JP2984716B2 - Aromatic separation membrane - Google Patents

Aromatic separation membrane

Info

Publication number
JP2984716B2
JP2984716B2 JP2229870A JP22987090A JP2984716B2 JP 2984716 B2 JP2984716 B2 JP 2984716B2 JP 2229870 A JP2229870 A JP 2229870A JP 22987090 A JP22987090 A JP 22987090A JP 2984716 B2 JP2984716 B2 JP 2984716B2
Authority
JP
Japan
Prior art keywords
membrane
separation
pervaporation
separation membrane
aromatic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2229870A
Other languages
Japanese (ja)
Other versions
JPH04110029A (en
Inventor
恭志 前田
許志 石倉
江津子 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DAISERU KAGAKU KOGYO KK
Original Assignee
DAISERU KAGAKU KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DAISERU KAGAKU KOGYO KK filed Critical DAISERU KAGAKU KOGYO KK
Priority to JP2229870A priority Critical patent/JP2984716B2/en
Publication of JPH04110029A publication Critical patent/JPH04110029A/en
Application granted granted Critical
Publication of JP2984716B2 publication Critical patent/JP2984716B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION 【産業上の利用分野】[Industrial applications]

本発明は水並びに有機物処理用の新規な選択透過膜に
関する。更に詳しくは、限外濾過(UF)、精密濾過(M
F)、浸透気化(PV)並びに蒸気透過(VP)法などによ
り、有機混合物並びに水/有機物混合物を分離、濃縮す
るための膜に関するものである。
The present invention relates to a novel permselective membrane for treating water and organic matter. More specifically, ultrafiltration (UF), microfiltration (M
F), a membrane for separating and concentrating an organic mixture and a water / organic mixture by a pervaporation (PV) method and a vapor permeation (VP) method.

【従来技術】[Prior art]

膜を用い、種々の水溶液、有機液体混合物並びに蒸気
混合物を分離する方法としては、逆浸透膜、限外濾過
膜、透析膜、除湿膜などが実用化されている。又最近で
は、有機物の分離に際し、浸透圧の影響を受けない分離
法として浸透気化法及び蒸気透過法が新しい分離法とし
て脚光を浴びつつある。 膜の適用範囲も、従来の水素、無機ガス以外に有機溶
媒や蒸気などへと広がりを見せている。このような有機
物混合物の分離が可能な、耐溶剤性分離膜としては、テ
フロン系の精密濾過膜、ポリイミド系の限外濾過膜(特
開昭54−71785号公報,同58−14908号公報)などが知ら
れている。 又、水/アルコール分離を代表とする浸透気化並びに
蒸気透過分離用の膜素材としては、セルロースアセテー
トをはじめとするセルロース系並びにポリアミド、ポリ
スルホン、ポリイミドなどの芳香族ポリマーが検討され
ている。 水/酢酸分離用浸透気化膜としては、アクリル酸とア
クリロニトリルとの共重合及びアクリル酸とスチレンと
の共重合膜(膜10,247(1985)、イオン架橋したポリア
クリル酸とナイロン6とのブレンド膜(J.Appl.Polym.S
ci.,35,1191(1988))、イオン交換膜(膜、13,109(1
988))並びにポリビニルアルコールと種々のビニル系
親水性高分子とのブレンド膜(Makromol.chem.188,1973
(1987))などが報告されているが、耐久性に関しては
未検討で、又分離特性も優れたものとは言えない。
As a method for separating various aqueous solutions, organic liquid mixtures, and vapor mixtures using a membrane, a reverse osmosis membrane, an ultrafiltration membrane, a dialysis membrane, a dehumidification membrane, and the like have been put to practical use. In recent years, permeation vaporization and vapor permeation have been spotlighted as new separation methods that are not affected by osmotic pressure when separating organic substances. The range of application of the film is expanding to organic solvents and vapors in addition to conventional hydrogen and inorganic gases. Teflon-based microfiltration membranes and polyimide-based ultrafiltration membranes (JP-A-54-71785 and JP-A-58-14908) are solvent-resistant separation membranes capable of separating such organic substance mixtures. Etc. are known. As a membrane material for pervaporation and vapor permeation separation typified by water / alcohol separation, cellulose-based materials such as cellulose acetate and aromatic polymers such as polyamide, polysulfone, and polyimide have been studied. Blend as the water / acetic acid separation pervaporation membrane, a copolymer film of copolymer and acrylic acid and styrene with acrylic acid and acrylonitrile (film 10, 247 (1985), polyacrylic acid and nylon 6 ionically crosslinked Membrane (J.Appl.Polym.S
ci., 35 , 1191 (1988)), ion exchange membrane (membrane, 13 , 109 (1
988)) and blend films of polyvinyl alcohol and various vinyl-based hydrophilic polymers (Makromol. Chem. 188 , 1973).
(1987)), but the durability has not been examined and the separation characteristics cannot be said to be excellent.

【発明が解決しようとする課題】[Problems to be solved by the invention]

前述したような浸透気化並びに蒸気透過膜を代表とす
る有機物分離膜においては、使用する膜が高い操作温度
に耐える耐熱性を有するのみならず、対象とする有機物
に対して充分な耐性を持つことが必要である。 水/エタノールの浸透気化分離において、高い分離性
を有するアニオン性基含有多糖類膜(特開昭60−129104
号公報)やポリビニルアルコール架橋膜(特開昭59−10
9204号公報)などの膜は耐熱性、耐溶剤性などの点で水
/アルコール分離以外の広範な有機物分離に適している
とは言い難い。 本発明の目的は、有機混合物並びに水/有機物の分離
にあたり、高い分離性を有するのみならず、有機物の広
範囲な濃度領域に対応できるような耐溶剤性を持つと共
に、高温度での操作条件にも耐え得る分離膜を得ること
にある。
In the organic substance separation membrane represented by the pervaporation and vapor permeable membrane as described above, the membrane used has not only heat resistance to withstand high operating temperatures but also sufficient resistance to the target organic substance. is necessary. In the pervaporation separation of water / ethanol, an anionic group-containing polysaccharide membrane having a high resolving property (JP-A-60-129104)
JP-A-59-10) and a polyvinyl alcohol crosslinked film (JP-A-59-10
It is difficult to say that a membrane such as that described in Japanese Patent Application Laid-Open No. 9204) is suitable for a wide range of organic matter separation other than water / alcohol separation in terms of heat resistance and solvent resistance. An object of the present invention is to not only have a high separation property in the separation of an organic mixture and water / organic substances, but also have a solvent resistance capable of coping with a wide concentration range of an organic substance, and at the same time operating conditions at a high temperature. Another object of the present invention is to obtain a separation membrane that can withstand the above.

【発明の構成】Configuration of the Invention

本発明者らは以上の点について鋭意検討した結果、本
発明に到達した。即ち、本発明は置換基として、水酸基
及び/又はチオール基を有する芳香族系高分子から主と
してなる浸透気化並びに蒸気透過用の分離膜に関するも
のである。 有機混合物や水/有機物分離用の膜に対しては、優れ
た選択分離性を有するのみならず、耐溶剤性及び耐熱性
が要求される。本発明者は、有機混合物のモデルとして
水/酢酸を分離対象とし、又、種々の分離手法の中から
浸透気化を選び、優れた分離性と、耐久性を有する膜素
材の探索を行った結果、側鎖に水酸基及び/又はチオー
ル基を有する芳香族系高分子を見い出した。さらに、分
離係数及び透過速度で表わされる膜の分離性能を向上さ
せ、かつ耐久性を付与するため、種々の検討を行った結
果、特に該膜に架橋による3次元構造を導入すること、
並びに膜を200℃以上の温度で熱処理することが有効で
あることを見い出し、本発明を完成させた。以下に本発
明についてさらに詳細に説明する。 本発明における芳香族系分離膜は、下記一般式 [但し、R1は4価、R2は2価のそれぞれ芳香族系有機基
を表し、XはR2の置換基である水酸基及び/又はチオー
ル基を表し、nは1〜4の整数である]を主な繰り返し
単位とするイミド系高分子からなるものである。この
際、イミド基の一部がアミド酸の形で存在してもよい。 さらには、前記一般式[I]において、 で示されるものが好ましく、R1としては、 などの構造が適当である。 本発明に用いられるイミド系高分子を製造する方法は
特に限定しないが、例えば、無水ピロメリット酸のごと
き、芳香族テトラカルボン酸無水物と水酸基及び/又は
チオール基含有芳香族ジアミンとを反応させることによ
り、該ポリイミドの前駆体であるポリアミド酸を得た
後、加熱又は無水酢酸/ピリジンのごとき脱水剤の作用
でイミド環を形成させることで、容易にポリイミドを得
ることができる。この場合、目的とするポリイミド膜の
作製は、得られるポリイミドが溶媒に可溶であれば、そ
れを含む製膜溶液からキャスト法などにより製膜すれば
よいが、得られるポリイミドが不溶の場合は、前駆体で
あるポリアミド酸の溶液を製膜後、上記と同様にしてイ
ミド化すればよい。 又、目的の水酸基やチオール基の導入は、この他、高
分子の重合後または製膜後に公知の手段(例えばメトキ
シ基の脱メチル化反応など)により導入することもでき
る。 芳香族テトラカルボン酸無水物や酸クロライドと芳香
族ジアミンの反応により、ポリイミドを得る場合のジア
ミン成分としては、2,4−ジアミノフェノール(アミド
ール)3,3′−ジアミノ−4,4′−ジヒドロキシフェニル
−2,2−プロパン、3,3′−ジヒドロキシベンチジン、3,
3′−ジアミノ−4−ヒドロキシジフェニルスルホン、
3,3′−ジアミノ−4,4′−ジヒドロキシジフェニルメタ
ン、4−アミノ−3−ヒドロキシベンゾイルヒドラジ
ド、3−アミノ−4−ヒドロキシベンゾイルヒドラジ
ド、3,3′−ジアミノ−4−ヒドロキシジフェニルメタ
ン、2,6−ジアミノフェノール−4−スルホン酸、4,8−
ジアミノ−1,5−ジヒドロキシアントラキノン、4,6−ジ
アミノ−o−クレゾール及びこれらの化合物の水酸基を
チオール基に置き換えたものなどを挙げることができ
る。 次に本発明による芳香族系分離膜は、膜強度及び分離
性能を改善するため、架橋により3次元構造を有するこ
とが好ましい。この目的のため、水酸基及び/又はチオ
ール基の一部を例えば多官能のエポキシ、イソシアネー
ト、酸クロライドなどと製膜時又は製膜後反応させるこ
とができる。架橋剤の選択に関しては、分離対象や使用
温度などの条件により最適なものが選ばれる。 さらに、200℃以上の温度、好ましくは250℃以上の温
度で熱処理することにより自己架橋する熱架橋を併用す
ることも可能である。この他、当該芳香族高分子中にイ
オン性基を含有する場合、多価金属によるイオン架橋、
ポリマー同士のポリイオンコンプレックス化などのイオ
ン性架橋を用いることもできる。 この様にして作製された膜は水/有機物混合物、例え
ばギ酸、酢酸、プロピオン酸、酪酸等の有機酸、メタノ
ール、エタノール、イソプロパノール等のアルコール
類、その他ケトン、エーテル、アルデヒド、アミン類な
ど広範な有機化合物を含む水溶液又は蒸気混合物、さら
にこれら有機物同士の浸透気化並びに蒸気透過用の分離
に用いられる。 本発明のポリイミド膜は、浸透気化並びに蒸気透過用
としての用途以外に、該ポリイミドの耐熱性、耐溶剤性
の特徴を生かし、気体分離並びに、水、有機物、イオン
処理用選択透過膜として用いることができる。これに
は、透析膜、逆浸透膜、限外濾過膜、精密濾過膜などを
例として上げることができる。又種々の複合膜の基材と
しても適当である。 本発明になる膜は、平膜、チューブ状膜、中空糸膜の
いずれの形態でも用いることが可能である。平膜は、そ
のまま積層するか、プリーツ型、又は渦巻状に成型して
モジュールとすることができる。一般に、透過速度を増
加させるためには、膜厚を薄くすることが好ましく、こ
のために相転換法などの手法による非対称膜や支持体
(基材膜)上への塗布などの手法による複合膜などの形
態で用いられる。 ガス分離、浸透気化、蒸気透過法などでは、非対称膜
や複合膜と分離活性層は、実質上無孔性で、厚みは10μ
m以下であることが好ましい。又、中空糸状で用いる場
合、中空糸の一方のみに分離活性層が存在し、他の側は
微多孔(〜0.1μm以上)性であることが透過の抵抗を
低く抑えるために好ましい。 逆浸透膜、限外濾過膜、精密濾過膜に至る一連の分離
膜では、分離対象物に応じて分離活性層の孔径や厚みを
変化させる必要があり、これまでに公知となっている手
法を適用し、種々の添加剤を含んだ製膜用ポリマー溶液
から、相転換法などにより、目的に応じた平膜、中空糸
膜などを製造することができる。
The present inventors have intensively studied the above points, and have reached the present invention. That is, the present invention relates to a separation membrane for pervaporation and vapor permeation mainly comprising an aromatic polymer having a hydroxyl group and / or a thiol group as a substituent. An organic mixture or a membrane for separating water / organic matter is required to have not only excellent selective separation properties but also solvent resistance and heat resistance. The present inventor has selected water / acetic acid as a model of an organic mixture to be separated, selected pervaporation from various separation methods, and searched for a membrane material having excellent separation properties and durability. An aromatic polymer having a hydroxyl group and / or a thiol group in the side chain has been found. Further, in order to improve the separation performance of the membrane represented by the separation coefficient and the permeation rate, and to impart durability, as a result of conducting various studies, in particular, introducing a three-dimensional structure by crosslinking into the membrane,
In addition, the inventors have found that it is effective to heat-treat the film at a temperature of 200 ° C. or higher, and have completed the present invention. Hereinafter, the present invention will be described in more detail. The aromatic separation membrane in the present invention has the following general formula [However, R 1 represents a tetravalent, R 2 represents a divalent aromatic organic group, X represents a hydroxyl group and / or a thiol group as a substituent of R 2 , and n is an integer of 1 to 4. Is a main repeating unit. In this case, a part of the imide group may be present in the form of amic acid. Further, in the general formula [I], Is preferable, and as R 1 , Such a structure is appropriate. The method for producing the imide polymer used in the present invention is not particularly limited. For example, an aromatic tetracarboxylic anhydride such as pyromellitic anhydride is reacted with a hydroxyl group and / or a thiol group-containing aromatic diamine. Thus, after obtaining the polyamic acid which is a precursor of the polyimide, the polyimide can be easily obtained by forming an imide ring by heating or by the action of a dehydrating agent such as acetic anhydride / pyridine. In this case, the intended polyimide film is prepared by forming a film by a casting method or the like from a film forming solution containing the obtained polyimide if the obtained polyimide is soluble in a solvent, but if the obtained polyimide is insoluble, After forming a solution of the precursor polyamic acid, imidization may be performed in the same manner as described above. In addition, the intended hydroxyl group or thiol group can be introduced by known means (eg, demethylation reaction of methoxy group) after polymerization of polymer or film formation. As a diamine component for obtaining a polyimide by reacting an aromatic tetracarboxylic anhydride or an acid chloride with an aromatic diamine, 2,4-diaminophenol (amidol) 3,3'-diamino-4,4'-dihydroxy Phenyl-2,2-propane, 3,3'-dihydroxybenzidine, 3,
3'-diamino-4-hydroxydiphenyl sulfone,
3,3'-diamino-4,4'-dihydroxydiphenylmethane, 4-amino-3-hydroxybenzoylhydrazide, 3-amino-4-hydroxybenzoylhydrazide, 3,3'-diamino-4-hydroxydiphenylmethane, 2,6 -Diaminophenol-4-sulfonic acid, 4,8-
Examples thereof include diamino-1,5-dihydroxyanthraquinone, 4,6-diamino-o-cresol, and those obtained by replacing the hydroxyl group of these compounds with a thiol group. Next, the aromatic separation membrane according to the present invention preferably has a three-dimensional structure by crosslinking in order to improve membrane strength and separation performance. For this purpose, a part of the hydroxyl group and / or thiol group can be reacted with, for example, a polyfunctional epoxy, isocyanate, acid chloride or the like during or after film formation. With respect to the selection of the crosslinking agent, an optimum one is selected depending on conditions such as a separation object and a use temperature. Further, it is also possible to use heat crosslinking at a temperature of 200 ° C. or higher, preferably at 250 ° C. or higher, for self-crosslinking. In addition, when the aromatic polymer contains an ionic group, ionic crosslinking by a polyvalent metal,
Ionic crosslinking, such as polyion complexing of polymers, can also be used. Membranes prepared in this manner can be used in a wide range of water / organic mixtures, for example, organic acids such as formic acid, acetic acid, propionic acid and butyric acid, alcohols such as methanol, ethanol and isopropanol, and other ketones, ethers, aldehydes and amines. It is used for an aqueous solution or a vapor mixture containing an organic compound, and further for pervaporation of these organic substances and separation for vapor permeation. The polyimide membrane of the present invention can be used as a selective permeable membrane for gas separation and water, organic substances, and ion treatment, in addition to the use for pervaporation and vapor permeation, taking advantage of the heat resistance and solvent resistance characteristics of the polyimide. Can be. Examples thereof include a dialysis membrane, a reverse osmosis membrane, an ultrafiltration membrane, and a microfiltration membrane. It is also suitable as a base material for various composite films. The membrane according to the present invention can be used in any form of a flat membrane, a tubular membrane, and a hollow fiber membrane. The flat membrane may be laminated as it is, or may be formed into a module by being formed into a pleated shape or a spiral shape. Generally, in order to increase the permeation rate, it is preferable to reduce the film thickness. For this reason, an asymmetric membrane by a technique such as a phase inversion method or a composite membrane by a technique such as coating on a support (substrate membrane) is preferred. It is used in such a form. In gas separation, pervaporation, and vapor permeation methods, the asymmetric membrane or composite membrane and the separation active layer are substantially nonporous and have a thickness of 10 μm.
m or less. When used in the form of a hollow fiber, it is preferred that only one of the hollow fibers has a separation active layer and the other side is microporous (up to 0.1 μm or more) in order to suppress permeation resistance. In a series of separation membranes ranging from reverse osmosis membranes, ultrafiltration membranes, and microfiltration membranes, it is necessary to change the pore size and thickness of the separation active layer according to the separation target. A flat membrane, a hollow fiber membrane, or the like can be produced from a polymer solution for film formation containing various additives by a phase inversion method or the like.

【実施例】【Example】

以下に実地例を示してさらに具体的に本発明を説明す
る。 なお、分離係数αは、下式により算出した。 α=(X/Y)p/(X/Y) ここでXは水の濃度(重量%)、Yは酢酸の濃度(重
量%)、fは原液側、pは透過側を表す。 実施例1 表−1に示す構造式を持つジフェニルエーテルテトラ
カルボン酸無水物(ODPA)と3,3′−ジヒドロキシベン
チジン(HAB)をODPA/HAB=0.97のモル比でジメチルア
セトアミド(DMAc)中で反応させ、前駆体のポリアミド
酸ワニスを得た。 製膜は上記ポリアミド酸ワニスをDMAcで適当な濃度に
希釈し、ガラス板上にキャストした。100℃で1時間乾
燥した後ガラス板よりはがし、100℃で1晩、200℃で6
時間、さらに250℃で2時間、真空下で加熱処理するこ
とにより、ポリイミド均一膜を得た。80重量%酢酸を用
い、70℃で該膜の浸透気化性能を測定した結果を表−2
に示す。 実施例2〜4 表−1に示した酸無水物を使用し、実施例1と同様
に、ポリイミド膜をそれぞれ作製した。実施例1と同様
にして測定したそれらの膜の浸透気化性能を表−2に示
す。 実施例5 実施例1で得られたアミド酸ワニスに、3官能エポキ
シとして日産化学(株)社製のTEPIC(商品名)を4.7重
量%添加し、実施例1と同様に製膜し、架橋ポリイミド
膜を得た。実施例1と同様にして測定した該膜の浸透気
化性能を表−2に示す。 実施例6 実施例1で得られたポリアミド酸ワニスに、日産化学
(株)社製のTEPIC(商品名)を9.4重量%添加し、架橋
ポリイミド膜を得た。膜の熱処理は、200℃で6時間の
処理後、さらに300℃で2時間の真空乾燥を行った。実
施例1と同様にして測定した該膜の浸透気化性能を表−
2に示す。
Hereinafter, the present invention will be described more specifically with reference to practical examples. The separation coefficient α was calculated by the following equation. α = (X / Y) p / (X / Y) f where X represents the concentration of water (% by weight), Y represents the concentration of acetic acid (% by weight), f represents the stock solution side, and p represents the permeation side. Example 1 Diphenylethertetracarboxylic anhydride (ODPA) having the structural formula shown in Table 1 and 3,3'-dihydroxybenzidine (HAB) were dissolved in dimethylacetamide (DMAc) at a molar ratio of ODPA / HAB = 0.97. The reaction was performed to obtain a precursor polyamic acid varnish. For the film formation, the above polyamic acid varnish was diluted to an appropriate concentration with DMAc, and cast on a glass plate. After drying at 100 ° C for 1 hour, peel off from the glass plate.
By subjecting the mixture to a heat treatment at 250 ° C. for 2 hours under vacuum, a polyimide uniform film was obtained. Table 2 shows the results of measuring the pervaporation performance of the membrane at 70 ° C. using 80% by weight acetic acid.
Shown in Examples 2 to 4 Using the acid anhydrides shown in Table 1, polyimide films were prepared in the same manner as in Example 1. Table 2 shows the pervaporation performance of these membranes measured in the same manner as in Example 1. Example 5 To the amide varnish obtained in Example 1, 4.7% by weight of TEPIC (trade name) manufactured by Nissan Chemical Industries, Ltd. was added as a trifunctional epoxy, and a film was formed in the same manner as in Example 1 and crosslinked. A polyimide film was obtained. Table 2 shows the pervaporation performance of the membrane measured in the same manner as in Example 1. Example 6 To the polyamic acid varnish obtained in Example 1, 9.4% by weight of TEPIC (trade name) manufactured by Nissan Chemical Industries, Ltd. was added to obtain a crosslinked polyimide film. The heat treatment of the film was performed at 200 ° C. for 6 hours, followed by vacuum drying at 300 ° C. for 2 hours. Table 1 shows the pervaporation performance of the membrane measured in the same manner as in Example 1.
It is shown in FIG.

【発明の効果】【The invention's effect】

本発明による芳香族系共重合分離膜は、有機物及び水
/有機物の分離に対して、優れた分離特性を有するのみ
ならず、耐溶剤性及び耐熱性についても優れており、浸
透気化や蒸気透過法などの膜分離プロセスの実用化に極
めて有効である。
The aromatic copolymer separation membrane according to the present invention not only has excellent separation characteristics for separation of organic substances and water / organic substances, but also has excellent solvent resistance and heat resistance, and has permeation vaporization and vapor permeation. This is extremely effective for the practical use of a membrane separation process such as a method.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) B01D 71/64 B01D 61/36 B01D 53/22 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int.Cl. 6 , DB name) B01D 71/64 B01D 61/36 B01D 53/22

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】下記一般式[I]を主な繰り返し単位とす
るイミド系高分子からなる浸透気化または蒸気透過用芳
香族系分離膜。 [但し、R1は4価、R2は2価のそれぞれ芳香族系有機基
を表し、XはR2の置換基である水酸基及び/又はチオー
ル基を表し、nは1〜4の整数である]
An aromatic separation membrane for pervaporation or vapor permeation comprising an imide polymer having the following general formula [I] as a main repeating unit. [However, R 1 represents a tetravalent, R 2 represents a divalent aromatic organic group, X represents a hydroxyl group and / or a thiol group as a substituent of R 2 , and n is an integer of 1 to 4. is there]
【請求項2】一般式[I]の式中、 である請求項1記載の浸透気化または蒸気透過用芳香族
系分離膜。
2. A compound represented by the general formula [I]: The aromatic separation membrane for pervaporation or vapor permeation according to claim 1, wherein
【請求項3】一般式[I]の式中、R1である請求項2記載の浸透気化または蒸気透過用芳香族
系分離膜。
(3) In the formula (I), R 1 is 3. The aromatic separation membrane for pervaporation or vapor permeation according to claim 2, wherein
【請求項4】架橋剤及び/又は熱により架橋してなるこ
とを特徴とする請求項1〜3のいずれか1項に記載の浸
透気化または蒸気透過用芳香族系分離膜。
4. The aromatic separation membrane for pervaporation or vapor permeation according to claim 1, wherein the aromatic separation membrane is crosslinked by a crosslinking agent and / or heat.
【請求項5】架橋が200℃以上の温度で熱処理してなる
ことを特徴とする請求項4記載の浸透気化または蒸気透
過用芳香族系分離膜。
5. The aromatic separation membrane for pervaporation or vapor permeation according to claim 4, wherein the crosslinking is heat-treated at a temperature of 200 ° C. or higher.
JP2229870A 1990-08-31 1990-08-31 Aromatic separation membrane Expired - Fee Related JP2984716B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2229870A JP2984716B2 (en) 1990-08-31 1990-08-31 Aromatic separation membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2229870A JP2984716B2 (en) 1990-08-31 1990-08-31 Aromatic separation membrane

Publications (2)

Publication Number Publication Date
JPH04110029A JPH04110029A (en) 1992-04-10
JP2984716B2 true JP2984716B2 (en) 1999-11-29

Family

ID=16898997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2229870A Expired - Fee Related JP2984716B2 (en) 1990-08-31 1990-08-31 Aromatic separation membrane

Country Status (1)

Country Link
JP (1) JP2984716B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101359166B1 (en) 2009-03-27 2014-02-06 유오피 엘엘씨 Blend polymer membranes comprising thermally rearranged polymers derived from aromatic pol yimides containing ortho-positioned functional groups

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5607721B2 (en) * 2009-03-27 2014-10-15 ユーオーピー エルエルシー High performance crosslinked polybenzoxazole and polybenzothiazole polymer films
US8613362B2 (en) * 2009-03-27 2013-12-24 Uop Llc Polymer membranes derived from aromatic polyimide membranes
US8132677B2 (en) * 2009-03-27 2012-03-13 Uop Llc Polymer membranes prepared from aromatic polyimide membranes by thermal treating and UV crosslinking
JP2013027819A (en) * 2011-07-28 2013-02-07 Fujifilm Corp Gas separation composite membrane, method of manufacturing the same, gas separation module using the same, and gas separation apparatus as well as gas separation method
JP2013188742A (en) 2012-02-17 2013-09-26 Fujifilm Corp Composite membrane for gas separation, method for producing the same, gas separation module using the same, gas separation device, and gas separation method
JP5848154B2 (en) 2012-02-17 2016-01-27 富士フイルム株式会社 Gas separation composite membrane, method for producing the same, gas separation module using the same, gas separation device, and gas separation method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101359166B1 (en) 2009-03-27 2014-02-06 유오피 엘엘씨 Blend polymer membranes comprising thermally rearranged polymers derived from aromatic pol yimides containing ortho-positioned functional groups

Also Published As

Publication number Publication date
JPH04110029A (en) 1992-04-10

Similar Documents

Publication Publication Date Title
JP2888606B2 (en) Amine-modified polyimide film
EP0509260A1 (en) Composite or asymmetric fluorine-containing polyimide membrane, a process for manufacturing the same and a method for the separation and concentration of gas using the same
US4071590A (en) Composite asymmetrical membranes
EP0532198A1 (en) Polyphenylene oxide-derived membranes for separation in organic solvents
JP2984716B2 (en) Aromatic separation membrane
US3817386A (en) Reverse osmosis membranes from pyrrone polymer precursors
US4410568A (en) Process for preparing selective permeable membrane
JP2900184B2 (en) Aromatic copolymer separation membrane
JPH0516291B2 (en)
JPH11192420A (en) Separation membrane and separation of olefin using the same
JPH0516290B2 (en)
JP3018093B2 (en) Polyimide water selective separation membrane
US4851127A (en) Novel amine-based presursor compounds and composite membranes thereof
JPS6028803A (en) Selective permeable membrane and its manufacture
JPH0368731B2 (en)
JPH0685860B2 (en) Separation membrane manufacturing method
JPH0568292B2 (en)
JPH0589B2 (en)
US5221482A (en) Polyparabanic acid membrane for selective separation
KR102598051B1 (en) Crosslinked polyimide organic solvent nanofiltration membrane having improved solvent resistance and preparation method thereof
JP2827212B2 (en) Polyamideimide separation membrane
KR102598050B1 (en) Polyimide-based organic solvent nanofiltration membrane with crosslinked active layer and preparation method thereof
CN115260494B (en) Polyimide and thin-layer composite film thereof and preparation method
JPH0214725A (en) Hollow yarn composite membrane for separation of organic material
JP2918687B2 (en) Polyparabanic acid selective separation membrane

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees