JP2987713B2 - Method for producing high-purity hexafluorophosphoric acid compound - Google Patents

Method for producing high-purity hexafluorophosphoric acid compound

Info

Publication number
JP2987713B2
JP2987713B2 JP2302487A JP30248790A JP2987713B2 JP 2987713 B2 JP2987713 B2 JP 2987713B2 JP 2302487 A JP2302487 A JP 2302487A JP 30248790 A JP30248790 A JP 30248790A JP 2987713 B2 JP2987713 B2 JP 2987713B2
Authority
JP
Japan
Prior art keywords
compound
purity
phosphorus
producing
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2302487A
Other languages
Japanese (ja)
Other versions
JPH04175216A (en
Inventor
均 羽沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOOKEMU PURODAKUTSU KK
Original Assignee
TOOKEMU PURODAKUTSU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=17909551&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2987713(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by TOOKEMU PURODAKUTSU KK filed Critical TOOKEMU PURODAKUTSU KK
Priority to JP2302487A priority Critical patent/JP2987713B2/en
Publication of JPH04175216A publication Critical patent/JPH04175216A/en
Application granted granted Critical
Publication of JP2987713B2 publication Critical patent/JP2987713B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D15/00Lithium compounds
    • C01D15/005Lithium hexafluorophosphate

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は高純度六フッ化リン酸化合物を製造方法に関
する。
The present invention relates to a method for producing a high-purity phosphoric acid hexafluoride compound.

高純度六フッ化リン酸化合物は、リチウム電池等の光
エネルギー電池の電解質、有機合成反応における触媒と
して有用であり、さらに半導体材料のドーピング剤とし
ても用いられている。
The high-purity hexafluorophosphate compound is useful as an electrolyte for a photoenergy battery such as a lithium battery or a catalyst in an organic synthesis reaction, and is also used as a dopant for a semiconductor material.

〔従来技術とその問題点〕[Conventional technology and its problems]

六フッ化リン酸化合物、特に六フッ化リン酸リチウム
(LiPF6)については、従来、様々な製造法が提案され
ている。しかし、生成物である六フッ化リン酸リチウム
が、極めて吸湿性が高くしかも加水分解しやすい物質で
あるため、これらの方法では雰囲気中または反応原料か
ら混入する水分によって分解反応が避けられず、そのた
め再結晶等の精製を行なうことも難しく、高純度の六フ
ッ化リン酸リチウムを得ることは極めて困難である。
Various production methods have been proposed for hexafluorophosphate compounds, particularly lithium hexafluorophosphate (LiPF 6 ). However, since the product, lithium hexafluorophosphate, is a substance having extremely high hygroscopicity and being easily hydrolyzed, the decomposition reaction is unavoidable in these methods due to moisture mixed in the atmosphere or from the reaction raw materials. Therefore, it is also difficult to perform purification such as recrystallization, and it is extremely difficult to obtain high-purity lithium hexafluorophosphate.

例えば、無水フッ酸の存在下にハロゲン化リチウム五
塩化リン(PCl5)とを反応させる方法も知られている
(特開昭60−251109号)。この方法は、五塩化リンが固
体であるため、原料の取扱いが容易であるという利点を
有するが、PCl5中には水分のほか製造工程で不可避的に
混入するSO4、Fe、Pb等がppmオーダーで存在しているた
め、やはり高純度製品が得られにくい。特に金属不純物
の存在は電解質としての使用に問題が生じる。また、五
塩化リンをフッ酸に導入する際、ハロゲンの交換反応
(PCl5+5HF→PF5+5HCl)が爆発的に起こるため、反応
の制御が困難である。また、反応終了後、無水フッ酸を
気化させて、液を濃縮し、六フッ化リン酸リチウムの結
晶を成長させることが記載されているが、本方法で結晶
該の生成のコントロールができず、白色粉末状のフッ化
リチウムを完全に除くことおよび微細な結晶の混入を防
ぐことが困難である。
For example, a method of reacting lithium halide phosphorus pentachloride (PCl 5 ) in the presence of hydrofluoric anhydride is also known (JP-A-60-251109). The method for phosphorus pentachloride is a solid, but has the advantage that handling of the raw materials is easy, SO 4, Fe, Pb, etc. in the PCl 5 to inevitably mixed with other manufacturing steps of the water Because it exists in the order of ppm, it is still difficult to obtain high-purity products. In particular, the presence of metal impurities causes a problem in use as an electrolyte. In addition, when phosphorus pentachloride is introduced into hydrofluoric acid, the halogen exchange reaction (PCl 5 + 5HF → PF 5 + 5HCl) occurs explosively, so that it is difficult to control the reaction. Further, it is described that after the reaction is completed, the hydrofluoric anhydride is vaporized, the liquid is concentrated, and crystals of lithium hexafluorophosphate are grown, but the production of crystals cannot be controlled by this method. It is difficult to completely remove lithium fluoride in the form of white powder and to prevent the incorporation of fine crystals.

無水フッ酸溶媒中でハロゲン化リチウムとPF5とを反
応させる方法が知られている(J.Chem.Soc.part4、4408
(1963)。しかし、前述した生成物の六フッ化リン酸リ
チウムが加水分解しやすいという性質のため高純度品は
得られていない。
A method of reacting lithium halide with PF 5 in a hydrofluoric anhydride solvent is known (J. Chem. Soc. Part 4, 4408).
(1963). However, a high-purity product has not been obtained because of the property that the above-mentioned product lithium hexafluorophosphate is easily hydrolyzed.

多孔性のLiF・HFにPF5ガスを作用させる方法も知られ
ている(特開昭64−72901号)。この方法は溶媒を使用
しないため、脱水処理が比較的容易である。しかし、多
孔性LiF・HFを製造する必要があり、しかも固気反応で
あるため、未反応部分が残り精製に手間が掛かる。ま
た、一般に、PF5を使用して高純度六フッ化リン酸化合
物を製造する際の共通した問題点であるが、高純度のPF
5は極めて高価であるため、製造コストが高くなるとい
う問題があった。
Method of reacting a PF 5 gas into a porous LiF · HF is also known (JP 64-72901). Since this method does not use a solvent, the dehydration treatment is relatively easy. However, it is necessary to produce porous LiF.HF, and since the reaction is a solid-gas reaction, an unreacted portion remains, which requires time and labor for purification. In general, it is a common problem in the production of high purity hexafluorophosphate compounds using PF 5, high purity PF
5 is extremely expensive, so there is a problem that the manufacturing cost is high.

〔解決しようとする課題〕[Problem to be solved]

このように、六フッ化リン酸化合物を高純度でしかも
安価に製造する方法が求められていた。また、高純度六
フッ化リン酸化合物の微細な結晶あるいは粉体は極めて
不安定なため、これらの微細粒子の入らない適度に粒径
の揃った結晶を工業的に大量に製造する方法が求められ
ていた。本発明は、これらの課題を同時に解決すること
を目的とする。〔問題解決の手段〕 本発明者らは、一般に高純度六フッ化リン酸化合物の
製造には適さないと考えられていた無水フッ酸中で五フ
ッ化リンとフッ素化合物とを反応させることからなる六
フッ化リン酸化合物の製造方法において、安価なリン化
合物をフッ酸と反応させることにより高純度の五フッ化
リンガスを発生させ、これを反応液中に導入することに
よって、六フッ化リン酸化合物の製造が高純度でしかも
安価に行なえることを見出した。また、この方法におい
ては、五フッ化リンガスの導入速度を調節することによ
り、生成物である六フッ化リン酸化合物の粒径の制御が
容易に行なえることを見出した。
Thus, there has been a need for a method for producing a hexafluorophosphate compound with high purity and at low cost. In addition, since fine crystals or powder of high-purity hexafluorophosphoric acid compound are extremely unstable, there is a need for a method for industrially producing a large amount of crystals having a moderately uniform particle size without these fine particles. Had been. An object of the present invention is to solve these problems simultaneously. [Means for Solving the Problem] The present inventors reacted phosphorus pentafluoride with a fluorine compound in hydrofluoric anhydride, which was generally considered unsuitable for producing a high-purity hexafluorophosphate compound. In the method for producing a hexafluorophosphoric acid compound, a high-purity phosphorus pentafluoride gas is generated by reacting an inexpensive phosphorus compound with hydrofluoric acid, and the resulting gas is introduced into a reaction solution. It has been found that the production of an acid compound can be performed with high purity and at low cost. Further, in this method, it has been found that the particle size of the hexafluorophosphate compound as a product can be easily controlled by adjusting the introduction rate of the phosphorus pentafluoride gas.

〔発明の構成〕[Configuration of the invention]

本発明は、無水フッ酸中で五フッ化リンとフッ素化合
物とを反応させることからなる六フッ化リン酸化合物の
製造方法であって、リン化合物とフッ酸とを反応させて
五フッ化リンを製造し、該五フッ化リンガスをフッ素化
合物の無水フッ酸溶液中に導入することを特徴とする高
純度六フッ化リン酸化合物の製造方法を提供する。
The present invention is a method for producing a hexafluorophosphoric acid compound comprising reacting phosphorus pentafluoride and a fluorine compound in anhydrous hydrofluoric acid, the method comprising reacting a phosphorus compound with hydrofluoric acid to produce phosphorus pentafluoride. , And introducing the phosphorus pentafluoride gas into a solution of a fluorine compound in hydrofluoric anhydride.

また、本発明は、上記の高純度六フッ化リン酸化合物
の製造方法であって、FH/フッ素化合物のモル比が10〜2
5である反応溶液に、−30℃〜0℃の温度範囲で、フッ
素化合物1モルあたり5〜30リットル/時間の量の五フ
ッ化リンを導入することを特徴とする方法を提供する。
Further, the present invention is a method for producing a high-purity hexafluorophosphate compound as described above, wherein the molar ratio of FH / fluorine compound is 10 to 2
5. A method is provided wherein 5 to 30 liters / hour of phosphorus pentafluoride per mole of fluorine compound is introduced into the reaction solution at a temperature of -30 ° C to 0 ° C.

本発明においてリン化合物を五フッ化リンに転化する
方法は、高純度の五フッ化リンを発生し得るものであれ
ばよい。好ましい方法としては、リン化合物とフッ酸を
−20℃以下で反応させてHPF6のHF溶液を形成し、次にこ
の溶液の温度を−10〜20℃に昇温して HPF6−→PF5+HF なる反応によってPF5ガスを発生させる方法がある。こ
の方法では、PCl5中に含まれているFeそのほかの金属や
水分は、フッ酸中に保持されるため、高純度のPF5ガス
が得られる。原料とするリン化合物は上記の目的に適う
ものであればよい。酸化物や酸塩化物などは、水が幅生
されるので避け、PCl5、PBr5、P2S5などを用いるのがよ
い。経済的な見地からPCl5が最も好ましいリン化合物で
ある。
In the present invention, the method for converting the phosphorus compound to phosphorus pentafluoride may be any method capable of generating high-purity phosphorus pentafluoride. Preferred methods include, a phosphorus compound and hydrofluoric acid are reacted in -20 ° C. or less to form an HF solution of HPF 6, HPF 6 and then raising the temperature of the solution to -10 to 20 ° C. - → PF a method of generating PF 5 gas by 5 + HF becomes reactions. In this method, high purity PF 5 gas is obtained because Fe and other metals and moisture contained in PCl 5 are retained in hydrofluoric acid. The phosphorus compound used as a raw material may be any as long as it meets the above purpose. Oxides and acid chlorides are avoided because water is generated, and PCl 5 , PBr 5 , P 2 S 5 and the like are preferably used. PCl 5 is the most preferred phosphorus compound from an economic standpoint.

得られた五フッ化リンは、フッ素化合物の無水フッ酸
溶液に導入する。溶液中のHF/フッ素化合物のモル比は1
0〜25であることが好ましい。比が10よりも小さくなる
と、反応の進行が遅くなる。また、比が25を超えると、
生成物が溶液中に溶け込んでしまうため、析出量が著し
く小さくなる。生成物の析出を容易にするため、比10〜
15に設定することがより好ましい。
The obtained phosphorus pentafluoride is introduced into a hydrofluoric anhydride solution of a fluorine compound. The molar ratio of HF / fluorine compound in the solution is 1
It is preferably from 0 to 25. When the ratio is less than 10, the reaction progresses slowly. Also, if the ratio exceeds 25,
Since the product dissolves in the solution, the amount of precipitation is significantly reduced. In order to facilitate the precipitation of the product, a ratio of 10 to
More preferably, it is set to 15.

五フッ化リンの導入は水分の混入が避けられるのであ
ればどのような方法でもよい。生成物の粒径を制御する
ため、好ましくは、導入速度を5〜30リットル/時間・
フッ素化合物モルとする。導入速度が5リットル/時間
を下回った場合でも粒径の制御は可能であるが、反応時
間が長くなるため作業性が低下しコスト的にも不利であ
る。導入速度が30リットル/時間を超えると、析出速度
が大きくなるため、粒径の制御が困難になる。
The introduction of phosphorus pentafluoride may be performed by any method as long as mixing of water can be avoided. To control the particle size of the product, preferably the introduction rate is 5-30 liters / hour.
It is a fluorine compound mole. Even when the introduction rate is less than 5 liters / hour, the particle size can be controlled, but the reaction time becomes longer, which lowers the workability and is disadvantageous in cost. If the introduction rate exceeds 30 liters / hour, the precipitation rate increases, and it becomes difficult to control the particle size.

反応溶液の温度は−30℃〜0℃の範囲が好適である。
生成する六フッ化リン酸化合物はこの温度範囲では溶液
中に析出してくるため無水フッ酸と分離は容易である。
反応終了後に液温を−30℃まで低下させることが好まし
い。これにより1反応あたりの歩留りが60〜70%と高く
なり操作・コストの上で有利になる。反応終了後、その
まま溶液の温度を10℃まで上昇させて生成物を溶解さ
せ、次いで液温−30℃まで冷却して再晶析を行なっても
よい。
The temperature of the reaction solution is preferably in the range of -30C to 0C.
The generated hexafluorophosphoric acid compound precipitates in the solution within this temperature range, and is easily separated from hydrofluoric anhydride.
It is preferable to lower the liquid temperature to −30 ° C. after the completion of the reaction. As a result, the yield per reaction is as high as 60 to 70%, which is advantageous in terms of operation and cost. After completion of the reaction, the temperature of the solution may be raised to 10 ° C. to dissolve the product, and then the solution may be cooled to −30 ° C. for recrystallization.

〔発明の効果〕〔The invention's effect〕

本発明の方法は、工業的に大量に生産されるリン化合
物を出発原料として使用し、これを中間原料の五フッ化
リンに転化して使用する。出発原料に含有されていた金
属等の不純物は五フッ化リン生成の段階で除かれるの
で、不純物が最終製品に持ち込まれることがなく、高純
度の製品を製造できる。また、反応系に水が存在しない
ので生成された六フッ化リン酸化合物が加水分解する虞
れがない。出発原料は廉価であるので経済性にすぐれて
いる。さらに、反応の進行を中間原料の導入速度によっ
て制御できるので目的に応じた製品粒径の制御が可能で
ある。
In the method of the present invention, a phosphorus compound produced in large quantities industrially is used as a starting material, and this is converted into an intermediate material, phosphorus pentafluoride, and used. Since impurities such as metals contained in the starting material are removed at the stage of producing phosphorus pentafluoride, the impurities are not brought into the final product, and a high-purity product can be manufactured. Further, since water does not exist in the reaction system, there is no fear that the generated hexafluorophosphate compound is hydrolyzed. The starting materials are inexpensive and therefore economical. Further, since the progress of the reaction can be controlled by the introduction speed of the intermediate raw material, it is possible to control the product particle size according to the purpose.

〔発明の具体的開示〕[Specific disclosure of the invention]

実施例 500mlポリテトラフルオロエチレン製容器(容器1)
に無水フッ酸(以下、HFと略記)を400g(20モル)仕込
み、−20℃に冷却して高純度塩化リチウム70gを徐々に
添加し、LiF・HFのHF溶液とした。次に、1000mlの別の
容器(容器2)にHF800g(40モル)と五塩化リン347g
(1.67モル)を装入し、−30℃で混合した。この時、HF
とPCl5との反応によって六フッ化リン酸(HPF6)と塩化
水素が発生した。HPF6はHF中に白色結晶として存在し、
塩化水素はほとんど系外に散逸した。次に、容器1と容
器2とをポリテトラフルオロエチレン製チューブで連結
し、容器1の容器内部温度を外部冷却により0℃に保
ち、容器2を−30℃から徐々に昇温した。−10℃付近で
HPF6が分解しPF5ガスが発生した(HPF6→PF5+HF)。ガ
ス流量を10リットル/HR・LiF・HF(mol)となるように
調整して連続的に容器1底部に導入した。
Example 500 ml container made of polytetrafluoroethylene (container 1)
Then, 400 g (20 mol) of hydrofluoric anhydride (hereinafter abbreviated as HF) was charged, cooled to -20 ° C., and 70 g of high-purity lithium chloride was gradually added to obtain an HF solution of LiF · HF. Next, 800 g (40 mol) of HF and 347 g of phosphorus pentachloride are placed in another 1000 ml container (vessel 2).
(1.67 mol) and mixed at -30 ° C. At this time, HF
Hexafluorophosphoric acid (HPF 6 ) and hydrogen chloride were generated by the reaction between the compound and PCl 5 . HPF 6 exists as white crystals in HF,
Hydrogen chloride almost completely escaped from the system. Next, the container 1 and the container 2 were connected with a polytetrafluoroethylene tube, the temperature inside the container 1 was kept at 0 ° C. by external cooling, and the temperature of the container 2 was gradually raised from −30 ° C. Around -10 ° C
HPF 6 was decomposed to generate PF 5 gas (HPF 6 → PF 5 + HF). The gas flow rate was adjusted to 10 liters / HR · LiF · HF (mol) and continuously introduced into the bottom of the vessel 1.

PF5ガスの全量の2/3を導入したところで、LiPF6の結
晶が容器底に析出し始め、PF5ガス導入が完了するまで
析出、成長が続いた。PF5ガス導入終了後、容器1をそ
のまま−30℃の冷蔵庫に一昼夜放置したところ、さらに
LiPF6の結晶が析出し、その粒径は2〜3mmの揃ったもの
であった。
Where the introduction of the PF 5 gas 2/3 of the total amount of, start to precipitate in the crystal container bottom of LiPF 6, deposited until PF 5 gas introduction is complete, the growth was followed. After the PF 5 gas completion of the introduction, it was allowed to stand overnight in the refrigerator of the container 1 as it is -30 ℃, further
Crystals of LiPF 6 were precipitated and had a uniform particle size of 2 to 3 mm.

結晶とろ液を常法にしたがって分離しLiPF6の定性定
量分析を行なった。1ppm以上の金属(Fe、Na、Pb)は検
出されず、Cl、SO4等のアニオンは1ppm以下、H2Oも10pp
m以下であった。次に、原子吸光分析によりLiを、吸光
光度法によりPを定量しLiPF6の純度を求めたところ99.
98%であった。また、得られたLiPF6の重量は177g(収
率70%)であった。
The crystals and the filtrate were separated according to a conventional method, and qualitative and quantitative analysis of LiPF 6 was performed. Metals (Fe, Na, Pb) of 1 ppm or more are not detected, anions such as Cl and SO 4 are 1 ppm or less, and H 2 O is also 10 pp.
m or less. Next, the Li by atomic absorption analysis, was determined the purity of quantifying the P LiPF 6 by spectrophotometry 99.
98%. The weight of the obtained LiPF 6 was 177 g (yield 70%).

比較列 実施例と同様にして、500mlポリテトラフルオロエチ
レン製容器(容器1)に無水フッ酸(以下、HFと略記)
を400g(20モル)仕込み、−30℃とした。次にこの容器
に高純度塩化リチウム28g(0.66モル)と五塩化リン138
g(0.66モル)を次々に加えてLiPF6を合成した。この段
階ではHF中にLiPF6が全て溶解しており、−30℃の冷蔵
庫に一昼夜放置しても結晶は析出しなかった。そこで、
上記反応液にN2ガスをバブリングさせてHFを150g追出
し、飽和LiPF6/HF溶液とした。これを−30℃の冷蔵庫に
一昼夜放置して再結晶を行なった。生成したLiPF6を実
施例と同様にして評価したところ、Fe:5.3ppm、Na:3.1p
pm、Pb:3.7ppm等であり、金属はほとんど1ppmを上回っ
た。Cl、SO4等のアニオンは10ppm以下、H2Oは250ppmに
達した。次に、原子吸光分析によりLiを、吸光光度法に
よりPを定量しLiPF6の純度を求めたところ97.8%であ
った。また、得られたLiPF6の重量は42g(収率42%)で
あった。
Comparative column Hydrofluoric anhydride (hereinafter abbreviated as HF) in a 500 ml polytetrafluoroethylene container (container 1) in the same manner as in the example.
Was charged at -30 ° C. Next, 28 g (0.66 mol) of high-purity lithium chloride and phosphorus 138
The LiPF 6 was synthesized by adding g (0.66 mol) successively. At this stage, LiPF 6 was completely dissolved in the HF, and no crystals were precipitated even when left overnight in a refrigerator at −30 ° C. Therefore,
Bubbling N 2 gas into the reaction solution expel 150g of HF and was saturated LiPF 6 / HF solution. This was left in a refrigerator at −30 ° C. for a day to recrystallize. When the produced LiPF 6 was evaluated in the same manner as in the example, Fe: 5.3 ppm, Na: 3.1 p
pm, Pb: 3.7 ppm, etc., and almost all metals exceeded 1 ppm. Anions such as Cl and SO 4 reached 10 ppm or less, and H 2 O reached 250 ppm. Next, the Li by atomic absorption analysis, was 97.8% was determined quantitatively by the purity of LiPF 6 and P by absorptiometry. The weight of the obtained LiPF 6 was 42 g (42% yield).

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】無水フッ酸の存在下に五フッ化リンとフッ
素化合物とを反応させることからなる六フッ化リン酸化
合物の製造方法であって、リン化合物とフッ酸とを反応
させて五フッ化リンを製造し、該五フッ化リンをフッ素
化合物の無水フッ酸溶液中に導入することを特徴とする
高純度六フッ化リン酸化合物の製造方法。
1. A method for producing a hexafluorophosphoric acid compound, comprising reacting phosphorus pentafluoride with a fluorine compound in the presence of hydrofluoric anhydride, comprising reacting the phosphorus compound with a hydrofluoric acid. A method for producing a high-purity phosphoric acid hexafluoride compound, comprising producing phosphorus fluoride and introducing the phosphorus pentafluoride into a solution of a fluorine compound in hydrofluoric anhydride.
【請求項2】請求項第1項に記載の方法であって、フッ
化水素:フッ素化合物のモル比が10〜25である反応溶液
に、−30℃〜0℃の温度範囲で、フッ素化合物1モルあ
たり5〜30リットル/時間の量の五フッ化リンを導入す
ることを特徴とする方法。
2. The method according to claim 1, wherein the reaction solution having a molar ratio of hydrogen fluoride: fluorine compound of 10 to 25 is added at a temperature range of -30.degree. A method characterized by introducing from 5 to 30 liters / hour of phosphorus pentafluoride per mole.
【請求項3】請求項第2項に記載の方法であって、得ら
れる高純度六フッ化リン酸化合物の粒径が1〜6mmであ
る製造方法。
3. The method according to claim 2, wherein the high-purity hexafluorophosphate compound obtained has a particle size of 1 to 6 mm.
JP2302487A 1990-11-09 1990-11-09 Method for producing high-purity hexafluorophosphoric acid compound Expired - Lifetime JP2987713B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2302487A JP2987713B2 (en) 1990-11-09 1990-11-09 Method for producing high-purity hexafluorophosphoric acid compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2302487A JP2987713B2 (en) 1990-11-09 1990-11-09 Method for producing high-purity hexafluorophosphoric acid compound

Publications (2)

Publication Number Publication Date
JPH04175216A JPH04175216A (en) 1992-06-23
JP2987713B2 true JP2987713B2 (en) 1999-12-06

Family

ID=17909551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2302487A Expired - Lifetime JP2987713B2 (en) 1990-11-09 1990-11-09 Method for producing high-purity hexafluorophosphoric acid compound

Country Status (1)

Country Link
JP (1) JP2987713B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8470278B2 (en) 2008-08-08 2013-06-25 Stella Chemifa Corporation Processes for production of phosphorus pentafluoride and hexafluorophosphates
TWI455872B (en) * 2007-08-16 2014-10-11 Stella Chemifa Corp Method for producing phosphorus pentafluoride and hexafluorophosphate

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5378445A (en) * 1993-12-23 1995-01-03 Fmc Corporation Preparation of lithium hexafluorophosphate solutions
DE19625448A1 (en) * 1996-06-26 1998-01-02 Solvay Fluor & Derivate Process for the preparation of LiPF¶¶¶
DE19632543C1 (en) * 1996-08-13 1998-04-02 Metallgesellschaft Ag Process for the production of LiPF¶6¶
FR2756553B1 (en) * 1996-12-03 1999-01-22 Atochem Elf Sa SYNTHESIS OF PHOSPHORUS PENTAFLUORIDE BY FLUORINATION OF PHOSPHORUS TRICHLORIDE
FR2768427B1 (en) * 1997-06-06 1999-10-29 Atochem Elf Sa PROCESS FOR THE MANUFACTURE OF LITHIUM HEXAFLUOROPHOSPHATE
FR2781474B1 (en) * 1998-07-07 2000-09-08 Atochem Elf Sa INDUSTRIAL PROCESS FOR THE CONTINUOUS MANUFACTURE OF A PF5 MIXTURE AND OF HC1 AND MIXTURE THUS OBTAINED
FR2782517B1 (en) * 1998-08-21 2000-09-29 Atochem Elf Sa PROCESS FOR THE MANUFACTURE OF LITHIUM HEXAFLUOROPHOSPHATE
KR100288825B1 (en) * 1998-12-31 2001-05-02 박대치 Method for producing lithium hexafluorophosphate
DE10355696A1 (en) * 2003-11-28 2005-06-23 Solvay Fluor Gmbh Separation of phosphorus pentafluoride from a mixture with hydrogen chloride involves pressure distillation at above or just below the phosphorus pentafluoride critical temperature
JP5254555B2 (en) 2007-02-08 2013-08-07 ステラケミファ株式会社 Method for producing phosphorus pentafluoride and hexafluorophosphate
JP5148125B2 (en) * 2007-02-08 2013-02-20 ステラケミファ株式会社 Method for producing hexafluorophosphate
JP5351463B2 (en) * 2008-08-08 2013-11-27 ステラケミファ株式会社 Method for producing hexafluorophosphate
JP5341425B2 (en) * 2008-08-08 2013-11-13 ステラケミファ株式会社 Method for producing fluoride gas
JP5178672B2 (en) * 2009-09-18 2013-04-10 関東電化工業株式会社 Method for producing low moisture lithium hexafluorophosphate
JP5459146B2 (en) * 2010-08-23 2014-04-02 住友金属鉱山株式会社 Lithium recovery method
WO2014097861A1 (en) * 2012-12-20 2014-06-26 Jointエンジニアリング株式会社 Method and device for producing lithium salt for electrolyte for lithium cell and/or lithium ion cell
JP5532181B1 (en) * 2013-10-31 2014-06-25 Jointエンジニアリング株式会社 Method and apparatus for producing lithium salt for electrolyte of lithium battery and / or lithium ion battery
CN103253643B (en) * 2013-03-25 2014-12-03 中山市华玮新能源科技有限公司 Method for preparing lithium hexafluorophosphate by phase-transfer catalytic process
JP5865314B2 (en) * 2013-08-21 2016-02-17 ステラケミファ株式会社 Method for producing phosphorus pentafluoride and hexafluorophosphate
JP5824013B2 (en) * 2013-08-21 2015-11-25 ステラケミファ株式会社 Method for producing phosphorus pentafluoride and hexafluorophosphate
US9975771B2 (en) 2013-10-04 2018-05-22 Kanto Denka Kogyo Co., Ltd. Process for purifying phosphorus pentafluoride
CN106430255A (en) * 2016-09-21 2017-02-22 常州大学 Method for preparing lithium hexafluorophosphate
CN106745096A (en) * 2017-02-16 2017-05-31 九江天赐高新材料有限公司 The preparation method of hexafluorophosphoric acid alkali metal salt
KR102577613B1 (en) 2017-03-13 2023-09-11 칸토 덴카 코교 가부시키가이샤 Method for producing phosphorus pentafluoride
CN111285340A (en) * 2020-03-31 2020-06-16 福建省龙德新能源股份有限公司 Method for recycling phosphorus pentafluoride in lithium hexafluorophosphate synthesis tail gas by using diethyl carbonate
CN113353958B (en) * 2021-07-29 2023-05-02 上海绿麟达新材料科技有限公司 Clean production process of hexafluorophosphate
CN114604846A (en) * 2022-04-06 2022-06-10 浙江永太科技股份有限公司 Preparation method of hexafluorophosphoric acid
CN116654886B (en) * 2023-08-01 2024-04-05 深圳新宙邦科技股份有限公司 Preparation method of phosphorus pentafluoride, preparation method of lithium hexafluorophosphate and lithium ion battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI455872B (en) * 2007-08-16 2014-10-11 Stella Chemifa Corp Method for producing phosphorus pentafluoride and hexafluorophosphate
US9034290B2 (en) 2007-08-16 2015-05-19 Stella Chemifa Corporation Processes for producing phosphorus pentafluoride and phosphate hexafluoride
US8470278B2 (en) 2008-08-08 2013-06-25 Stella Chemifa Corporation Processes for production of phosphorus pentafluoride and hexafluorophosphates

Also Published As

Publication number Publication date
JPH04175216A (en) 1992-06-23

Similar Documents

Publication Publication Date Title
JP2987713B2 (en) Method for producing high-purity hexafluorophosphoric acid compound
JP3204415B2 (en) Method for producing hexafluorophosphate
CN104487381B (en) Manufacturing method of difluorophosphate
JPH09506329A (en) Method for producing lithium hexafluorophosphate
US9352966B2 (en) Method for producing imide salt
JPH1192135A (en) Production of lithium hexafluorophosphate
JP5148125B2 (en) Method for producing hexafluorophosphate
JP4005174B2 (en) Production of phosphorus pentafluoride and arsenic pentafluoride
JP3798560B2 (en) Purification method of lithium hexafluorophosphate
JPH05279003A (en) Production of lithium hexafluorophosphate
JPS61151024A (en) Production of high purity lithium fluoride complex salt
JPH03500063A (en) Production method of zero-valent titanium from alkali metal fluorotitanate
JP2001122605A (en) Method for production of high purity lithium hexafluorophosphate
US11702348B2 (en) Purified potassium hexafluoromanganate and methods for purifying potassium hexafluoromanganate
JP3494344B2 (en) Method for producing lithium hexafluorophosphate
JPH10316410A (en) Production of lithium hexafluorophosphate
JP5151121B2 (en) Method for producing electrolytic solution for lithium ion battery and lithium ion battery using the same
JPS60251109A (en) Manufacture of lithium hexafluorophosphate
JP2004075413A (en) Method for manufacturing hexafluoro phosphate complex, synthesized product, hexafluoro phosphate and its manufacturing method
JPH0416406B2 (en)
US3322503A (en) Silicon production process
US4034069A (en) Method of preparing arsenic trifluoride
JP2856636B2 (en) Production method of ammonium cryolite
JP2000169141A (en) Production of ammonium hexafluoroaluminate
JP2000082474A (en) Manufacture of electrolyte for lithium battery

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071008

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081008

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091008

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091008

Year of fee payment: 10

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091008

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091008

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101008

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101008

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111008

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111008

Year of fee payment: 12