JP2984185B2 - Manufacturing method of low iron loss non-oriented electrical steel sheet with small magnetic anisotropy - Google Patents

Manufacturing method of low iron loss non-oriented electrical steel sheet with small magnetic anisotropy

Info

Publication number
JP2984185B2
JP2984185B2 JP6173922A JP17392294A JP2984185B2 JP 2984185 B2 JP2984185 B2 JP 2984185B2 JP 6173922 A JP6173922 A JP 6173922A JP 17392294 A JP17392294 A JP 17392294A JP 2984185 B2 JP2984185 B2 JP 2984185B2
Authority
JP
Japan
Prior art keywords
mass
less
iron loss
oriented electrical
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP6173922A
Other languages
Japanese (ja)
Other versions
JPH0841538A (en
Inventor
浩史 矢埜
厚人 本田
隆史 小原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP6173922A priority Critical patent/JP2984185B2/en
Publication of JPH0841538A publication Critical patent/JPH0841538A/en
Application granted granted Critical
Publication of JP2984185B2 publication Critical patent/JP2984185B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明はモーターやトランス等
の鉄心材料として使用される低鉄損の無方向性電磁鋼板
の製造方法に係り、特に磁気異方性の改善に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a non-oriented electrical steel sheet having a low iron loss and used as a core material for motors and transformers, and more particularly to an improvement in magnetic anisotropy.

【0002】無方向性電磁鋼板は、モーターやトランス
等の鉄心材料として広範囲にわたって使用されている。
近年、省エネルギーの観点より、電気機器の効率向上に
対する要求が強く、鉄心材料についても、より一層の鉄
損低減が望まれるようになってきている。
[0002] Non-oriented electrical steel sheets are widely used as iron core materials for motors and transformers.
In recent years, from the viewpoint of energy saving, there is a strong demand for improving the efficiency of electric devices, and it has been desired that iron core materials be further reduced in iron loss.

【0003】[0003]

【従来の技術】無方向性電磁鋼板の鉄損低減手段として
は、Si, Alなどの合金元素の添加量を増やし、鋼板の電
気抵抗を高める方法が一般的に知られている。しかしな
がら、現在の無方向性電磁鋼板のハイグレード品の、鉄
損レベルをなお一層向上させるため、Si, Alなどの添加
量を増加することは圧延性の面で問題がある。しかも、
Si, Alなどの添加量の増加は材料のコスト高を招く不利
も生じる。
2. Description of the Related Art As a means for reducing iron loss of a non-oriented electrical steel sheet, a method of increasing the amount of alloying elements such as Si and Al to increase the electrical resistance of the steel sheet is generally known. However, in order to further improve the iron loss level of the current high-grade non-oriented electrical steel sheets, increasing the amount of Si, Al, or the like is problematic in terms of rollability. Moreover,
An increase in the amount of addition of Si, Al, or the like also causes a disadvantage of increasing the cost of the material.

【0004】その他の鉄損改善手段としては、冷間圧延
条件に工夫を凝らし、集合組織を改善して鉄損を低減す
る方法が、例えば特公昭56-22931号公報(鉄損が低く磁
束密度の高い無方向性珪素鋼板の製造方法)に開示され
ている。しかし、これらの集合組織改善手段は添加Si量
および製造工程に合った集合組織最適化条件がすでに提
案されている現状では、集合組織の最適化によるより一
層の鉄損低減は極めて難しい。
As another iron loss improving method, a method of reducing the iron loss by improving the texture by devising cold rolling conditions is disclosed in, for example, Japanese Patent Publication No. 56-22931 (low iron loss and low magnetic flux density). Method for producing a non-oriented silicon steel sheet having a high hardness). However, with these texture improvement means, it is extremely difficult to further reduce the iron loss by optimizing the texture under the current situation where texture optimization conditions suitable for the amount of added Si and the manufacturing process have already been proposed.

【0005】また、鋼中の不純物元素量または介在物お
よび析出物個数を低減することにより、鉄損を低減する
方法{例えば特開昭59−74258号公報(鉄損の少
ない無方向性電磁鋼板)}がある。この方法は、鉄損低
減に効果的であるが、かような不純物低減のための鋼の
高純度化は製銑および製鋼技術に依存するものであり、
無方向性電磁鋼板の製造分野における高純度化は現在の
製銑および製鋼の現状技術のほぼ極限で行っているの
で、高純度化によるより一層の鉄損低減は製銑、製鋼技
術のさらなる進歩を待たなければならない。
Also, a method of reducing iron loss by reducing the amount of impurity elements or the number of inclusions and precipitates in steel. For example, Japanese Unexamined Patent Publication No. Sho 59-74258 (Non-oriented electrical steel sheet with small iron loss) ) There is}. This method is effective in reducing iron loss, but purification of steel to reduce such impurities depends on pig iron making and steel making technology,
Higher purification in the field of production of non-oriented electrical steel sheets is performed at almost the limit of current ironmaking and steelmaking technologies, and further reduction of iron loss by highpurification further advances ironmaking and steelmaking technology. Have to wait.

【0006】一方、介在物および析出物個数の低減に関
しては、特開昭59-74256号(鉄損の少ない無方向性珪素
鋼板)、同60-152628 号(鉄損の低い無方向性けい素鋼
板の製造方法)および特開平3-104844 号(磁気特性の
優れた無方向性電磁鋼板およびその製造方法)の各公報
に、介在物の個数を減少させて低鉄損化を達成する技術
が開示されている。しかし、これらの技術における、鋼
中の介在物および析出物の個数を低減させることは、結
局のところ上記従来技術と同様に高純度化技術に依存し
ており、従って、これらの手段による場合もより一層の
鉄損の改善は製銑、製鋼技術の進歩を待たなければなら
ない。
On the other hand, regarding the reduction of the number of inclusions and precipitates, JP-A-59-74256 (non-oriented silicon steel sheet with small iron loss) and JP-A-60-152628 (non-oriented silicon sheet with low iron loss) Japanese Patent Laid-Open Publication No. 3-104844 (Non-oriented electrical steel sheet having excellent magnetic properties and a method of manufacturing the same) discloses techniques for reducing the number of inclusions to reduce iron loss. It has been disclosed. However, in these techniques, reducing the number of inclusions and precipitates in the steel ultimately depends on a high-purification technique as in the above-described conventional technique. Further improvement of iron loss must wait for the progress of ironmaking and steelmaking technology.

【0007】ここで、それぞれの上記従来技術について
詳しくみると、特開昭59-74256号公報においては、1μ
m 以上の大きさの介在物の個数が 120個/mm2 以上の領
域で介在物個数と鉄損との間に相関が認められるもの
の、1μm 未満の介在物およびその個数が鉄損に及ぼす
影響に関しては明確にされていない。
[0007] Here, each of the above prior arts will be described in detail.
Although there is a correlation between the number of inclusions and the iron loss in the region where the number of inclusions with a size of at least 120 m / mm 2 or more, the effect of inclusions of less than 1 μm and the number on the iron loss Has not been clarified.

【0008】また、特開昭60-152628 号公報では5μm
以上の介在物頻度を80個/mm2 以下にすることが、最終
焼鈍の効果を引き出すのに必要であると記載されてい
る。しかしながら、介在物の個数およびその大きさが鉄
損に及ぼす影響については述べられていない。
[0008] In Japanese Patent Application Laid-Open No.
It is described that it is necessary to reduce the frequency of the inclusions to 80 pieces / mm 2 or less in order to bring out the effect of final annealing. However, the effect of the number and size of inclusions on iron loss is not described.

【0009】さらに、特開平3−104844号公報に
は、Si量が0.1 〜2.0 wt%の無方向性けい素鋼板にお
ける介在物の大きさおよび個数を制御する方法が開示さ
れている。しかし、Si量が 2.5〜5.0 wt%でかつS量が
0.0030wt%以下のフルプロセス材の無方向性けい素鋼板
における介在物の鉄損に及ぼす影響および介在物の制御
方法は述べられていない。また、0.5 μm 以下の微細な
MnS の低減により鉄損を改善しようとしても、0.5 μm
以上5μm 以下の酸化物を多数残存させることになるの
で、これらの酸化物が鉄損に悪影響を及ぼすのは不可避
で、鉄損低減効果が減少してしまう。同様の微細介在物
低減の手段として、特開昭51-62115号(鉄損の低い無方
向性珪素鋼板)および同55-24942号(鉄損の低い無方向
性電磁鋼板)各公報には、REM および Ca を用いて微細
な硫化物の析出を防止する方法が開示されている。しか
し、いずれの方法も介在物の個数およびその大きさが鉄
損に及ぼす影響については述べられていない。
Further, Japanese Patent Application Laid-Open No. 3-104844 discloses a method of controlling the size and number of inclusions in a non-oriented silicon steel sheet having a Si content of 0.1 to 2.0 wt%. However, when the Si content is 2.5-5.0 wt% and the S content is
The effects of inclusions on iron loss in non-oriented silicon steel sheets of 0.0030 wt% or less in a non-oriented silicon steel sheet and the method of controlling inclusions are not described. In addition, fine
0.5 μm when trying to improve iron loss by reducing MnS
Since many oxides of 5 μm or less remain, it is inevitable that these oxides have an adverse effect on iron loss, and the effect of reducing iron loss is reduced. As similar means for reducing fine inclusions, JP-A-51-62115 (non-oriented silicon steel sheet with low iron loss) and JP-A-55-24942 (non-oriented electrical steel sheet with low iron loss) each disclose A method for preventing precipitation of fine sulfides using REM and Ca is disclosed. However, neither method describes the effect of the number and size of inclusions on iron loss.

【0010】[0010]

【発明が解決しようとする課題】ところで発明者らは、
先に、特願平5−242920号明細書において、積極
的に鋼中の介在物および析出物(以下、総称して介在物
という)の大きさ、そして大きさごとの全介在物に対す
る体積分率を制御することにより、上記の問題を有利に
解決した無方向性電磁鋼板を提案した。
SUMMARY OF THE INVENTION By the way, the inventors have
First, in the specification of Japanese Patent Application No. 5-242920, the size of inclusions and precipitates (hereinafter, collectively referred to as inclusions) in steel is positively measured, and the volume integral of all inclusions for each size is described. We proposed a non-oriented electrical steel sheet that advantageously solved the above problems by controlling the rate.

【0011】すなわち、C:0.01mass%以下、S:2.5
〜5.0 mass%を含み、かつ、S≦0.0030mass%、N:≦
0.0030mass%およびO≦0.0020mass%に抑制し、しかも
4μm以上および1μm未満の鋼中介在物を全鋼中介在
物に対して体積分率でそれぞれ60%以下および15%以下
とすることからなる無方向性電磁鋼板である。上記鋼板
の開発により、鉄損さらには回転鉄損については大幅な
改善が達成されたけれども、磁気異方性の点に関して未
だ改善の余地を残していた。
That is, C: 0.01 mass% or less, S: 2.5
-5.0 mass%, S ≦ 0.0030 mass%, N: ≦
0.0030 mass% and O ≦ 0.0020 mass%, and the inclusions in the steel of 4 μm or more and less than 1 μm are made to be 60% or less and 15% or less in volume fraction with respect to the inclusions in all steels, respectively. It is a non-oriented electrical steel sheet. Although the iron loss and the rotary iron loss have been greatly improved by the development of the above-mentioned steel sheet, there is still room for improvement in terms of magnetic anisotropy.

【0012】なお、異方性の改善技術としては、特開平
3-294422 号公報(磁気特性の優れた無方向性電磁鋼板
の製造方法)に、熱延板焼鈍条件、冷延圧下率、仕上げ
焼鈍条件を所定の範囲に規定することにより板面内圧延
方向と圧延方向に対し垂直な方向の磁気特性差を小さく
した技術が提案されている。しかしながら、この方法
は、圧延方向と圧延方向に対し垂直な方向の磁気特性差
だけで異方性を評価しており、モーターなどの鉄心に用
いられる材料に要求される板面内の圧延方向と圧延方向
に対し垂直な方向以外の方向に対する磁気異方性につい
ては検討が行なわれていない。また、特公昭51-942号公
報(面内無方向性磁性鋼板の製造方法)には、強冷間圧
延により(100 )集合組織を発達させる手段が開示され
ているが、工業的に冷間圧下率:90%以上で圧延するこ
とは難しく、かつ製造コストが上昇するので実用化は困
難である。
Japanese Patent Application Laid-Open No. 3-294422 (Method of manufacturing a non-oriented electrical steel sheet having excellent magnetic properties) discloses a technique for improving the anisotropy, which includes annealing conditions of a hot-rolled sheet, a reduction ratio of a cold-rolled sheet, and a finish. A technique has been proposed in which the difference in magnetic properties between the in-plane rolling direction and the direction perpendicular to the rolling direction is reduced by defining the annealing conditions in a predetermined range. However, in this method, the anisotropy is evaluated only by the magnetic property difference in the rolling direction and the direction perpendicular to the rolling direction, and the in-plane rolling direction required for a material used for an iron core such as a motor is determined. The magnetic anisotropy in directions other than the direction perpendicular to the rolling direction has not been studied. Japanese Patent Publication No. 51-942 (a method for manufacturing an in-plane non-oriented magnetic steel sheet) discloses a means for developing a (100) texture by strong cold rolling. It is difficult to roll at a draft of 90% or more, and the production cost is increased, so that practical use is difficult.

【0013】この発明は、上記の実情に鑑み開発したも
ので、低鉄損化に併せ磁気異方性の一層の改善を可能な
らしめる無方向性電磁鋼板の有利な製造方法を提案する
ことを目的とする。
The present invention has been developed in view of the above-mentioned circumstances, and proposes an advantageous method for manufacturing a non-oriented electrical steel sheet capable of further improving magnetic anisotropy in addition to reducing iron loss. Aim.

【0014】[0014]

【課題を解決するための手段】以下、この発明の解明経
緯について説明する。まず、介在物の個数と鉄損との関
係を、Si含有量が3.0 mass%で板厚:0.5 mmの無方向性
電磁鋼板において調査した。なお、介在物調査は光学顕
微鏡により行った。その結果として、介在物個数と鉄損
との関係を図1に示す。全体の傾向からすると、鋼中の
介在物を少なくすることで鉄損が改善されるようである
が、前記従来技術で述べたような明確な介在物の個数と
鉄損との関係は得られなかった。そこで、今回調査した
無方向性電磁鋼板およびその製造条件についてさらに調
べた結果、調査材は鋼中S,N量とも同一レベル(S≦
0.0030mass%、N≦0.0030mass%)、同一工程で製造し
たが、製鋼および熱間圧延などの工程における製造条件
が若干ばらついていたことが判明した。
The details of the invention will be described below. First, the relationship between the number of inclusions and iron loss was investigated in a non-oriented electrical steel sheet having a Si content of 3.0 mass% and a thickness of 0.5 mm. In addition, the inclusion investigation was performed with an optical microscope. As a result, the relationship between the number of inclusions and iron loss is shown in FIG. From the overall trend, it seems that iron loss is improved by reducing the inclusions in the steel, but the clear relationship between the number of inclusions and iron loss as described in the prior art is obtained. Did not. Therefore, as a result of further investigation on the non-oriented electrical steel sheet investigated this time and the manufacturing conditions thereof, the investigation materials showed that the S and N contents in the steel were at the same level (S ≦
(0.0030mass%, N ≦ 0.0030mass%), and were manufactured in the same process, but it was found that manufacturing conditions in processes such as steel making and hot rolling were slightly varied.

【0015】そこで、製鋼および熱間圧延などの製造条
件の変化により、介在物の存在形態、特に介在物のサイ
ズが変化すると考えられるため、介在物サイズが鉄損に
およぼす影響に着目して実験を行った。すなわち、Si:
3.5 mass%を含む無方向性電磁鋼板を用い、4μm 以
上、2μm 以上4μm 未満、1μm 以上2μm 未満、1
μm 未満の範囲の介在物個数をそれぞれ測定し、鉄損
(W15/50 )と介在物サイズごとの1mm2 当りの個数と
を重回帰分析し、鉄損におよぼす介在物サイズごとの影
響を調査した。この介在物サイズごとの鉄損におよぼす
影響の解析結果を図2に示す。図2より4μm 以上の介
在物が鉄損を最も劣化させ、次いで1μm 未満の微細な
介在物が鉄損を劣化させるが、2μm 以上4μm 未満お
よび1μm 以上2μm 未満の介在物が鉄損におよぼす影
響は小さいことが判明した。この4μm 以上の介在物が
鉄損におよぼす影響が大きくなった理由としては、再結
晶過程で4μm 以上の介在物が磁気特性の面より好まし
くない方位の結晶粒を発生させる原因となったためと考
えられる。また、1μm 未満の介在物については、鉄損
に直接影響する磁壁の移動を妨げる作用が他のサイズの
介在物よりも大きかったためと推定される。
Therefore, it is considered that changes in manufacturing conditions such as steel making and hot rolling may change the form of inclusions, particularly the size of the inclusions. Therefore, an experiment was conducted focusing on the effect of inclusion size on iron loss. Was done. That is, Si:
Using a non-oriented electrical steel sheet containing 3.5 mass%, 4 μm or more, 2 μm or more and less than 4 μm, 1 μm or more and less than 2 μm, 1
The number of inclusions in the range of less than μm was measured, and the iron loss (W 15/50 ) and the number of inclusions per 1 mm 2 for each inclusion size were subjected to multiple regression analysis to determine the effect of each inclusion size on iron loss. investigated. FIG. 2 shows an analysis result of the influence on the iron loss for each inclusion size. According to FIG. 2, inclusions of 4 μm or more deteriorate iron loss most, and fine inclusions of less than 1 μm deteriorate iron loss, but the effect of inclusions of 2 μm or more and less than 4 μm and inclusions of 1 μm or more and less than 2 μm on iron loss. Turned out to be small. The reason that the inclusions having a diameter of 4 μm or more have a large effect on iron loss is considered to be that inclusions having a diameter of 4 μm or more in the recrystallization process caused crystal grains having a less preferable orientation than the magnetic properties. Can be It is also presumed that the inclusion of less than 1 μm had a greater effect of preventing the movement of the domain wall that directly affects iron loss than the inclusions of other sizes.

【0016】次に、これらの鋼板の全介在物に対する4
μm 以上の大きさの介在物体積分率と鉄損との関係を図
3に示す。図3から明らかなように、4μm 以上の介在
物体積分率が60%を超えると急激に鉄損(W15/50 )が
劣化するのがわかる。また、全介在物に対する4μm 以
上の介在物体積分率が50%以下の鋼板の1μm 未満の介
在物体積分率と鉄損の関係を図4に示す。ここでの介在
物調査は電子顕微鏡により行った。上記の4μm 以上の
大きさの介在物ほど体積分率増加による鉄損劣化は明確
ではないが、1μm 未満の介在物の体積分率が15%を超
えると、鉄損値(W15/50 )は劣化する。このことよ
り、鉄損を改善するためには介在物の体積分率としては
4μm 以上の介在物が60%以下、1μm 未満の介在物が
15%以下とすることが重要であることがわかる。
Next, 4% of all inclusions of these steel sheets
FIG. 3 shows the relationship between the intervening object volume fraction having a size of μm or more and iron loss. As is apparent from FIG. 3, when the volume fraction of the intervening object of 4 μm or more exceeds 60%, the iron loss (W 15/50 ) is rapidly deteriorated. FIG. 4 shows the relationship between the inclusion loss fraction of less than 1 μm and the iron loss of a steel sheet having an inclusion volume fraction of 4 μm or more and 50% or less with respect to all the inclusions. The inclusion investigation here was performed by an electron microscope. The iron loss deterioration due to the increase in the volume fraction is not clear as the inclusions having a size of 4 μm or more, but when the volume fraction of the inclusions less than 1 μm exceeds 15%, the iron loss value (W 15/50 ) Deteriorates. From this, in order to improve iron loss, the volume fraction of inclusions should be 60% or less for inclusions of 4 μm or more and less than 1 μm for inclusions.
It is understood that it is important that the content be 15% or less.

【0017】なお、介在物量の測定は、鋼板の板厚方向
の断面について観察したものであり、観察には光学顕微
鏡または電子顕微鏡のどちらを用いてもかまわず、光学
顕微鏡の場合は倍率を400 倍以下、電子顕微鏡の場合は
400 倍〜1000倍で観察を行った。試験片の作製および試
験方法(測定面積など)は JIS G0555に規定された、鋼
の非金属介在物の顕微鏡試験方法に基づき作製(研磨き
ずや、錆が出ないように試料を調整)および試験を行う
が、測定方法に関しては介在物によって占められた格子
点の数を数えるのではなく、介在物の個数および大きさ
は画像解析処理により測定した。介在物の大きさ(サイ
ズ及び体積)は観察像より画像解析処理装置を用いて介
在物の面積が等価となる円の直径を求め、その値より計
算した。
The amount of inclusions was measured by observing a cross section of the steel sheet in the thickness direction. The observation may be performed using an optical microscope or an electron microscope. Times or less, for an electron microscope
Observations were made at 400-1000x. The test specimen preparation and test method (measurement area, etc.) are based on the microscopic test method for non-metallic inclusions in steel specified in JIS G0555 (preparing the sample to prevent polishing flaws and rust) and testing. However, regarding the measuring method, the number and the size of the inclusions were measured by image analysis processing instead of counting the number of grid points occupied by the inclusions. The size (size and volume) of the inclusion was calculated from the observed image by using an image analysis processor to determine the diameter of a circle where the area of the inclusion is equivalent.

【0018】よって、この方法を用いることにより、光
学顕微鏡および低倍率の電子顕微鏡では測定が困難であ
る1μm 未満の介在物観察および測定も技術的になんら
問題なく行うことができた。今回の測定により得られた
結果は、介在物の分布が鋼板面内方向において等方的で
あると推測できるので、試料の平均的な介在物存在状況
を十分に代表しているものと考えられる。
Thus, by using this method, observation and measurement of inclusions smaller than 1 μm, which are difficult to measure with an optical microscope and a low-magnification electron microscope, could be performed without any technical problems. The results obtained by this measurement can be presumed that the distribution of inclusions is isotropic in the in-plane direction of the steel sheet, and is considered to sufficiently represent the average inclusion presence state of the sample. .

【0019】以下、介在物量の測定はすべてこの方法に
準じて行った。ここでの介在物は、上述した測定方法か
らも明らかなように、鋼中の非金属介在物の全てを包含
することを意味しており、当然硫化物系やAlN, Al2O3
どの析出物等も含むことは言うまでもない。ここで、鉄
損特性は25cmエプスタイン法により調べ、従来は考慮に
入れていなかった試料中の歪などの影響も考慮して、特
性を比較した。
Hereinafter, the measurement of the amount of inclusions was all performed according to this method. The inclusions here mean that they include all nonmetallic inclusions in the steel, as is clear from the measurement method described above, and naturally include sulfides and AlN and Al 2 O 3 . Needless to say, it contains precipitates and the like. Here, the iron loss characteristics were examined by the 25 cm Epstein method, and the characteristics were compared in consideration of the influence of strain in the sample, which was not taken into account conventionally.

【0020】かくして積極的に鋼中介在物の大きさおよ
びサイズごとの体積分率を制御することにより、効果的
に鉄損を低減することができ、ひいては従来の不純物成
分量および介在物量を低減する清浄な無方向性電磁鋼板
の製造手段による低鉄損化よりも、清浄化することなく
一層低い鉄損を安定して得られるようになった。。
Thus, by actively controlling the size of inclusions in the steel and the volume fraction for each size, iron loss can be effectively reduced, and the conventional amounts of impurity components and inclusions can be reduced. As a result, a lower iron loss can be stably obtained without cleaning, as compared with a case where the iron loss is reduced by a manufacturing method of a clean non-oriented electrical steel sheet. .

【0021】しかしながら、上記の鋼板には、前述した
とおり、磁気異方性に関して若干の問題を残していた。
そこで発明者らは、さらにこの点について検討を重ねた
結果、熱延板焼鈍、冷間圧延および仕上げ焼鈍に工夫を
加えることにより所期した目的が有利に達成されること
の知見を得た。なお、この発明では、磁気異方性として
C方向(圧延方向に対して直角方向)だけでなく、D方
向(圧延方向に対して45°方向…対角)の値についても
考慮に入れた。
However, as described above, the above-mentioned steel sheet still has some problems regarding magnetic anisotropy.
The inventors have further studied this point, and have found that the intended purpose can be advantageously achieved by devising hot-rolled sheet annealing, cold rolling, and finish annealing. In the present invention, not only the magnetic anisotropy but also the value in the C direction (a direction perpendicular to the rolling direction) as well as the value in the D direction (a 45 ° direction to the diagonal direction to the rolling direction) are taken into consideration.

【0022】すなわち、この発明は、上記の知見に基づ
いてなされたもので、その要旨とするところは以下の通
りである。 C:0.01mass%以下、 Si:2.5 〜5.0 mass% Mn:0.1 〜1.5 mass%及び Al:2.0 mass%以下 を含み、かつ S:0.0030mass%以下、 N:0.0030mass%以下及び O:0.0020mass%以下 に抑制し、残部は実質的にFeの組成になる鋼スラブを、
スラブ加熱後、熱間圧延し、ついでコイルに巻取った
後、熱延板焼鈍を施してから、1回又は中間焼鈍を挟む
2回の冷間圧延を行い、ついで仕上げ焼鈍を施す一連の
工程によって無方向性電磁鋼板を製造するに当たり、ス
ラブ加熱温度を1150℃以下とし、コイルに巻取った後、
900〜1100℃の温度範囲にて10秒〜3分間の熱延板焼鈍
を施し、ついで圧下率:60〜90%での冷間圧延後、 900
〜1100℃, 10〜60 sの仕上げ焼鈍を施すことを特徴とす
る磁気異方性の小さい低鉄損無方向性電磁鋼板の製造方
法(第1発明)。
That is, the present invention has been made based on the above findings, and the gist thereof is as follows. C: 0.01 mass% or less, Si: 2.5 to 5.0 mass% Mn: 0.1 to 1.5 mass% and Al: 2.0 mass% or less, S: 0.0030 mass% or less, N: 0.0030 mass% or less, and O: 0.0020 mass% % Of the steel slab, with the balance being substantially Fe.
After the slab is heated, hot-rolled, and then wound on a coil, subjected to hot-rolled sheet annealing, and then cold-rolled once or twice with intermediate annealing, followed by finish annealing. In producing a non-oriented electrical steel sheet, the slab heating temperature was set to 1150 ° C or less, and after winding into a coil,
After performing hot-rolled sheet annealing for 10 seconds to 3 minutes in a temperature range of 900 to 1100 ° C., then, after cold rolling at a reduction ratio of 60 to 90%, 900
A method for producing a low-iron-loss non-oriented electrical steel sheet having a small magnetic anisotropy, characterized by performing a finish annealing at 11100 ° C. for 10 to 60 s (first invention).

【0023】 第1発明において、鋼スラブが、さら
に、 Al:2.0 mass%以下 を含む組成になる磁気異方性の小さい低鉄損無方向性電
磁鋼板の製造方法(第2発明)。
[0023] In the first invention, a method for producing a low iron loss non-oriented electrical steel sheet having a small magnetic anisotropy, in which the steel slab further contains Al: 2.0 mass% or less (second invention).

【0024】 第1または第2発明において、鋼スラ
ブが、さらに、 P:0.005 〜0.15mass% を含む組成になる磁気異方性の小さい低鉄損無方向性電
磁鋼板の製造方法(第3、第4発明)。
In the first or second invention, the method for producing a low iron loss non-oriented electrical steel sheet having a small magnetic anisotropy, wherein the steel slab further has a composition containing P: 0.005 to 0.15 mass% (third, 4th invention).

【0025】 C:0.01mass%以下、 Si:2.5 〜5.0 mass%および Mn:0.1 〜1.5 mass% を含み、かつS,NおよびOの混入をそれぞれ S:0.0030mass%以下、 N:0.0030mass%以下および O:0.0020mass%以下 に抑制し、残部は実質的にFeの組成になる鋼スラブを、
スラブ加熱後、熱間圧延し、ついでコイルに巻取った
後、熱延板焼鈍を施してから、1回又は中間焼鈍を挟む
2回の冷間圧延を行い、ついで仕上げ焼鈍を施す一連の
工程によって無方向性電磁鋼板を製造するに当たり、ス
ラブ加熱後、 600℃以上の温度でコイルに巻取った後、
900〜1100℃の温度範囲にて10秒〜3分間の熱延板焼鈍
を施し、ついで圧下率:60〜90%での冷間圧延後、900
〜1100℃, 10〜60 sの仕上げ焼鈍を施すことを特徴とす
る磁気異方性の小さい低鉄損無方向性電磁鋼板の製造方
法(第5発明)。
C: 0.01 mass% or less, Si: 2.5 to 5.0 mass%, and Mn: 0.1 to 1.5 mass%, and the mixture of S, N and O is S: 0.0030 mass% or less, and N: 0.0030 mass%. Or less and O: 0.0020 mass% or less, and the remainder is a steel slab substantially having a Fe composition.
After the slab is heated, hot-rolled, and then wound on a coil, subjected to hot-rolled sheet annealing, and then cold-rolled once or twice with intermediate annealing, followed by finish annealing. After manufacturing the non-oriented electrical steel sheet, after heating the slab, winding it around a coil at a temperature of 600 ° C or higher,
After hot-rolled sheet annealing for 10 seconds to 3 minutes in the temperature range of 900 to 1100 ° C., and after cold rolling at a reduction ratio of 60 to 90%, 900
A method for producing a low-iron-loss non-oriented electrical steel sheet having a small magnetic anisotropy, characterized by performing finish annealing at 1100 ° C. for 10 to 60 s (fifth invention).

【0026】 第5発明において、鋼スラブが、さら
に、 Al:2.0 mass%以下 を含む組成になる磁気異方性の小さい低鉄損無方向性電
磁鋼板の製造方法(第6発明)。
In the fifth invention, a method for producing a low iron loss non-oriented electrical steel sheet having a small magnetic anisotropy, in which the steel slab further contains Al: 2.0 mass% or less (sixth invention).

【0027】 第5発明または第6発明において、鋼
スラブが、さらに、 P:0.005 〜0.15mass% を含む組成になる磁気異方性の小さい低鉄損無方向性電
磁鋼板の製造方法(第7、第8発明)。
In the fifth invention or the sixth invention, the method for producing a low iron loss non-oriented electrical steel sheet having a small magnetic anisotropy, wherein the steel slab further has a composition containing P: 0.005 to 0.15 mass% (No. 7) , An eighth invention).

【0028】 C:0.01mass%以下、 Si:2.5 〜5.0 mass%および Mn:0.1 〜1.5 mass% を含み、かつS,NおよびOの混入をそれぞれ S:0.0030mass%以下、 N:0.0030mass%以下および O:0.0020mass%以下 に抑制し、残部は実質的にFeの組成になる鋼スラブを、
スラブ加熱後、熱間圧延し、ついでコイルに巻取った
後、熱延板焼鈍を施してから、1回又は中間焼鈍を挟む
2回の冷間圧延を行い、ついで仕上げ焼鈍を施す一連の
工程によって無方向性電磁鋼板を製造するに当たり、ス
ラブ加熱温度を1150℃以下とし、 600℃以上の温度でコ
イルに巻取った後、900〜1100℃の温度範囲にて10秒〜
3分間の熱延板焼鈍を施し、ついで圧下率:60〜90%で
の冷間圧延後、 900〜1100℃, 10〜60 sの仕上げ焼鈍を
施すことを特徴とする磁気異方性の小さい低鉄損無方向
性電磁鋼板の製造方法(第9発明)。
C: 0.01 mass% or less, Si: 2.5 to 5.0 mass%, and Mn: 0.1 to 1.5 mass%, and the mixture of S, N and O is respectively S: 0.0030 mass% or less, N: 0.0030 mass% Or less and O: 0.0020 mass% or less, and the remainder is a steel slab substantially having a Fe composition.
After the slab is heated, hot-rolled, and then wound on a coil, subjected to hot-rolled sheet annealing, and then cold-rolled once or twice with intermediate annealing, followed by finish annealing. In manufacturing non-oriented electrical steel sheets, the slab heating temperature is set to 1150 ° C or less, and after winding the coil at a temperature of 600 ° C or more, the temperature range is 900 to 1100 ° C for 10 seconds to
Low magnetic anisotropy characterized by subjecting a hot-rolled sheet to annealing for 3 minutes, followed by cold rolling at a reduction ratio of 60 to 90%, and then finish annealing at 900 to 1100 ° C for 10 to 60 seconds. A method for producing a low iron loss non-oriented electrical steel sheet (ninth invention).

【0029】 第9発明において、鋼スラブが、さら
に、 Al:2.0 mass%以下 を含む組成になる磁気異方性の小さい低鉄損無方向性電
磁鋼板の製造方法(第10発明)。
[0029] In the ninth invention, a method for producing a low iron loss non-oriented electrical steel sheet having a small magnetic anisotropy, in which the steel slab further contains Al: 2.0 mass% or less (a tenth invention).

【0030】 第9または第10発明において、鋼ス
ラブが、さらに、 P:0.005 〜0.15mass% を含む組成になる磁気異方性の小さい低鉄損無方向性電
磁鋼板の製造方法(第11、第12発明)。
[0030] In the ninth or tenth invention, the steel slab further comprises a method for producing a low iron loss non-oriented electrical steel sheet having a small magnetic anisotropy and having a composition containing 0.005 to 0.15 mass%. Twelfth invention).

【0031】以下、実験結果に基づきこの発明を説明す
る。C:0.005mass %、Si:3.5 mass%およびMn:0.2
mass%を含み、かつS:0.0030mass%以下、N:0.0030
mass%以下およびO:0.0020mass%以下を含有し、さら
に4μm 以上の大きさの鋼中介在物が全鋼中介在物に対
して体積分率で60%以下で、かつ、1μm 未満の大きさ
の鋼中介在物が全鋼中介在物に対して体積分率で15%以
下である無方向性電磁鋼板における熱延板焼鈍温度がリ
ング特性におよぼす影響について調査した結果を図5に
示す。なお、上記電磁鋼板は、スラブ加熱温度:1140
℃、巻取り温度:610 ℃とし、熱延板を各温度で1分間
保持したのち、圧下率:75%で0.5 mm厚に冷間圧延し、
つづいて1000℃で30秒間の仕上げ焼鈍を施して製造した
ものである。また、リング特性は、試料に巻き線を行う
リング測定と相関の良いL+2D+Cエプスタイン法で
測定し評価した。L+2D+Cエプスタイン法の測定は
圧延方向(L)、圧延直角方向(C)、対角 (45°) 方
向(D)の試料を枚数比1:1:2で用いた測定方法で
ある。今回の測定には試料8枚を用いて測定した。さら
に図5には比較のため成分組成は同様であるがサイズご
との介在物の体積分率が上記範囲を外れる従来例につい
ての調査結果も併せて示す。
Hereinafter, the present invention will be described based on experimental results. C: 0.005 mass%, Si: 3.5 mass%, and Mn: 0.2
mass%, S: 0.0030 mass% or less, N: 0.0030
mass% or less and O: 0.0020 mass% or less, and the inclusions in the steel having a size of 4 μm or more with respect to the inclusions in the total steel are 60% or less in volume fraction and less than 1 μm. FIG. 5 shows the results of an investigation on the effect of the hot-rolled sheet annealing temperature on the ring characteristics of a non-oriented electrical steel sheet in which the inclusions in the steel are 15% or less in volume fraction with respect to the inclusions in the entire steel. The above-mentioned magnetic steel sheet was heated at a slab heating temperature of 1140.
℃, winding temperature: 610 ℃, after holding the hot-rolled sheet at each temperature for 1 minute, cold-rolled to a thickness of 0.5 mm at a draft of 75%,
Subsequently, it was manufactured by subjecting it to finish annealing at 1000 ° C. for 30 seconds. The ring characteristics were measured and evaluated by the L + 2D + C Epstein method having a good correlation with the ring measurement for winding the sample. The measurement of the L + 2D + C Epstein method is a measurement method using samples in the rolling direction (L), the direction perpendicular to the rolling direction (C), and the diagonal (45 °) direction (D) at a ratio of 1: 1: 2. This measurement was performed using eight samples. Further, FIG. 5 also shows, for comparison, the results of investigations on a conventional example in which the volume fraction of inclusions for each size is out of the above range, although the component composition is the same.

【0032】同図から明らかなように、成分組成および
介在物分布が上記の範囲を満足する鋼板においては、熱
延板焼鈍温度を900 〜1100℃の範囲に制限することによ
り、良好なリング特性が得られ、特にD方向の磁性が著
しく改善されている。このような現象の詳細なメカニズ
ムは不明であるが次のとおりと考えられる。通常、熱延
板焼鈍温度の上昇に伴い、仕上焼鈍後の製品板集合組織
において(110) 001 方位が発達し、DおよびC方向の磁
性が劣化する。しかしながら、介在物のサイズごとの体
積分率を上記範囲に制御した無方向性電磁鋼板において
は、焼鈍温度の上昇に伴い、製品板集合組織において
{100 }<uvw> 方位が発達し、その結果、D方向の磁性
ひいてはリング特性が改善されたものと考えられる。
As is apparent from the figure, in a steel sheet having a component composition and inclusion distribution satisfying the above ranges, good ring characteristics can be obtained by restricting the hot-rolled sheet annealing temperature to the range of 900 to 1100 ° C. Is obtained, and in particular, the magnetism in the D direction is remarkably improved. Although the detailed mechanism of such a phenomenon is unknown, it is considered as follows. Usually, as the hot-rolled sheet annealing temperature rises, the (110) 001 orientation develops in the texture of the product sheet after finish annealing, and the magnetism in the D and C directions deteriorates. However, in non-oriented electrical steel sheets in which the volume fraction for each size of inclusions is controlled in the above range, with the rise in annealing temperature, the {100} <uvw> orientation develops in the texture of the product sheet, and as a result, It is considered that the magnetic properties in the direction D and the ring characteristics are improved.

【0033】次に、冷間圧延圧下率の影響について調べ
た結果を記す。C:0.003mass %、Si:3.5 mass%、M
n:0.3 mass%およびAl:0.7 mass%を含み、かつ、
S:0.0030mass%以下、N:0.0030mass%以下および
O:0.0020mass%以下に抑制し、残部は実質的にFeの組
成になり、さらに4μm 以上の大きさの鋼中介在物が全
鋼中介在物に対して体積分率で60%以下、1μm 未満の
大きさの鋼中介在物が全鋼中介在物に対して体積分率で
15%以下である無方向性電磁鋼板における冷間圧延圧下
率がリング特性におよぼす影響を図6に示す。なおこれ
らの電磁鋼板は、1080℃の温度でスラブ加熱し、熱間圧
延して570 ℃の温度で巻き取った熱延板を900 ℃で100
秒間熱延板焼鈍し、種々の圧下率で冷間圧延し(冷延板
厚みは0.5 mmと一定にした)、1080℃で10秒間仕上げ焼
鈍して製造した。また図6には比較のため成分組成は同
様であるがサイズごとの介在物体積分率が上記範囲を外
れる従来例についての調査結果も併せて示す。
Next, the results of an investigation on the effect of the cold rolling reduction will be described. C: 0.003 mass%, Si: 3.5 mass%, M
n: 0.3 mass% and Al: 0.7 mass%, and
S: 0.0030 mass% or less, N: 0.0030 mass% or less, and O: 0.0020 mass% or less, the balance is substantially composed of Fe, and inclusions in the steel having a size of 4 μm or more are contained in all the steel. Inclusions in steel with a volume fraction of 60% or less based on the inclusions and less than 1 μm
FIG. 6 shows the effect of the cold rolling reduction on the non-oriented electrical steel sheet of 15% or less on the ring characteristics. These electrical steel sheets were heated by slab heating at a temperature of 1080 ° C, hot-rolled and wound at a temperature of 570 ° C at 100 ° C at 100 ° C.
The rolled sheet was annealed for 2 seconds, cold-rolled at various rolling reductions (the thickness of the cold-rolled sheet was kept constant at 0.5 mm), and finished by annealing at 1080 ° C. for 10 seconds. FIG. 6 also shows, for comparison, results of investigations on conventional examples in which the component composition is the same, but the intervening volume fraction of each size is outside the above range.

【0034】同図より明らかなように、サイズごとの介
在物が好適に制御されている場合、冷間圧延圧下率を60
〜90%の範囲に規定することにより良好なリング特性が
得られている。この理由は、かかる冷間圧延を施すこと
によって{100 }<uvw> 方位の発達が一層促進されるこ
とによるものと考えられる。
As is clear from the figure, when the inclusions for each size are suitably controlled, the cold rolling reduction is 60%.
By defining the content in the range of ~ 90%, good ring characteristics are obtained. It is considered that the reason for this is that the cold rolling further promotes the development of the {100} <uvw> orientation.

【0035】次に、仕上焼鈍温度がリング特性におよぼ
す影響について調べた結果を図7に示す。図7は、図6
で使用した試料のうち、板厚2.0mm の熱延板を用い、11
00℃で10秒間熱延板焼鈍後、0.5mm 厚(圧下率:75%)
に冷間圧延し、各温度で20秒間仕上げ焼鈍を施した試料
についてのものである。なお、図7には比較のため成分
組成が同様の従来例についての調査結果も併せて示す。
この結果、仕上げ焼鈍温度が900 〜1100℃の範囲におい
てとりわけ良好なリング特性が得られている。
Next, FIG. 7 shows the result of examining the effect of the finish annealing temperature on the ring characteristics. FIG. 7 shows FIG.
Of the samples used in the above, a hot-rolled sheet with a thickness of 2.0 mm was used.
After hot-rolled sheet annealing at 00 ° C for 10 seconds, 0.5mm thickness (rolling reduction: 75%)
The sample was subjected to cold rolling and finish annealing at each temperature for 20 seconds. FIG. 7 also shows, for comparison, the results of a survey on a conventional example having the same component composition.
As a result, particularly good ring characteristics are obtained when the finish annealing temperature is in the range of 900 to 1100 ° C.

【0036】上記は、サイズごとの介在物を好適に制御
することにより、粒成長性が良好になり、従来材に比し
低い仕上げ焼鈍温度でも良好なリング特性が得られたも
のと考えられる。
It is considered that, by suitably controlling the inclusions for each size, the grain growth was improved, and good ring characteristics were obtained even at a finish annealing temperature lower than that of the conventional material.

【0037】[0037]

【作用】以下に、この発明の限定理由について説明す
る。まず、成分組成について述べる。 C:0.01 mass %以下 Cは、磁気特性の面からは有害な成分であり、極力低減
するのが好ましいため、その含有量は0.01 mass %以下
とする。
The reasons for limiting the present invention will be described below. First, the component composition will be described. C: 0.01 mass% or less C is a harmful component from the viewpoint of magnetic properties, and it is preferable to reduce it as much as possible. Therefore, the content is set to 0.01 mass% or less.

【0038】Si:2.5 〜5.0 mass% Siは、固有抵抗を高めることによって鉄損を低減する有
用な成分であるので、低鉄損化のために含有量は2.5 ma
ss%以上が必要であり、一方含有量が5.0 mass%を超え
ると冷延性が阻害されるので、その含有量の上限は5.0
mass%とする。
Si: 2.5 to 5.0 mass% Since Si is a useful component for reducing iron loss by increasing the specific resistance, the content is 2.5 ma for reducing iron loss.
ss% or more is required, whereas if the content exceeds 5.0 mass%, cold rolling is impaired, so the upper limit of the content is 5.0%.
mass%.

【0039】Mn:0.1 〜1.5 mass% Mnは、スラブ加熱時の固溶S量低減に効果があり、ま
た、Sに起因した熱間脆性を抑制するために添加される
ものであるが、含有量が0.1 mass%未満ではその効果に
乏しく、一方、1.5 mass%を超えると磁気特性の劣化を
招くので、その含有量は0.1 〜1.5 mass%の範囲とす
る。以上、基本成分について説明したが、この発明では
さらに以下の成分を含有させることができる。
Mn: 0.1 to 1.5 mass% Mn is effective in reducing the amount of solid solution S during slab heating and is added to suppress hot brittleness caused by S. If the amount is less than 0.1 mass%, the effect is poor. On the other hand, if it exceeds 1.5 mass%, the magnetic properties are deteriorated. Therefore, the content is set in the range of 0.1 to 1.5 mass%. Although the basic components have been described above, the present invention can further include the following components.

【0040】Al:2.0 mass%以下 Alは、鋼の脱酸やAl系の析出物量の低減に寄与する他、
Siと同様、固有抵抗を高めて、鉄損を向上させる上でも
有用な成分であるが、しかし、含有量が2.0 mass%を超
えると冷延性の劣化を招くので、その含有量は2.0 mass
%以下が好適である。
Al: 2.0 mass% or less Al contributes to deoxidation of steel and reduction of the amount of Al-based precipitates.
Like Si, it is a useful component for increasing the specific resistance and improving the iron loss.
% Or less is preferred.

【0041】P:0.15mass%以下 Pは、鉄損の改善に有効であるが0.15mass%を超えると
冷延性が著しく劣化するので、その含有量は0.005 〜0.
15mass%の範囲が好適である。
P: 0.15 mass% or less P is effective for improving iron loss, but if it exceeds 0.15 mass%, the cold rolling property is significantly deteriorated.
A range of 15 mass% is preferred.

【0042】S:0.0030mass%以下 Sは、不純物成分の中で特に重要であり、前述したとお
りその含有量を0.0030mass%以下に抑制することが必要
である。すなわち、SおよびNは、粗大介在物の核とな
る硫化物および窒化物を形成するが、とくにSはその傾
向が強く、例えば、Si:3.8 mass%を含む無方向性電磁
鋼板の従来材およびこの発明にしたがう介在物制御を施
した試料の鋼中S量と鉄損との関係を示す図8から明ら
かなように、介在物制御による鉄損の低減効果がS量の
高いレベルでは阻害されてしまう。よってS含有量は0.
0030mass%以下とする。
S: 0.0030 mass% or less S is particularly important among the impurity components, and as described above, its content must be suppressed to 0.0030 mass% or less. That is, S and N form sulfides and nitrides serving as nuclei of coarse inclusions, and S has a particularly strong tendency. For example, the conventional material of non-oriented electrical steel sheet containing 3.8 mass% of Si and As is apparent from FIG. 8 showing the relationship between the S content in steel and the iron loss of the sample subjected to the inclusion control according to the present invention, the effect of reducing the iron loss by the inclusion control is inhibited at a high S content level. Would. Therefore, the S content is 0.
0030 mass% or less.

【0043】N:0.0030mass%以下 Nは、Sと同様に、粗大介在物の核となる窒化物を形成
し、また、微細な介在物としても鋼中に存在する。そし
て0.0030mass%を超えるNを含んでいると鉄損の劣化を
招くので、その含有量は0.0030mass%以下とする必要が
ある。
N: 0.0030 mass% or less N forms a nitride serving as a nucleus of coarse inclusions, similar to S, and also exists in steel as fine inclusions. If the content of N exceeds 0.0030 mass%, the iron loss is deteriorated. Therefore, the content needs to be 0.0030 mass% or less.

【0044】O:0.0020mass%以下 Oは、その含有量の低減が鉄損改善に直接結びつくこと
は広く知られている事実である。特に0.0020mass%を超
えるOを含んでいると鉄損の劣化を招くので、その含有
量は、0.0020mass%以下とする必要がある。その他、成
分としてSb、Sn、CuおよびNiなどを必要に応じて添加す
ることもできる。
O: 0.0020 mass% or less It is a widely known fact that reduction of the content of O directly leads to improvement of iron loss. In particular, when O containing more than 0.0020 mass% is included, iron loss is degraded. Therefore, the content needs to be 0.0020 mass% or less. In addition, Sb, Sn, Cu, Ni and the like can be added as necessary.

【0045】次に、この発明の製造方法について述べ
る。この発明の対象となる無方向性電磁鋼板は、おおむ
ね通常の製造方法にしたがって製造するが、その製造に
際しては、鋼中の介在物の大きさ毎の体積分率制御に留
意することが肝要である。
Next, the manufacturing method of the present invention will be described. The non-oriented electrical steel sheet, which is the subject of the present invention, is generally manufactured according to a normal manufacturing method, but it is important to pay attention to volume fraction control for each size of inclusions in the steel during the manufacturing. is there.

【0046】すなわち、吹錬を行って脱硫、脱ガス処理
を施した溶鋼を連続鋳造法もしくは造塊−分塊圧延法に
よってスラブとし、ついで、スラブ加熱後、熱間圧延お
よび冷間圧延を施し、しかるのち最終仕上げ焼鈍を施す
わけであるが、この成分調整、脱硫、脱ガスなどの鋼の
溶製工程および熱間圧延工程において鋼中介在物のサイ
ズおよびサイブごとの体積分率は主として制御される。
That is, the molten steel that has been subjected to desulfurization and degassing by blowing is formed into a slab by a continuous casting method or an ingot-bulking rolling method, and then subjected to hot rolling and cold rolling after heating the slab. However, the final finish annealing is performed, but the size of inclusions in the steel and the volume fraction of each sieve are mainly controlled in the steel melting and hot rolling processes such as component adjustment, desulfurization, and degassing. Is done.

【0047】製品板における4μm以上の大きさの鋼中
介在物の全介在物体積に対する体積分率を60%以下とす
るためには、溶製段階において、S≦0.0030mass%、N
≦0.0030mass%、O≦0.0020mass%とする必要があり、
そのためには適切な脱硫、脱窒、脱酸処理を施して、
S,N,O等の不純物元素につき、それぞれ上記の範囲
に抑制することが重要である。
In order to make the volume fraction of the inclusions in steel having a size of 4 μm or more in the product plate to 60% or less with respect to the total inclusion volume, in the melting step, S ≦ 0.0030 mass%, N
≦ 0.0030mass%, O ≦ 0.0020mass%,
For that purpose, perform appropriate desulfurization, denitrification, and deoxidation,
It is important to control impurity elements such as S, N, and O within the above ranges.

【0048】たとえば、脱硫処理としてはCa等を含む脱
硫フラックス、またはREM(希土類成分:Ceが約50
%)と上記脱硫フラックスとを併用して脱硫を行えばよ
い。また、製品板における1μm未満の介在物の占める
体積分率を15%以下にするためには、スラブ加熱温度を
1150℃以下とするか、または巻取り温度を600 ℃以上と
するか、少なくともいずれか一方の処理を施すことが必
要である。
For example, as the desulfurization treatment, desulfurization flux containing Ca or the like, or REM (rare earth component: Ce
%) And the above desulfurization flux in combination. Further, in order to reduce the volume fraction of inclusions of less than 1 μm in the product plate to 15% or less, the slab heating temperature must be set to
It is necessary to carry out at least one of the following treatments: 1150 ° C. or lower, or a winding temperature of 600 ° C. or higher.

【0049】というのは、スラブ加熱温度を1150℃以下
とすると、熱間圧延時において、4μmを超えるほどの
析出介在物の粗大化、さらには1μmを下回るほどの析
出物の再固溶−微細析出が共に抑制され、鉄損の劣化要
因である粗大介在物と共に微細介在物の生成が低減され
るからであり、また巻取り温度を600 ℃以上とすると、
同様に、微細介在物の生成が低減されるからである。す
なわち、巻取り温度を600 ℃以上とすることにより熱間
圧延時に析出した1μm未満の微細析出物を効果的に粗
大化して、弊害が比較的小さい1〜4μmの介在物とす
ることができるからである。
This is because, when the slab heating temperature is 1150 ° C. or less, during hot rolling, the precipitation inclusions become coarser than 4 μm, and the precipitates re-dissolve so as to fall below 1 μm-fine. This is because precipitation is suppressed together, and the generation of fine inclusions is reduced together with the coarse inclusions that are the cause of iron loss, and when the winding temperature is set to 600 ° C or more,
Similarly, the generation of fine inclusions is reduced. That is, by setting the winding temperature to 600 ° C. or higher, fine precipitates of less than 1 μm precipitated during hot rolling can be effectively coarsened to form inclusions of 1 to 4 μm with relatively small adverse effects. It is.

【0050】なお、スラブは一度冷却してから加熱して
熱間圧延を行っても、鋳造あるいは分塊圧延後降温する
ことなく熱間圧延もしくは再加熱−熱間圧延を行っても
どちらでもよい。かくしてコイルに巻き取った熱延板
は、その後熱延板焼鈍、1回又は中間焼鈍を挟む2回の
冷間圧延、仕上げ焼鈍工程を経て最終製品とする。これ
らの工程について以下に順に述べる。
The slab may be cooled once and then heated to perform hot rolling, or may be subjected to hot rolling or reheating-hot rolling without lowering the temperature after casting or bulk rolling. . The hot-rolled sheet thus wound on the coil is then subjected to hot-rolled sheet annealing, one or two times of cold rolling sandwiching intermediate annealing, and a finish annealing step to obtain a final product. These steps will be described below in order.

【0051】・熱延板焼鈍 前掲図5に示したように、熱延板焼鈍温度が900 ℃未満
では磁気異方性の改善効果が小さく、特にD方向の改善
効果に乏しい。また、1100℃を超えるとやはり磁気異方
性の改善効果がなくなるほか、設備上の問題や製造コス
ト上の問題が生じる。よって、熱延板焼鈍温度は900 〜
1100℃の範囲とするが、磁気異方性をより小さくするた
めには950 〜1050℃の範囲が好ましい。
Hot rolled sheet annealing As shown in FIG. 5, when the hot rolled sheet annealing temperature is lower than 900 ° C., the effect of improving the magnetic anisotropy is small, and particularly, the effect of improving the D direction is poor. When the temperature exceeds 1100 ° C., the effect of improving the magnetic anisotropy is lost, and there is a problem in equipment and a problem in manufacturing cost. Therefore, the hot-rolled sheet annealing temperature is 900-
The temperature is in the range of 1100 ° C, but preferably in the range of 950 to 1050 ° C in order to further reduce the magnetic anisotropy.

【0052】また、焼鈍時間は、10秒間未満では磁気異
方性が小さくならず、特にD方向の磁気特性向上効果が
見られないので、10秒間以上とし、3分間を超えると生
産性の低下や製造コストの上昇を招くので3分間以下と
する。
If the annealing time is less than 10 seconds, the magnetic anisotropy does not decrease, and the effect of improving the magnetic properties in the D direction is not particularly observed. And the production cost is increased, so that the time is set to 3 minutes or less.

【0053】・冷間圧延 熱延板焼鈍後の冷間圧延は1回法又は中間焼鈍を挟む2
回法で行うが、良好な磁気特性を得るためには、前掲図
6に示したとおり、その圧下率は60〜90%の範囲とする
必要がある。より好ましくは65〜90%の範囲がよく、か
くすることにより磁気特性の面でさらに優れたものとな
る。なお、これらの圧延は温間で圧延してもよく、同様
の効果を得ることができる。
Cold Rolling Cold rolling after hot-rolled sheet annealing is performed once or with intermediate annealing.
In order to obtain good magnetic properties, the rolling reduction must be in the range of 60 to 90% as shown in FIG. More preferably, the content is in the range of 65 to 90%. By doing so, the magnetic properties are further improved. In addition, these rolling may be performed in a warm rolling, and the same effect can be obtained.

【0054】・仕上げ焼鈍 冷間圧延につづいて仕上げ焼鈍を施すが、前掲図7に示
したように、その焼鈍温度が900 ℃未満では再結晶後の
結晶粒成長が不十分なため良好な磁気特性が得られず、
1100℃を超えるとやはり磁気特性の劣化が生じる。ま
た、その焼鈍時間が10秒間未満では再結晶後の結晶粒成
長が不十分で良好な磁気特性が得られず、1分間を超え
ると生産性の低下や製造コストの上昇を招く。よって、
仕上げ焼鈍条件は、900 〜1100℃の温度範囲で10秒間〜
1分間の範囲の保持時間とする。
Finish Annealing Finish annealing is performed after cold rolling. If the annealing temperature is less than 900 ° C., as shown in FIG. Characteristics cannot be obtained,
When the temperature exceeds 1100 ° C., the magnetic properties are also deteriorated. Further, if the annealing time is less than 10 seconds, crystal grain growth after recrystallization is insufficient, and good magnetic properties cannot be obtained. If the annealing time exceeds 1 minute, productivity decreases and manufacturing cost increases. Therefore,
Finish annealing conditions are 900 to 1100 ° C for 10 seconds to
A retention time in the range of 1 minute.

【0055】[0055]

【実施例】【Example】

実施例1 転炉吹錬により種々の成分組成に調整した溶鋼をそれぞ
れ連続鋳造によりスラブとした。なお、上記の溶製にあ
たっては、脱硫、脱酸ならびに脱ガス処理を強化して行
った。これらのスラブは、加熱後熱間圧延により熱延板
としたのち、コイルに巻き取った。ついで熱延板を酸洗
後、連続焼鈍してから、冷間圧延(1回圧延法)により
最終板厚とし、しかるのち仕上げ焼鈍を施した。かくし
て得られたそれぞれの鋼板について、介在物のサイズ別
体積分率を測定するとともに、鉄損および磁束密度の測
定を行った。なお、磁気測定は25cmエプスタイン法(L
+2D+C)により測定し、介在物サイズ別体積分率の
測定は電子顕微鏡により測定した。
Example 1 Molten steel adjusted to various component compositions by converter blowing was formed into a slab by continuous casting. In the above-mentioned melting, desulfurization, deoxidation and degassing were strengthened. These slabs were hot rolled by hot rolling after heating, and then wound around a coil. Then, the hot-rolled sheet was pickled, and then continuously annealed, and then cold-rolled (single-rolling method) to a final sheet thickness, followed by finish annealing. For each of the steel sheets thus obtained, the volume fraction by size of inclusions was measured, and the iron loss and the magnetic flux density were measured. The magnetic measurement was performed using the 25 cm Epstein method (L
+ 2D + C), and the volume fraction by inclusion size was measured by an electron microscope.

【0056】鋼の溶製条件および成分組成を表1にまと
めて示し、スラブ加熱温度等の鋼板の製造条件および介
在物サイズ別体積分率、磁気特性の測定結果を表2にま
とめて示す。
Table 1 summarizes the smelting conditions and component compositions of the steel, and Table 2 summarizes the steel plate manufacturing conditions such as the slab heating temperature, and the volume fraction by inclusion size and the magnetic properties.

【0057】[0057]

【表1】 [Table 1]

【0058】[0058]

【表2】 [Table 2]

【0059】表2から明らかなようにこの発明に適合す
る試料は、鉄損が低く、磁束密度および磁気異方性に優
れていることが分かる。
As is clear from Table 2, the samples conforming to the present invention have low iron loss and excellent magnetic flux density and magnetic anisotropy.

【0060】実施例2 実施例1で使用した鋼符号A−2のスラブを加熱温度:
1080℃〜1170℃で加熱したのち、熱間圧延により熱延板
とし、コイルに巻き取った。ついで熱延板を連続焼鈍し
てから、800 ℃×30秒の中間焼鈍を挟む2回圧延法によ
り最終板厚とし、しかるのち仕上げ焼鈍を施した。かく
して得られたそれぞれの鋼板について、介在物のサイズ
別体積分率を測定するとともに、鉄損および磁束密度の
測定を行った。なお、磁器測定は25cmエプスタイン法
(L+2D+C)により測定し、介在物サイズ別体積分
率の測定は電子顕微鏡により測定した。スラブ加熱温度
等の鋼板の製造条件および介在物サイズ別体積分率、磁
気特性の測定結果を表3にまとめて示す。
Example 2 The slab of steel code A-2 used in Example 1 was heated at the heating temperature:
After heating at 1080 ° C. to 1170 ° C., a hot rolled sheet was formed by hot rolling and wound around a coil. Subsequently, the hot-rolled sheet was continuously annealed, and then the final thickness was obtained by a twice rolling method with intermediate annealing at 800 ° C. for 30 seconds, followed by finish annealing. For each of the steel sheets thus obtained, the volume fraction by size of inclusions was measured, and the iron loss and the magnetic flux density were measured. The porcelain measurement was performed by the 25 cm Epstein method (L + 2D + C), and the measurement of the volume fraction by inclusion size was performed by an electron microscope. Table 3 summarizes the steel plate manufacturing conditions such as the slab heating temperature, the volume fraction by inclusion size, and the measured magnetic properties.

【0061】[0061]

【表3】 [Table 3]

【0062】表3から明らかなようにこの発明に適合す
る試料は鉄損が低く、磁束密度および磁気異方性に優れ
ていることが分かる。
As is clear from Table 3, the samples conforming to the present invention have low iron loss and excellent magnetic flux density and magnetic anisotropy.

【0063】[0063]

【発明の効果】かくしてこの発明に従い、無方向性電磁
鋼板の製造に際し、S,NおよびOの混入を極力抑制し
た上で、スラブ加熱温度および熱延板巻取温度を調整す
ることによってサイズごとの鋼中介在物分布を制御し、
さらに熱延板焼鈍、冷間圧延および仕上げ焼鈍条件を規
定することにより、鉄損の低減のみならず磁気異方性の
格段の向上を図ることができる。従って、この発明によ
る無方向性電磁鋼板は、モーターやトランス等の鉄心材
料として極めて有用であり、省エネルギーの観点からも
優れるものである。
As described above, according to the present invention, in manufacturing a non-oriented electrical steel sheet, mixing of S, N, and O is suppressed as much as possible, and then the slab heating temperature and the hot rolled sheet winding temperature are adjusted to adjust the size of each sheet. Control the distribution of inclusions in the steel,
Further, by defining the conditions of hot-rolled sheet annealing, cold rolling and finish annealing, not only reduction of iron loss but also remarkable improvement of magnetic anisotropy can be achieved. Therefore, the non-oriented electrical steel sheet according to the present invention is extremely useful as a core material for motors and transformers, and is also excellent from the viewpoint of energy saving.

【図面の簡単な説明】[Brief description of the drawings]

【図1】介在物個数と鉄損との関係を示すグラフであ
る。
FIG. 1 is a graph showing the relationship between the number of inclusions and iron loss.

【図2】介在物サイズごとの鉄損におよぼす影響の解析
結果を示すグラフである。
FIG. 2 is a graph showing an analysis result of an influence on an iron loss for each inclusion size.

【図3】全介在物に対する4μm 以上の大きさの介在物
体積分率と鉄損との関係を示すグラフである。
FIG. 3 is a graph showing a relationship between an inclusion volume fraction of 4 μm or more for all inclusions and iron loss.

【図4】全介在物に対する4μm 以上の大きさの介在物
体積分率が50%以下の鋼板の1μm 未満の介在物体積分
率と鉄損との関係を示すグラフである。
FIG. 4 is a graph showing a relationship between an inclusion volume fraction of less than 1 μm and iron loss of a steel sheet having a size of 4 μm or more and an inclusion volume fraction of 50% or less with respect to all inclusions.

【図5】熱延板焼鈍温度がリング特性におよぼす影響を
示すグラフである。
FIG. 5 is a graph showing the effect of hot-rolled sheet annealing temperature on ring characteristics.

【図6】冷間圧延圧下率がリング特性におよぼす影響を
示すグラフである。
FIG. 6 is a graph showing the effect of cold rolling reduction on ring characteristics.

【図7】仕上焼鈍温度がリング特性におよぼす影響を示
すグラフである。
FIG. 7 is a graph showing the effect of the finish annealing temperature on ring characteristics.

【図8】鉄損と鋼中S量との関係を示すグラフである。FIG. 8 is a graph showing a relationship between iron loss and S content in steel.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小原 隆史 千葉県千葉市中央区川崎町1番地 川崎 製鉄株式会社 鉄鋼開発・生産本部 鉄 鋼研究所内 (56)参考文献 特開 平7−145456(JP,A) 特開 平3−294422(JP,A) (58)調査した分野(Int.Cl.6,DB名) C21D 8/12 C22C 38/00 303 C22C 38/04 C22C 38/06 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Takashi Ohara 1 Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba Kawasaki Steel Corporation Steel Development and Production Division Steel Research Laboratory (56) References JP-A-7-145456 (JP) (A) JP-A-3-294422 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) C21D 8/12 C22C 38/00 303 C22C 38/04 C22C 38/06

Claims (9)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 C:0.01mass%以下、 Si:2.5 〜5.0 mass%および Mn:0.1 〜1.5 mass% を含み、かつS,NおよびOの混入をそれぞれ S:0.0030mass%以下、 N:0.0030mass%以下および O:0.0020mass%以下 に抑制し、残部は実質的にFeの組成になる鋼スラブを、
スラブ加熱後、熱間圧延し、ついでコイルに巻取った
後、熱延板焼鈍を施してから、1回又は中間焼鈍を挟む
2回の冷間圧延を行い、ついで仕上げ焼鈍を施す一連の
工程によって無方向性電磁鋼板を製造するに当たり、 スラブ加熱温度を1150℃以下とし、コイルに巻取った
後、 900〜1100℃の温度範囲にて10秒〜3分間の熱延板
焼鈍を施し、ついで圧下率:60〜90%での冷間圧延後、
900〜1100℃, 10〜60 sの仕上げ焼鈍を施すことを特徴
とする磁気異方性の小さい低鉄損無方向性電磁鋼板の製
造方法。
1. C: 0.01 mass% or less, Si: 2.5 to 5.0 mass% and Mn: 0.1 to 1.5 mass%, and the incorporation of S, N and O is respectively S: 0.0030 mass% or less, N: 0.0030 mass% or less and O: 0.0020 mass% or less, and the remainder is a steel slab having a substantially Fe composition.
After the slab is heated, hot-rolled, and then wound on a coil, subjected to hot-rolled sheet annealing, and then cold-rolled once or twice with intermediate annealing, followed by finish annealing. In producing a non-oriented electrical steel sheet, the slab heating temperature is set to 1150 ° C or less, and after winding into a coil, a hot rolled sheet is annealed for 10 seconds to 3 minutes in a temperature range of 900 to 1100 ° C. Reduction rate: After cold rolling at 60-90%,
A method for producing a low iron loss non-oriented electrical steel sheet having a small magnetic anisotropy, which comprises performing a final annealing at 900 to 1100 ° C. for 10 to 60 s.
【請求項2】 請求項1において、鋼スラブが、さらに
Al:2.0 mass%以下を含む組成になる磁気異方性の小さ
い低鉄損無方向性電磁鋼板の製造方法。
2. The steel slab according to claim 1, further comprising:
Al: A method for producing a low iron loss non-oriented electrical steel sheet having a small magnetic anisotropy and a composition containing 2.0 mass% or less.
【請求項3】 請求項1または2において、鋼スラブ
が、さらにP:0.005 〜0.15mass%を含む組成になる磁
気異方性の小さい低鉄損無方向性電磁鋼板の製造方法。
3. The method for producing a low iron loss non-oriented electrical steel sheet according to claim 1, wherein the steel slab further has a composition containing P: 0.005 to 0.15 mass%.
【請求項4】 C:0.01mass%以下、 Si:2.5 〜5.0 mass%および Mn:0.1 〜1.5 mass% を含み、かつS,NおよびOの混入をそれぞれ S:0.0030mass%以下、 N:0.0030mass%以下および O:0.0020mass%以下 に抑制し、残部は実質的にFeの組成になる鋼スラブを、
スラブ加熱後、熱間圧延し、ついでコイルに巻取った
後、熱延板焼鈍を施してから、1回又は中間焼鈍を挟む
2回の冷間圧延を行い、ついで仕上げ焼鈍を施す一連の
工程によって無方向性電磁鋼板を製造するに当たり、 スラブ加熱後、 600℃以上の温度でコイルに巻取った
後、 900〜1100℃の温度範囲にて10秒〜3分間の熱延板
焼鈍を施し、ついで圧下率:60〜90%での冷間圧延後、
900〜1100℃, 10〜60 sの仕上げ焼鈍を施すことを特徴
とする磁気異方性の小さい低鉄損無方向性電磁鋼板の製
造方法。
4. C: 0.01 mass% or less, Si: 2.5 to 5.0 mass% and Mn: 0.1 to 1.5 mass%, and the incorporation of S, N and O is S: 0.0030 mass% or less, N: 0.0030 mass% or less and O: 0.0020 mass% or less, and the remainder is a steel slab having a substantially Fe composition.
After the slab is heated, hot-rolled, and then wound on a coil, subjected to hot-rolled sheet annealing, and then cold-rolled once or twice with intermediate annealing, followed by finish annealing. In manufacturing a non-oriented electrical steel sheet, by heating the slab, winding it around a coil at a temperature of 600 ° C or higher, and then subjecting it to hot rolled sheet annealing at a temperature range of 900 to 1100 ° C for 10 seconds to 3 minutes, Then, after cold rolling at a reduction ratio of 60 to 90%,
A method for producing a low iron loss non-oriented electrical steel sheet having a small magnetic anisotropy, which comprises performing a final annealing at 900 to 1100 ° C. for 10 to 60 s.
【請求項5】 請求項4において、鋼スラブが、さらに
Al:2.0 mass%以下を含む組成になる磁気異方性の小さ
い低鉄損無方向性電磁鋼板の製造方法。
5. The steel slab according to claim 4, further comprising:
Al: A method for producing a low iron loss non-oriented electrical steel sheet having a small magnetic anisotropy and a composition containing 2.0 mass% or less.
【請求項6】 請求項4または5において、鋼スラブ
が、さらにP:0.005 〜0.15mass%を含む組成になる磁
気異方性の小さい低鉄損無方向性電磁鋼板の製造方法。
6. The method for producing a low iron loss non-oriented electrical steel sheet according to claim 4 or 5, wherein the steel slab further comprises P: 0.005 to 0.15 mass%.
【請求項7】 C:0.01mass%以下、 Si:2.5 〜5.0 mass%および Mn:0.1 〜1.5 mass% を含み、かつS,NおよびOの混入をそれぞれ S:0.0030mass%以下、 N:0.0030mass%以下および O:0.0020mass%以下 に抑制し、残部は実質的にFeの組成になる鋼スラブを、
スラブ加熱後、熱間圧延し、ついでコイルに巻取った
後、熱延板焼鈍を施してから、1回又は中間焼鈍を挟む
2回の冷間圧延を行い、ついで仕上げ焼鈍を施す一連の
工程によって無方向性電磁鋼板を製造するに当たり、 スラブ加熱温度を1150℃以下とし、 600℃以上の温度で
コイルに巻取った後、 900〜1100℃の温度範囲にて10秒〜3分間の熱延板焼鈍
を施し、ついで圧下率:60〜90%での冷間圧延後、 900
〜1100℃, 10〜60 sの仕上げ焼鈍を施すことを特徴とす
る磁気異方性の小さい低鉄損無方向性電磁鋼板の製造方
法。
7. C: 0.01 mass% or less, Si: 2.5 to 5.0 mass% and Mn: 0.1 to 1.5 mass%, and the incorporation of S, N and O is S: 0.0030 mass% or less, N: 0.0030 mass% or less and O: 0.0020 mass% or less, and the remainder is a steel slab having a substantially Fe composition.
After the slab is heated, hot-rolled, and then wound on a coil, subjected to hot-rolled sheet annealing, and then cold-rolled once or twice with intermediate annealing, followed by finish annealing. When manufacturing non-oriented electrical steel sheet by heating, the slab heating temperature is set to 1150 ° C or lower, and the coil is wound at a temperature of 600 ° C or higher, and then hot rolled for 10 seconds to 3 minutes in a temperature range of 900 to 1100 ° C. After performing sheet annealing and then cold rolling at a reduction ratio of 60 to 90%, 900
A method for producing a low iron loss non-oriented electrical steel sheet having a small magnetic anisotropy, which comprises performing a final annealing at 1100 ° C for 10 to 60 s.
【請求項8】 請求項7において、鋼スラブが、さらに
Al:2.0 mass%以下を含む組成になる磁気異方性の小さ
い低鉄損無方向性電磁鋼板の製造方法。
8. The steel slab according to claim 7, further comprising:
Al: A method for producing a low iron loss non-oriented electrical steel sheet having a small magnetic anisotropy and a composition containing 2.0 mass% or less.
【請求項9】 請求項7または8において、鋼スラブ
が、さらにP:0.005 〜0.15mass%を含む組成になる磁
気異方性の小さい低鉄損無方向性電磁鋼板の製造方法。
9. The method according to claim 7, wherein the steel slab further has a composition containing P: 0.005 to 0.15 mass% and has low magnetic anisotropy and low iron loss.
JP6173922A 1994-07-26 1994-07-26 Manufacturing method of low iron loss non-oriented electrical steel sheet with small magnetic anisotropy Expired - Fee Related JP2984185B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6173922A JP2984185B2 (en) 1994-07-26 1994-07-26 Manufacturing method of low iron loss non-oriented electrical steel sheet with small magnetic anisotropy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6173922A JP2984185B2 (en) 1994-07-26 1994-07-26 Manufacturing method of low iron loss non-oriented electrical steel sheet with small magnetic anisotropy

Publications (2)

Publication Number Publication Date
JPH0841538A JPH0841538A (en) 1996-02-13
JP2984185B2 true JP2984185B2 (en) 1999-11-29

Family

ID=15969568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6173922A Expired - Fee Related JP2984185B2 (en) 1994-07-26 1994-07-26 Manufacturing method of low iron loss non-oriented electrical steel sheet with small magnetic anisotropy

Country Status (1)

Country Link
JP (1) JP2984185B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014129106A1 (en) 2013-02-22 2014-08-28 Jfeスチール株式会社 Hot-rolled steel sheet for manufacturing non-oriented electromagnetic steel sheet and method for manufacturing same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4507316B2 (en) * 1999-11-26 2010-07-21 Jfeスチール株式会社 DC brushless motor
KR102175064B1 (en) * 2015-12-23 2020-11-05 주식회사 포스코 Non-orientied electrical steel sheet and method for manufacturing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014129106A1 (en) 2013-02-22 2014-08-28 Jfeスチール株式会社 Hot-rolled steel sheet for manufacturing non-oriented electromagnetic steel sheet and method for manufacturing same
KR20150108387A (en) 2013-02-22 2015-09-25 제이에프이 스틸 가부시키가이샤 Hot-rolled steel sheet for producing non-oriented electrical steel sheet and method of producing same
US10026534B2 (en) 2013-02-22 2018-07-17 Jfe Steel Corporation Hot-rolled steel sheet for producing non-oriented electrical steel sheet and method of producing same

Also Published As

Publication number Publication date
JPH0841538A (en) 1996-02-13

Similar Documents

Publication Publication Date Title
RU2696887C1 (en) Sheet from non-textured electrical steel and method of manufacturing thereof
JP7462737B2 (en) 600MPa-class non-oriented electrical steel sheet and its manufacturing method
KR102244171B1 (en) Non-oriented electrical steel sheet and manufacturing method thereof
KR102566590B1 (en) Manufacturing method of non-oriented electrical steel sheet
JP7028313B2 (en) Non-oriented electrical steel sheet
JPH0713262B2 (en) Method for producing silicon iron plate having excellent soft magnetic characteristics
KR20210003908A (en) Non-oriented electrical steel sheet and its manufacturing method
JP2004332042A (en) Method for producing non-oriented magnetic steel sheet excellent in magnetic characteristic in rolling direction and perpendicular direction on sheet surface
EP0655509B1 (en) Non-oriented silicon steel sheet and method
JP2984185B2 (en) Manufacturing method of low iron loss non-oriented electrical steel sheet with small magnetic anisotropy
JPWO2005100627A1 (en) Nondirectional electromagnetic copper plate with excellent punching workability and magnetic properties after strain relief annealing and its manufacturing method
JP4192278B2 (en) Low iron loss non-oriented electrical steel sheet and manufacturing method thereof
JP2010053387A (en) Hot-rolled steel sheet excellent in press-formability and magnetic characteristic and production method therefor
JP2992201B2 (en) Non-oriented electrical steel sheet with low iron loss and method of manufacturing the same
JP4790151B2 (en) Non-oriented electrical steel sheet with extremely excellent iron loss and magnetic flux density and method for producing the same
JP4016552B2 (en) Method for producing non-oriented electrical steel sheets with excellent magnetic properties and surface properties
JPH1161257A (en) Production of non-oriented silicon steel sheet having low iron loss and low magnetic anisotropy
JP2744581B2 (en) Method for manufacturing non-oriented silicon steel sheet with extremely low iron loss and excellent low magnetic field characteristics
JP3533655B2 (en) Method for producing low-grade electrical steel sheet with small magnetic anisotropy and low-grade electrical steel sheet with small magnetic anisotropy
EP0796923B1 (en) Method of making a non-oriented magnetic steel sheet, and product
JP7371815B1 (en) Non-oriented electrical steel sheet and its manufacturing method
JP2001158948A (en) Nonoriented silicon steel sheet low in core loss and producing method therefor
JP2002115034A (en) Nonoriented silicon steel sheet, stock for cold rolling therefor and its production method
JP2002220643A (en) Non-oriented electromagnetic steel sheet with low iron loss and adequate workability, and manufacturing method therefor
JP4288811B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070924

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100924

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100924

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110924

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110924

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120924

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120924

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees