を受波し
て受信信号に変換する受波器と、前記受信信号のレベル
に応じて受信処理して受信処理信号を出力する受信器と
を備え、更に、前記受信器は、前記受信信号における前
記放射雑音を増幅整形して雑音整形信号を出力する電圧
増幅回路と、前記雑音整形信号を帯域濾波して濾波信号
を出力する帯域濾波回路と、前記濾波信号を検波して検
波信号を出力する第1の検波回路と、前記検波信号のレ
ベルに応じて動作して該レベルが所定の閾値を超過して
いるときに航跡外信号を出力する双安定マルチバイブレ
ータと、前記航跡外信号を反転して航跡内信号を出力す
る反転回路と、前記航跡外信号の入力に応じて増幅切り
替え指令信号を切り替え出力する切替回路と、前記増幅
切り替え指令信号の有無に応じて前記濾波信号の低いレ
ベルのものだけを高利得で増幅整形して濾波整形信号を
出力する利得可変増幅回路と、前記濾波整形信号を検波
して低レベル検波信号を出力する第2の検波回路と、前
記航跡内信号に関して低いレベルのものだけを前記低レ
ベル検波信号に基づいて平均化換算して平均化信号を出
力するゲート回路と、前記航跡内信号に関して低いレベ
ルのものだけの繰返し回数を計数して計数信号を出力す
る計数回路と、前記航跡内信号に関して低いレベルのも
のだけを積分した結果を示す第1の累積信号を出力する
第1の積分回路と、前記平均化信号を積分した結果を示
す第2の累積信号を出力する第2の積分回路と、前記第
1の累積信号及び前記第2の累積信号を割算した結果を
示す割算信号を出力する割算回路と、前記計数信号を参
照して前記割算信号から回次毎の平均レベルを順次記憶
すると共に、1回次遅れで読出して回次平均レベル信号
を出力する回次平均処理回路と、前記回次平均レベル信
号を参照して前記割算信号から回次毎に1回次前の平均
レベルとの差を計算した減算信号を前記受信処理信号と
して出力する減算回路とから成ることを特徴とする航跡
検知装置。
4. A wake detection device provided in a self-propelled marine vehicle that detects a target marine vehicle that generates bubbles as a wake by traversing underwater or on the surface of a water by using underwater sound waves. Sometimes a receiver that receives the underwater sound wave according to the presence or absence of the bubble group inside and outside the wake including its own radiation noise and converts it into a reception signal, and performs reception processing according to the level of the reception signal A receiver for outputting a reception processing signal, the receiver further comprising: a voltage amplifier circuit for amplifying and shaping the radiation noise in the reception signal to output a noise shaping signal; and a band-pass filter for the noise shaping signal. A band-pass filtering circuit that outputs a filtered signal, a first detecting circuit that detects the filtered signal and outputs a detected signal, and operates according to a level of the detected signal, the level of which exceeds a predetermined threshold. Wake foreign news when A bi-stable multivibrator that outputs a signal, an inverting circuit that inverts the out-of-track signal and outputs an in-track signal, a switching circuit that switches and outputs an amplification switching command signal in response to the input of the out-of-track signal, A variable gain amplifier circuit that amplifies and shapes only a low level of the filtered signal with high gain and outputs a filtered signal according to the presence or absence of an amplification switching command signal, and a low level detection signal that detects the filtered signal and detects the filtered signal. A detection circuit, a gate circuit that averages and converts only signals having a low level with respect to the in-track signal based on the low-level detection signal and outputs an averaged signal, A counting circuit for counting the number of repetitions of only the signal at the level and outputting a count signal; and a first accumulator showing the result of integrating only the signal at a low level with respect to the in-track signal. A first integration circuit that outputs a signal, a second integration circuit that outputs a second accumulation signal indicating a result of integrating the averaged signal, and a first integration circuit that outputs the first accumulation signal and the second accumulation signal. A division circuit for outputting a division signal indicating a result of the division, and sequentially storing an average level for each cycle from the division signal with reference to the count signal, and reading out the delay with a first-order delay to execute the division. A receiving means for outputting a mean averaging signal which outputs an average level signal, and a subtraction signal which calculates a difference between the division signal and an average level one time before each time from the divided signal with reference to the time averaging signal; A wake detection device comprising: a subtraction circuit that outputs a processing signal.
【請求項5】 水中又は水面上で航走して気泡群を航跡
として発生する目標航走体を水中音波を用いて追尾検知
する自走航走体に備えられる航跡検知装置において、前
記追尾検知時に自体の放射雑音を含む前記航跡の内外に
おける前記気泡群の有無に応じた前記水中音波を受波し
て受信信号に変換する受波器と、前記受信信号のレベル
に応じて受信処理して受信処理信号を出力する受信器と
を備え、更に、前記受信器は、前記受信信号における前
記放射雑音を増幅整形して雑音整形信号を出力する電圧
増幅回路と、前記雑音整形信号を帯域濾波して濾波信号
を出力する帯域濾波回路と、前記濾波信号を増幅整形し
て濾波整形信号を出力する利得可変増幅回路と、前記濾
波信号をレベル検出してレベル検出信号を出力するレベ
ル検出回路と、前記レベル検出信号に応じて前記利得可
変増幅回路における前記増幅整形を連続的に制御するた
めの利得制御信号を出力する利得調整電圧回路と、前記
利得制御信号をデジタル化したデジタル利得制御信号を
利得演算及び計時,回次計数した結果を用いて前記濾波
整形信号をデジタル化したデジタル濾波整形信号のレベ
ルを演算処理により補正して得た回次間減算信号を前記
受信処理信号として出力するデジタル信号処理回路とか
ら成ることを特徴とする航跡検知装置。
5. A wake detection device provided in a self-propelled marine vehicle for tracking and detecting a target marine vehicle that generates bubbles as a wake by traversing underwater or on the water surface using underwater sound waves. Sometimes a receiver that receives the underwater sound wave according to the presence or absence of the bubble group inside and outside the wake including its own radiation noise and converts it into a reception signal, and performs reception processing according to the level of the reception signal A receiver for outputting a reception processing signal, the receiver further comprising: a voltage amplifier circuit for amplifying and shaping the radiation noise in the reception signal to output a noise shaping signal; and a band-pass filter for the noise shaping signal. A band-pass filter circuit that outputs a filtered signal, a gain variable amplifier circuit that amplifies and shapes the filtered signal and outputs a filtered signal, a level detection circuit that detects a level of the filtered signal and outputs a level detection signal, Said A gain adjustment voltage circuit that outputs a gain control signal for continuously controlling the amplification shaping in the variable gain amplifier circuit in accordance with a level detection signal; and a gain operation of a digital gain control signal obtained by digitizing the gain control signal. And a digital signal processing for outputting, as the reception processing signal, an inter-round subtraction signal obtained by correcting the level of the digital filtering shaping signal obtained by digitizing the filtering shaping signal using the result of time counting and round counting by arithmetic processing as the reception processing signal. A wake detection device comprising a circuit.
【請求項6】 請求項5記載の航跡検知装置において、
前記デジタル信号処理回路は、前記演算処理として前記
デジタル濾波整形信号をフーリエ変換して周波数分析を
行うフーリエ変換演算回路を含むことを特徴とする航跡
検知装置。
6. The wake detection device according to claim 5, wherein
The wake detection device according to claim 1, wherein the digital signal processing circuit includes a Fourier transform operation circuit that performs a Fourier transform of the digital filtered shaping signal and performs a frequency analysis as the operation process.
JP9169839A 1997-06-26 1997-06-26 Wake detection method and wake detection device Expired - Lifetime JP2990249B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9169839A JP2990249B2 (en) 1997-06-26 1997-06-26 Wake detection method and wake detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9169839A JP2990249B2 (en) 1997-06-26 1997-06-26 Wake detection method and wake detection device

Publications (2)

Publication Number Publication Date
JPH1114751A JPH1114751A (en) 1999-01-22
JP2990249B2 true JP2990249B2 (en) 1999-12-13

Family

ID=15893889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9169839A Expired - Lifetime JP2990249B2 (en) 1997-06-26 1997-06-26 Wake detection method and wake detection device

Country Status (1)

Country Link
JP (1) JP2990249B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101029048B1 (en) 2009-02-20 2011-04-18 국방과학연구소 Method for estimating characteristic of the other signal using a correlation model in acoustic and video signal characteristic to air bubble wake of a ship
KR102001100B1 (en) * 2017-08-11 2019-07-17 국방과학연구소 Wake detection method and apparatus using an underwater image sonar

Also Published As

Publication number Publication date
JPH1114751A (en) 1999-01-22

Similar Documents

Publication Publication Date Title
US5122990A (en) Bottom tracking system
JPS58162879A (en) Range finder
US20200033462A1 (en) Threshold generation for coded ultrasonic sensing
US20200158867A1 (en) Distance detection apparatus and object detection apparatus
JP2990249B2 (en) Wake detection method and wake detection device
JP6748569B2 (en) Object detection device
CN112074754A (en) Method and device for processing ultrasonic signals recorded by an ultrasonic sensor
JP3573090B2 (en) Underwater target position detecting device and method
JPH08201514A (en) Ultrasonic distance measuring instrument
JPH06100654B2 (en) Ultrasonic rangefinder
JPH0772242A (en) Active sonar apparatus
JP3287784B2 (en) Radar equipment
JPH08114672A (en) Active sonar
US11994583B2 (en) Object detection device
US11860274B2 (en) Object detection device
JP2570899B2 (en) Active sonar device
RU2748148C1 (en) Device for measuring the linear velocity of a vehicle
JPH01280273A (en) Active sonar equipment
JP3388688B2 (en) Acoustic positioning device
CN114966707A (en) Wearing detection method and system of wearable device
JPH0714940Y2 (en) Road condition detector
JP2001108738A (en) Sonar
JP2002311129A (en) Receiver circuit of underwater detection apparatus
CN117280244A (en) Object detection device
SU525229A1 (en) Delay line active

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990818

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071015

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081015

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091015

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091015

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101015

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101015

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111015

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111015

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121015

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121015

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141015

Year of fee payment: 15

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term