JP2987397B2 - Method for producing lithium hexafluorophosphate - Google Patents

Method for producing lithium hexafluorophosphate

Info

Publication number
JP2987397B2
JP2987397B2 JP32536595A JP32536595A JP2987397B2 JP 2987397 B2 JP2987397 B2 JP 2987397B2 JP 32536595 A JP32536595 A JP 32536595A JP 32536595 A JP32536595 A JP 32536595A JP 2987397 B2 JP2987397 B2 JP 2987397B2
Authority
JP
Japan
Prior art keywords
lithium
carbonate
lithium hexafluorophosphate
reaction
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32536595A
Other languages
Japanese (ja)
Other versions
JPH09165210A (en
Inventor
辻岡  章一
満夫 高畑
久和 伊東
忠幸 川島
敬二 佐藤
広美 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP32536595A priority Critical patent/JP2987397B2/en
Priority to CA002193119A priority patent/CA2193119C/en
Publication of JPH09165210A publication Critical patent/JPH09165210A/en
Application granted granted Critical
Publication of JP2987397B2 publication Critical patent/JP2987397B2/en
Priority to US09/572,887 priority patent/US6197205B1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D15/00Lithium compounds
    • C01D15/005Lithium hexafluorophosphate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、リチウム電池用電
解質として有用なヘキサフルオロリン酸リチウムの製造
方法およびそれを利用したリチウム電池用電解液の製造
方法に関する。
The present invention relates to a method for producing lithium hexafluorophosphate useful as an electrolyte for a lithium battery and a method for producing an electrolyte for a lithium battery using the same.

【0002】[0002]

【従来技術】ヘキサフルオロリン酸リチウムの製造方法
としては種々提案されており、例えば、無溶媒で固体の
フッ化リチウムと気体の五フッ化リンを反応させる方法
(特開昭64−72901号)がある。この方法におい
ては、フッ化リチウムの表面に反応生成物の被膜が形成
され、完全には反応が進行せず未反応のフッ化リチウム
が残存する。
2. Description of the Related Art Various methods for producing lithium hexafluorophosphate have been proposed, for example, a method of reacting solid lithium fluoride with gaseous phosphorus pentafluoride without solvent (Japanese Patent Application Laid-Open No. 64-72901). There is. In this method, a film of a reaction product is formed on the surface of lithium fluoride, and the reaction does not proceed completely, and unreacted lithium fluoride remains.

【0003】また、無水フッ化水素を溶媒として、溶解
したフッ化リチウムと気体状の五フッ化リンを反応させ
る方法(J.Chem.Soc.Part4,4408
(1963))がある。この方法においては、蒸気圧の
高い無水フッ化水素を溶媒として使用するため、ハンド
リングが困難であり、また、反応後に結晶として取り出
したヘキサフルオロリン酸リチウム中に不純物としてフ
ッ化水素が残存する。この不純物のフッ化水素はリチウ
ム電池として使用する場合、その電池反応を阻害するも
のであり、好ましくない。
Further, a method of reacting dissolved lithium fluoride with gaseous phosphorus pentafluoride using anhydrous hydrogen fluoride as a solvent (J. Chem. Soc. Part 4, 4408).
(1963)). In this method, since anhydrous hydrogen fluoride having a high vapor pressure is used as a solvent, handling is difficult, and hydrogen fluoride remains as an impurity in lithium hexafluorophosphate taken out as crystals after the reaction. When used as a lithium battery, this impurity, hydrogen fluoride, inhibits the battery reaction and is not preferred.

【0004】このように従来の方法においては、いずれ
も反応収率、反応の制御のしやすさ、得られる製品の純
度等の点で必ずしも満足のできるものではなかった。
As described above, all of the conventional methods have not always been satisfactory in terms of the reaction yield, the ease of controlling the reaction, the purity of the obtained product, and the like.

【0005】[0005]

【問題点を解決するための具体的手段】本発明者らは、
かかる従来技術の問題点に鑑み鋭意検討の結果、本発明
に到達したものである。
[Specific means for solving the problem]
As a result of intensive studies in view of the problems of the related art, the present invention has been achieved.

【0006】すなわち本発明は、リチウム電池電解液用
有機非水溶媒中で、フッ化リチウムと五フッ化リンとを
反応させることを特徴とするヘキサフルオロリン酸リチ
ウムの製造方法で、ここで使用するリチウム電池用有機
非水溶媒は、環状および直鎖の炭酸エステルまたは、2
つ以上の酸素原子を有するエーテル化合物であり、具体
的には、炭酸エステルは、エチレンカーボネート、プロ
ピレンカーボネート、ジメチルカーボネート、ジエチル
カーボネート、エチルメチルカーボネートのいずれかで
あり、エーテル化合物は、1,2−ジメトキシエタンで
あり、さらには、上記製造方法で得られるヘキサフルオ
ロリン酸リチウム溶液をリチウム電池用電解液として用
いることを特徴とするリチウム電池用電解液の製造方法
をそれぞれ提供するものである。
That is, the present invention relates to a method for producing lithium hexafluorophosphate, which comprises reacting lithium fluoride and phosphorus pentafluoride in an organic non-aqueous solvent for a lithium battery electrolyte. The organic non-aqueous solvent for a lithium battery is a cyclic or linear carbonate or
An ether compound having two or more oxygen atoms.Specifically, the carbonate is any one of ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate, and the ether compound is 1,2- The present invention further provides a method for producing an electrolyte for lithium batteries, which is dimethoxyethane, and further uses the lithium hexafluorophosphate solution obtained by the above production method as an electrolyte for lithium batteries.

【0007】本発明の製造方法は、反応収率が高く、反
応の制御も容易で、製品の純度の点でも十分満足できる
ものであり、しかも、ヘキサフルオロリン酸リチウムを
結晶として、取り出しても良いが、溶媒にリチウム電池
用のものを使用しているため、反応後の溶液を直接電解
液として使用することも可能である。
The production method of the present invention has a high reaction yield, is easy to control the reaction, is satisfactory in terms of the purity of the product, and can be used even if lithium hexafluorophosphate is taken out as crystals. Good, but since a solvent for lithium batteries is used as the solvent, the solution after the reaction can be used directly as the electrolyte.

【0008】本発明の製造法は、上記リチウム電池用有
機非水溶媒の内のいずれか一種類、もしくは数種類の混
合溶媒中で実施される。これらの溶媒に対して、原料で
あるフッ化リチウムの溶解度は非常に小さいため、溶媒
に分散した状態で五フッ化リンのガスを吹き込み反応を
行う。ここで、生成したヘキサフルオロリン酸リチウム
は、非常に溶解度が大きいので、溶媒中に溶解して、表
面に被膜として残ることがないために反応は完全に進行
する。
The production method of the present invention is carried out in any one of the above-mentioned organic non-aqueous solvents for lithium batteries or in a mixed solvent of several kinds. Since the solubility of the raw material lithium fluoride in these solvents is very small, a gas of phosphorus pentafluoride is blown in a state of being dispersed in the solvent to perform a reaction. Here, since the produced lithium hexafluorophosphate has a very high solubility, it is dissolved in a solvent and does not remain as a film on the surface, so that the reaction proceeds completely.

【0009】使用される溶媒は、化学的な安定性が高
く、しかもヘキサフルオロリン酸リチウムの溶解度が高
い炭酸エステル化合物、またはエーテル化合物が好まし
い。例えば、エチレンカーボネート、プロピレンカーボ
ネート、ジメチルカーボネート、ジエチルカーボネー
ト、エチルメチルカーボネート、1,2−ジメトキシエ
タン等がある。
The solvent used is preferably a carbonate compound or an ether compound having high chemical stability and high solubility of lithium hexafluorophosphate. For example, there are ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, 1,2-dimethoxyethane, and the like.

【0010】この反応を行う際の温度は、下限が−40
℃、好ましくは0℃で、上限は100℃、好ましくは6
0℃である。反応温度が−40℃未満では、溶媒が凝固
するため反応が進行しない。また、100℃より大きい
場合、溶媒と五フッ化リンの反応が起こり、着色や粘度
増加の原因となるため好ましくない。
The temperature at which this reaction is carried out has a lower limit of -40.
℃, preferably 0 ℃, the upper limit is 100 ℃, preferably 6 ℃
0 ° C. If the reaction temperature is lower than −40 ° C., the reaction does not proceed because the solvent solidifies. On the other hand, if the temperature is higher than 100 ° C., a reaction between the solvent and phosphorus pentafluoride occurs, which causes coloring and an increase in viscosity, which is not preferable.

【0011】フッ化リチウムの量は、溶媒1リットルに
対して、200g以下、好ましくは100g以下であ
る。フッ化リチウムの量が溶媒に対して、200gより
多い場合は、生成物が飽和になり、フッ化リチウム表面
に被膜が生成し、未反応のフッ化リチウムが残存するう
えに溶液の粘度が上昇するため、濾過等の分離操作が困
難になる。
The amount of lithium fluoride is 200 g or less, preferably 100 g or less, per liter of the solvent. If the amount of lithium fluoride is more than 200 g with respect to the solvent, the product becomes saturated, a film is formed on the surface of lithium fluoride, unreacted lithium fluoride remains, and the viscosity of the solution increases. Therefore, separation operation such as filtration becomes difficult.

【0012】五フッ化リンの量は、フッ化リチウムに対
して当量以上あれば良いが、過剰に系内に導入した場
合、溶液中に吸収されるため、反応後に加熱、減圧等の
操作により除去する必要がある。
The amount of phosphorus pentafluoride may be at least equivalent to lithium fluoride, but if introduced into the system excessively, it will be absorbed into the solution. Need to be removed.

【0013】この反応において、原料の五フッ化リン、
および生成物のヘキサフルオロリン酸リチウムは、水分
により容易に加水分解を受けるので、水分を含まない雰
囲気で反応を実施する必要がある。すなわち、真空中や
窒素等の不活性ガス雰囲気中で反応を行うことが好まし
い。
In this reaction, the raw material phosphorus pentafluoride,
Since the product lithium hexafluorophosphate is easily hydrolyzed by water, it is necessary to carry out the reaction in an atmosphere containing no water. That is, the reaction is preferably performed in a vacuum or an inert gas atmosphere such as nitrogen.

【0014】以上のようにして得られた溶液から、冷却
や濃縮という操作により、析出分離することにより高純
度のヘキサフルオロリン酸リチウムが得られる。また、
本発明では溶媒としてリチウム電池用溶媒を使用してい
るため、反応により得られた溶液を直接リチウム電池用
電解液として使用することも可能である。
From the solution obtained as above, high purity lithium hexafluorophosphate can be obtained by precipitation and separation by cooling and concentration operations. Also,
In the present invention, since a solvent for a lithium battery is used as a solvent, a solution obtained by the reaction can be directly used as an electrolyte for a lithium battery.

【0015】[0015]

【実施例】以下実施例により本発明を具体的に説明する
が、本発明はかかる実施例により限定されるものではな
い。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.

【0016】実施例1 テフロン製反応器中で200mlのプロピレンカーボネ
ートに5.2gフッ化リチウムを添加して、混合分散し
た。この分散液を冷却して20℃に維持しながら、ガス
導入管を通して窒素ガスにより17vol%に希釈した
五フッ化リンガスをバブリングした。プロピレンカーボ
ネート中に分散されたフッ化リチウムが消失した時点
で、反応を終了した。このときの五フッ化リンの消費量
は26gであった。
Example 1 In a Teflon reactor, 5.2 g of lithium fluoride was added to 200 ml of propylene carbonate and mixed and dispersed. While this dispersion was cooled and maintained at 20 ° C., phosphorus pentafluoride gas diluted to 17 vol% with nitrogen gas was bubbled through a gas inlet tube. The reaction was terminated when lithium fluoride dispersed in propylene carbonate disappeared. At this time, the consumption of phosphorus pentafluoride was 26 g.

【0017】得られた溶液からプロピレンカーボネート
を減圧で留出させることにより、ヘキサフルオロリン酸
リチウム30g(収率:98.7%)を得た。また、リ
チウム電池に応用する場合に問題となる酸性不純物濃度
は100ppmであった。
By distilling propylene carbonate from the obtained solution under reduced pressure, 30 g of lithium hexafluorophosphate (yield: 98.7%) was obtained. In addition, the concentration of acidic impurities that became a problem when applied to a lithium battery was 100 ppm.

【0018】実施例2 テフロン製反応器中で200mlの1,2−ジメトキシ
エタンに5.2gフッ化リチウムを添加して、混合分散
した。この分散液を冷却して−20℃に維持しながら、
ガス導入管を通して窒素ガスにより17vol%に希釈
した五フッ化リンガスをバブリングした。1,2−ジメ
トキシエタン中に分散されたフッ化リチウムが消失した
時点で、反応を終了した。このときの五フッ化リンの消
費量は26gであった。
Example 2 In a Teflon reactor, 5.2 g of lithium fluoride was added to 200 ml of 1,2-dimethoxyethane and mixed and dispersed. While cooling the dispersion and maintaining it at -20 ° C,
Phosphorus pentafluoride gas diluted to 17 vol% with nitrogen gas was bubbled through a gas inlet tube. The reaction was terminated when lithium fluoride dispersed in 1,2-dimethoxyethane disappeared. At this time, the consumption of phosphorus pentafluoride was 26 g.

【0019】得られた溶液から1,2−ジメトキシエタ
ンを減圧で留出させることにより、ヘキサフルオロリン
酸リチウム30g(収率:98.7%)を得た。また、
リチウム電池に応用する場合に問題となる酸性不純物濃
度は95ppmであった。
From the resulting solution, 1,2-dimethoxyethane was distilled off under reduced pressure to obtain 30 g of lithium hexafluorophosphate (yield: 98.7%). Also,
The concentration of the acidic impurity which became a problem when applied to a lithium battery was 95 ppm.

【0020】実施例3 テフロン製反応器中で100mlのエチレンカーボネー
トと100mlのジエチルカーボネートを混合した溶媒
にさらに5.2gフッ化リチウムを添加して、混合分散
した。この分散液を冷却して10℃に維持しながら、ガ
ス導入管を通して窒素ガスにより50vol%に希釈し
た五フッ化リンガスをバブリングした。混合溶媒中に分
散されたフッ化リチウムが消失した時点で、反応を終了
した。このときの五フッ化リンの消費量は26gであっ
た。
Example 3 In a Teflon reactor, 5.2 g of lithium fluoride was further added to a mixed solvent of 100 ml of ethylene carbonate and 100 ml of diethyl carbonate, and the mixture was dispersed. While the dispersion was cooled and maintained at 10 ° C., phosphorus pentafluoride gas diluted to 50 vol% with nitrogen gas was bubbled through a gas inlet tube. The reaction was terminated when the lithium fluoride dispersed in the mixed solvent disappeared. At this time, the consumption of phosphorus pentafluoride was 26 g.

【0021】得られた溶液を50℃に昇温して、真空ポ
ンプで脱気することにより過剰の五フッ化リンを除外し
た。F19−NMRとイオンクロマトグラムにより、ヘキ
サフルオロリン酸リチウムの生成が確認された。
The resulting solution was heated to 50 ° C. and degassed with a vacuum pump to remove excess phosphorus pentafluoride. The formation of lithium hexafluorophosphate was confirmed by F 19 -NMR and ion chromatogram.

【0022】溶液中の酸性不純物濃度は10ppmで、
ヘキサフルオロリン酸リチウムベースに換算すると70
ppmとなる。また、この溶液のイオン伝導度を測定し
たところ、7.8mS/cmであり、ヘキサフルオロリ
ン酸リチウムをエチレンカーボネートとジエチルカーボ
ネートの混合溶媒に溶解したものと同等であった。
The concentration of acidic impurities in the solution is 10 ppm,
70 when converted to lithium hexafluorophosphate base
ppm. The ionic conductivity of this solution was measured, and was 7.8 mS / cm, which was equivalent to that obtained by dissolving lithium hexafluorophosphate in a mixed solvent of ethylene carbonate and diethyl carbonate.

【0023】次に、この溶液を用いてテストセルを作製
し、充放電試験により電解液としての性能を評価した。
具体的には、天然黒鉛粉末95重量部に、バインダーと
して5重量部のポリフッ化ビニリデン(PVDF)を混
合し、さらにN,N−ジメチルホルムアミドを添加し、
スラリー状にした。このスラリーをニッケルメッシュ上
に塗布して、150℃で12時間乾燥させることによ
り、試験用負極体とした。また、コバルト酸リチウム8
5重量部に、黒鉛粉末10重量部およびPVDF5重量
部を混合し、さらに、N,N−ジメチルホルムアミドを
添加し、スラリー状にした。このスラリーをアルミニウ
ム箔上に塗布して、150℃で12時間乾燥させること
により、試験用正極体とした。ポリプロピレン不織布を
セパレーターとして、本実施例の反応溶液を電解液と
し、上記負極体および正極体とを用いてテストセルを組
み立てた。続いて、次のような条件で、定電流充放電試
験を実施した。充電、放電ともに電流密度0.35mA
/cm2 で行い、充電は4.2V、放電は2.5Vまで
行い、この充放電サイクルを繰り返して放電容量の変化
を観察した。その結果、充放電効率はほぼ100%で、
充放電を100サイクル繰り返したところ、放電容量は
全く変化しなかった。
Next, a test cell was prepared using this solution, and the performance as an electrolyte was evaluated by a charge / discharge test.
Specifically, 5 parts by weight of polyvinylidene fluoride (PVDF) is mixed as a binder with 95 parts by weight of natural graphite powder, and N, N-dimethylformamide is further added.
A slurry was formed. This slurry was applied on a nickel mesh and dried at 150 ° C. for 12 hours to obtain a test negative electrode body. In addition, lithium cobaltate 8
10 parts by weight of graphite powder and 5 parts by weight of PVDF were mixed with 5 parts by weight, and N, N-dimethylformamide was further added to form a slurry. This slurry was applied on an aluminum foil and dried at 150 ° C. for 12 hours to obtain a positive electrode for testing. Using a polypropylene nonwoven fabric as a separator, the reaction solution of this example as an electrolytic solution, and a test cell using the above-mentioned negative electrode body and positive electrode body, were assembled. Subsequently, a constant current charge / discharge test was performed under the following conditions. 0.35 mA current density for both charging and discharging
/ Cm 2 , charging was performed up to 4.2 V, and discharging was performed up to 2.5 V. This charge / discharge cycle was repeated to observe a change in discharge capacity. As a result, the charging and discharging efficiency is almost 100%,
After 100 cycles of charge and discharge, the discharge capacity did not change at all.

【0024】比較例1 攪拌器を備えたニッケル製反応器中に、5.2gフッ化
リチウムを投入し、反応器内を真空脱気した。次に、1
00%の五フッ化リンガスを系内に導入して、攪拌しな
がら100℃で反応を行った。フッ化リチウムによる五
フッ化リンガスの吸収が止まった時点で、反応の終点と
した。その結果、過剰量の五フッ化リンを導入したにも
関わらず、未反応フッ化リチウムが残存し、収率は55
%であった。
Comparative Example 1 5.2 g of lithium fluoride was charged into a nickel reactor equipped with a stirrer, and the inside of the reactor was evacuated under vacuum. Then, 1
100% phosphorus pentafluoride gas was introduced into the system, and the reaction was carried out at 100 ° C. with stirring. When the absorption of phosphorus pentafluoride gas by lithium fluoride stopped, it was regarded as the end point of the reaction. As a result, despite the introduction of an excessive amount of phosphorus pentafluoride, unreacted lithium fluoride remains, and the yield is 55%.
%Met.

【0025】比較例2 フッ化リチウム32gを無水フッ酸500gに溶解させ
る。この溶液に五フッ化リンガス155gを吹き込み、
フッ化リチウムと反応させた。得られた反応溶液を一晩
かけてゆっくりと−20℃まで冷却することにより、ヘ
キサフルオロリン酸リチウムの結晶を析出させた。これ
を濾別し、室温減圧下で付着フッ化水素を除いた。これ
により、1mm程度の粒径の揃ったヘキサフルオロリン
酸リチウム結晶65gが得られた。酸性不純物の含量は
300ppmであった。
Comparative Example 2 32 g of lithium fluoride was dissolved in 500 g of hydrofluoric anhydride. 155 g of phosphorus pentafluoride gas is blown into this solution,
Reacted with lithium fluoride. The obtained reaction solution was slowly cooled to −20 ° C. overnight to precipitate crystals of lithium hexafluorophosphate. This was separated by filtration and the attached hydrogen fluoride was removed under reduced pressure at room temperature. As a result, 65 g of lithium hexafluorophosphate crystals having a uniform particle size of about 1 mm were obtained. The content of acidic impurities was 300 ppm.

【0026】[0026]

【発明の効果】本発明によれば、従来のヘキサフルオロ
リン酸リチウムの製造法に比べ、反応収率が高く、反応
の制御も容易で、製品の純度の点でも十分満足でき、し
かも、ヘキサフルオロリン酸リチウムを結晶として、取
り出しても良いが、溶媒にリチウム電池用のものを使用
しているため、反応後の溶液を直接電解液として使用す
ることも可能であり、非常に簡略化された製造法を提供
することができる。
According to the present invention, the reaction yield is higher, the control of the reaction is easier, and the purity of the product can be sufficiently satisfied as compared with the conventional method for producing lithium hexafluorophosphate. Lithium fluorophosphate may be taken out as crystals, but since the solvent used is for lithium batteries, the solution after the reaction can be used directly as the electrolyte, which is very simplified. Can be provided.

フロントページの続き (72)発明者 川島 忠幸 山口県宇部市大字沖宇部5253番地 セン トラル硝子株式会社化学研究所内 (72)発明者 佐藤 敬二 山口県宇部市大字沖宇部5253番地 セン トラル硝子株式会社化学研究所内 (72)発明者 佐々木 広美 山口県宇部市大字沖宇部5253番地 セン トラル硝子株式会社化学研究所内 (56)参考文献 特開 昭46−3210(JP,A) 特開 平2−276163(JP,A) 特開 昭63−119170(JP,A) 特開 昭59−96665(JP,A) 特表 平9−506329(JP,A) (58)調査した分野(Int.Cl.6,DB名) C01B 25/455 C01B 25/10 H01M 10/40 Continuing on the front page (72) Inventor Tadayuki Kawashima 5253 Oki Obe, Oji, Ube City, Yamaguchi Prefecture Inside the Chemical Research Laboratory, Central Glass Co., Ltd. Inside the laboratory (72) Inventor Hiromi Sasaki 5253 Oki Obe, Ube-shi, Yamaguchi Prefecture Inside the Central Glass Co., Ltd. Chemical Research Laboratory (56) References JP-A-46-3210 (JP, A) JP-A-2-276163 (JP) , A) JP-A-63-119170 (JP, A) JP-A-59-96665 (JP, A) Table 9-506329 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB Name) C01B 25/455 C01B 25/10 H01M 10/40

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 リチウム電池電解液用有機非水溶媒中
で、フッ化リチウムと五フッ化リンとを反応させること
を特徴とするヘキサフルオロリン酸リチウムの製造方
法。
1. A method for producing lithium hexafluorophosphate, comprising reacting lithium fluoride and phosphorus pentafluoride in an organic non-aqueous solvent for a lithium battery electrolyte.
【請求項2】 請求項1記載のリチウム電池用有機非水
溶媒が、環状および直鎖の炭酸エステルであることを特
徴とするヘキサフルオロリン酸リチウムの製造方法。
2. A method for producing lithium hexafluorophosphate, wherein the organic non-aqueous solvent for a lithium battery according to claim 1 is a cyclic or linear carbonate.
【請求項3】 請求項1記載のリチウム電池用有機非水
溶媒が、2つ以上の酸素原子を有するエーテル化合物で
あることを特徴とするヘキサフルオロリン酸リチウムの
製造方法。
3. A method for producing lithium hexafluorophosphate, wherein the organic non-aqueous solvent for a lithium battery according to claim 1 is an ether compound having two or more oxygen atoms.
【請求項4】 請求項2記載の炭酸エステルが、エチレ
ンカーボネート、プロピレンカーボネート、ジメチルカ
ーボネート、ジエチルカーボネート、エチルメチルカー
ボネートのいずれかであることを特徴とするヘキサフル
オロリン酸リチウムの製造方法。
4. A method for producing lithium hexafluorophosphate, wherein the carbonate according to claim 2 is any one of ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate.
【請求項5】 請求項3記載のエーテル化合物が、1,
2−ジメトキシエタンであることを特徴とするヘキサフ
ルオロリン酸リチウムの製造方法。
5. The ether compound according to claim 3, wherein
A method for producing lithium hexafluorophosphate, which is 2-dimethoxyethane.
【請求項6】 請求項1、2、3、4および5記載の製
造方法で得られるヘキサフルオロリン酸リチウム溶液を
リチウム電池用電解液として用いることを特徴とするリ
チウム電池用電解液の製造方法。
6. A method for producing an electrolyte for a lithium battery, wherein the lithium hexafluorophosphate solution obtained by the production method according to claim 1, 2, 3, or 4 is used as an electrolyte for a lithium battery. .
JP32536595A 1995-12-14 1995-12-14 Method for producing lithium hexafluorophosphate Expired - Fee Related JP2987397B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP32536595A JP2987397B2 (en) 1995-12-14 1995-12-14 Method for producing lithium hexafluorophosphate
CA002193119A CA2193119C (en) 1995-12-14 1996-12-16 Electrolytic solution for lithium cell and method for producing same
US09/572,887 US6197205B1 (en) 1995-12-14 2000-05-18 Electrolytic solution for lithium cell and method for producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32536595A JP2987397B2 (en) 1995-12-14 1995-12-14 Method for producing lithium hexafluorophosphate

Publications (2)

Publication Number Publication Date
JPH09165210A JPH09165210A (en) 1997-06-24
JP2987397B2 true JP2987397B2 (en) 1999-12-06

Family

ID=18176021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32536595A Expired - Fee Related JP2987397B2 (en) 1995-12-14 1995-12-14 Method for producing lithium hexafluorophosphate

Country Status (1)

Country Link
JP (1) JP2987397B2 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3375049B2 (en) * 1997-11-19 2003-02-10 セントラル硝子株式会社 Method for producing lithium tetrafluoroborate
JP4810867B2 (en) * 2005-04-19 2011-11-09 セントラル硝子株式会社 Method for producing electrolyte for lithium ion battery
EP1976048B1 (en) 2005-12-06 2010-10-27 Central Glass Company, Limited Method for producing electrolyte solution for lithium ion battery and lithium ion battery using same
RU2308415C1 (en) * 2006-01-10 2007-10-20 Федеральное государственное унитарное предприятие государственный институт технологии органического синтеза Method of production of the electrolyte component on the basis of lithium hexafluorophosphate
JP5307409B2 (en) * 2007-08-16 2013-10-02 ステラケミファ株式会社 Method for producing phosphorus pentafluoride and hexafluorophosphate
JP5165364B2 (en) * 2007-12-25 2013-03-21 ステラケミファ株式会社 Method for producing hexafluorophosphate
JP5351463B2 (en) * 2008-08-08 2013-11-27 ステラケミファ株式会社 Method for producing hexafluorophosphate
JP2010042937A (en) 2008-08-08 2010-02-25 Stella Chemifa Corp Method for producing phosphorus pentafluoride and hexafluorophosphates
JP5609283B2 (en) 2010-06-08 2014-10-22 セントラル硝子株式会社 Method for producing electrolytic solution for lithium ion battery and lithium ion battery using the same
JP5862094B2 (en) 2010-08-17 2016-02-16 セントラル硝子株式会社 Method for producing lithium hexafluorophosphate concentrate
EP2607305A1 (en) * 2011-12-23 2013-06-26 LANXESS Deutschland GmbH LiPF6 solutions
CN102702243B (en) * 2012-06-12 2014-08-27 中南大学 Method for preparation and purifying lithium difluoroborate
JP6097111B2 (en) * 2013-03-27 2017-03-15 三井化学株式会社 Method for producing lithium fluoride powder and method for producing lithium hexafluorophosphate
JP5824013B2 (en) * 2013-08-21 2015-11-25 ステラケミファ株式会社 Method for producing phosphorus pentafluoride and hexafluorophosphate
JP6520064B2 (en) * 2014-11-19 2019-05-29 セントラル硝子株式会社 Electrolyte for non-aqueous electrolyte battery and lithium non-aqueous electrolyte battery
CN111410181A (en) * 2020-03-31 2020-07-14 福建省龙德新能源股份有限公司 Method for recycling phosphorus pentafluoride in lithium hexafluorophosphate synthesis tail gas by utilizing ether and derivatives thereof
CN112707418B (en) * 2021-01-12 2022-12-30 苏州华一新能源科技股份有限公司 Preparation method of lithium hexafluorophosphate

Also Published As

Publication number Publication date
JPH09165210A (en) 1997-06-24

Similar Documents

Publication Publication Date Title
JP2987397B2 (en) Method for producing lithium hexafluorophosphate
JP4810867B2 (en) Method for producing electrolyte for lithium ion battery
TWI295117B (en) High purity lithium polyhalogenated boron cluster salts useful in lithium batteries
EP3708537B1 (en) Method for producing alkali metal hexafluorophosphate, method for producing electrolyte concentrate comprising alkali metal hexafluorophosphate, and method for producing secondary battery
CN109422252B (en) Preparation method of lithium fluorosulfonyl difluorophosphoryl imine, product and application thereof
JP5862094B2 (en) Method for producing lithium hexafluorophosphate concentrate
KR100971065B1 (en) Method for producing electrolyte solution for lithium ion battery and lithium ion battery using same
US6277525B1 (en) Method for producing electrolyte and method for producing secondary battery
JP3034202B2 (en) Electrolyte for lithium battery, method for purifying the same, and lithium battery using the same
JP3375049B2 (en) Method for producing lithium tetrafluoroborate
EP2581980B1 (en) Method for producing electrolyte solution for lithium ion battery, and lithium ion battery using the electrolyte solution
CN113717205A (en) Preparation method of lithium oxalate borate and derivatives thereof, electrolyte and secondary battery
JP5151121B2 (en) Method for producing electrolytic solution for lithium ion battery and lithium ion battery using the same
JP2982950B2 (en) Method for producing electrolyte for lithium battery and lithium battery
CN113725430A (en) Preparation method of lithium tetrafluoro oxalate phosphate and derivative thereof, electrolyte and secondary battery
WO2023108501A1 (en) Calcium salt electrolyte solution and electrolyte, preparation method therefor and application thereof
KR20200110127A (en) Method for producing alkali metal hexafluorophosphate, alkali metal hexafluorophosphate, method for producing electrolyte concentrate comprising alkali metal hexafluorophosphate, and method for producing secondary battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071008

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081008

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081008

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091008

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091008

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091008

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101008

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101008

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111008

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111008

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111008

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121008

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121008

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 14

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees