JP2982721B2 - Thin film sample preparation method - Google Patents

Thin film sample preparation method

Info

Publication number
JP2982721B2
JP2982721B2 JP8312162A JP31216296A JP2982721B2 JP 2982721 B2 JP2982721 B2 JP 2982721B2 JP 8312162 A JP8312162 A JP 8312162A JP 31216296 A JP31216296 A JP 31216296A JP 2982721 B2 JP2982721 B2 JP 2982721B2
Authority
JP
Japan
Prior art keywords
sample
polishing step
thickness
thin film
thinned
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP8312162A
Other languages
Japanese (ja)
Other versions
JPH10153535A (en
Inventor
晴子 為我井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP8312162A priority Critical patent/JP2982721B2/en
Publication of JPH10153535A publication Critical patent/JPH10153535A/en
Application granted granted Critical
Publication of JP2982721B2 publication Critical patent/JP2982721B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Sampling And Sample Adjustment (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は薄膜試料作製法に関
し、特に光の干渉作用を利用して、薄片化した試料の膜
厚をモニターできる薄膜試料作製法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for preparing a thin film sample, and more particularly to a method for preparing a thin film sample capable of monitoring the thickness of a thinned sample by utilizing the interference of light.

【0002】[0002]

【従来の技術】従来、薄膜試料作製法は、たとえば刊行
物名「電子顕微鏡技術」(編集著者:外村 彰、発行
日:平成元年8月21日)の74頁18行〜78頁2行
に記載されているように、透過型電子顕微鏡(TEM)
による半導体材料・デバイスの断面及び平面構造解析の
為の試料作製に用いられる。なぜなら、TEMを活用し
てデバイス構造を解析するためには、電子が透過し、か
つ十分なコントラストを得るために試料をサブミクロン
オーダーで薄膜することが不可欠だからである。以下、
この従来の、例えば断面構造解析の為の薄膜試料作製法
の工程を図11を参照して説明する。
2. Description of the Related Art Conventionally, a method of preparing a thin film sample is described in, for example, the publication "Electron Microscopy Techniques" (editor: Akira Sotomura, published on August 21, 1989), page 74, line 18 to page 78, 2 Transmission electron microscope (TEM) as described in the row
Used for sample preparation for cross-sectional and planar structure analysis of semiconductor materials and devices. This is because, in order to analyze a device structure using a TEM, it is essential that a sample be thinned on the order of submicrons in order to transmit electrons and obtain a sufficient contrast. Less than,
The steps of the conventional thin film sample preparation method for analyzing a cross-sectional structure will be described with reference to FIG.

【0003】まず、LSI素子が形成されたシリコンウ
エハー等の試料100から切り出し工程101で解析箇
所を、ガラス切りによるへき開またはダイシングソーで
2〜3mm角に切り出し、試料片を作製する。
First, in a cutting step 101, a portion to be analyzed is cut out from a sample 100 such as a silicon wafer or the like on which an LSI element is formed by cleaving with a glass cutter or a 2-3 mm square with a dicing saw to prepare a sample piece.

【0004】この試料片の表裏面に接着工程102に
て、別のダミー片を向い合わせに接着し、接着剤層が薄
くなるように万力で加圧しながら固化させ、試料ブロッ
クを作製する。
[0004] In a bonding step 102, another dummy piece is adhered to the front and back surfaces of the sample piece face-to-face, and solidified while being pressed with a vice so that the adhesive layer becomes thin, thereby producing a sample block.

【0005】試料ブロックを切断工程103で、低速刃
(ロースピードソー)を用いて前記試料片に対して垂直
に切断し、1mm以下の厚さの試料切断片を作製する。
[0005] In a cutting step 103, the sample block is cut perpendicularly to the sample piece using a low-speed blade (low speed saw) to produce a sample cut piece having a thickness of 1 mm or less.

【0006】試料切断片の両面に対して機械研磨工程1
04で、平面研磨(図3参照)及びボウル研磨(図4参
照)をこの順に行なう。特に、ボウル研磨では目的に応
じて、定盤もしくはホイールと研磨材を用いた粗研磨
と、バフと研磨材を用いた鏡面研磨とを、試料を透過し
た光の色の変化で試料厚みを監視しながら行い、試料が
破壊されない程度にできるだけ薄片化(30〜10μ
m)する。
Mechanical polishing step 1 for both sides of sample cut piece
At 04, planar polishing (see FIG. 3) and bowl polishing (see FIG. 4) are performed in this order. In particular, in bowl polishing, depending on the purpose, coarse polishing using a platen or wheel and abrasive material, and mirror polishing using buff and abrasive material, monitor the sample thickness by changing the color of light transmitted through the sample While thinning as much as possible without destroying the sample (30 to 10 μm).
m).

【0007】次に、薄片化した試料全面が観察目的部分
の場合はイオン研磨工程105において、薄片化した試
料を平面で回転させながら、イオン研磨装置により、薄
片化した試料の両面に任意の照射角度で加速されたAr
+イオンビームを照射して、薄片化した試料の中心部に
小さい穴が開くまで試料を薄膜化(0.2〜0.1μ
m)する(図5参照)。薄片化した試料の中心部の小さ
い穴は、数〜数十時間のイオン研磨を行うと開く。その
後、薄膜化した試料全面が観察目的部分の場合は透過型
電子顕微鏡観察106を行う。
Next, when the entire surface of the sliced sample is the observation target portion, in the ion polishing step 105, arbitrary irradiation is performed on both surfaces of the sliced sample by an ion polishing apparatus while rotating the sliced sample in a plane. Ar accelerated at an angle
+ Irradiate the ion beam to thin the sample until a small hole is opened in the center of the sliced sample (0.2 to 0.1 μm).
m) (see FIG. 5). The small hole at the center of the sliced sample is opened when ion polishing is performed for several to several tens of hours. Thereafter, when the entire surface of the thinned sample is an observation target portion, transmission electron microscope observation 106 is performed.

【0008】一方、機械研磨工程で薄片化した試料にお
ける特定微細箇所が観察目的部分の場合は、透過型電子
顕微鏡観察106とイオン研磨工程105をその特定微
細箇所が鮮明に観察できるまで繰り返す。
On the other hand, when the specific fine portion in the sample sliced in the mechanical polishing step is the observation target portion, the transmission electron microscope observation 106 and the ion polishing step 105 are repeated until the specific fine portion can be clearly observed.

【0009】[0009]

【発明が解決しようとする課題】しかしながら上記従来
の薄膜試料作製法によると、次のような問題点がある。
However, according to the above-mentioned conventional method for preparing a thin film sample, there are the following problems.

【0010】第1の問題点は、ボウル研磨工程で試料を
薄片化する際、極力薄片化しようとすると試料を破壊し
てしまうことである。
The first problem is that when thinning a sample in the bowl polishing step, the sample is destroyed if the thinning is attempted as much as possible.

【0011】その理由は、ボウル研磨工程での薄片化の
極限が不明なため、試料が破壊されない程度に極力薄片
化することが困難だからである。よって、ボウル研磨の
終了時期の見極めは作製者の主観及び経験によるところ
が大きい。
The reason is that it is difficult to reduce the thickness of the sample to the extent that the sample is not destroyed because the limit of the reduction in the bowl polishing step is unknown. Therefore, the determination of the end time of the bowl polishing largely depends on the subjectivity and experience of the maker.

【0012】第2の問題点は、試料破壊を回避するため
には、試料が十分に薄片化する前にボウル研磨を終了し
なければならないことである。十分に薄片化されない状
態でイオン研磨を行うと、イオン研磨に時間を費やすと
共に、観察視野が狭くなったり、試料がデバイス構造上
異なる物質で形成されている時は硬度の差によるイオン
研磨むらを起こす等の弊害が生じる。
A second problem is that in order to avoid sample destruction, bowl polishing must be completed before the sample is sufficiently thinned. If ion polishing is performed in a state where the flakes are not sufficiently thinned, it takes time for ion polishing, and the observation field of view becomes narrower, and when the sample is formed of a different material in the device structure, unevenness in ion polishing due to a difference in hardness is caused. It causes adverse effects, such as causing

【0013】その理由は、ボウル研磨時の試料厚さの監
視を試料透過光の色の変化のみで行っているためであ
る。試料厚みの変化に対応する透過光色の変化は大まか
(broad)であり、サブミクロンオーダーでボウル研磨
の終点を明確にできない。
The reason is that the thickness of the sample is monitored only when the color of the light transmitted through the sample changes when polishing the bowl. The change in transmitted light color corresponding to the change in sample thickness is broad, and the end point of bowl polishing cannot be clearly defined on the order of submicrons.

【0014】第3の問題点は、イオン研磨で薄膜化した
試料内の、特定微細箇所の観察の場合、イオン研磨と透
過型電子顕微鏡観察を繰り返し行い、最終的に試料を完
成させねばならないことである。この場合、試料作製に
長時間が費やされ、また、透過型電子顕微鏡の試料台ヘ
の試料脱着回数も増し、試料を破壊する可能性が増加す
る。
A third problem is that, in the case of observing a specific minute portion in a sample thinned by ion polishing, ion polishing and transmission electron microscope observation must be repeated to finally complete the sample. It is. In this case, a long time is required for preparing the sample, and the number of times the sample is attached to and detached from the sample stage of the transmission electron microscope is increased, and the possibility of breaking the sample is increased.

【0015】その理由は、試料透過光の色の変化では、
ミクロンオーダーの微小部での膜厚を監視することがで
きないからである。よって、目的の特定微細箇所が鮮明
に観察できるまで、透過型電子顕微鏡で特定微細箇所を
何度も確認しながら、イオン研磨で少しずつ試料を薄膜
化しなければならない。
The reason is that the change in color of the light transmitted through the sample is as follows.
This is because it is not possible to monitor the film thickness in a minute portion on the order of microns. Therefore, the sample must be thinned little by little by ion polishing while checking the specific fine portion many times with a transmission electron microscope until the target specific fine portion can be clearly observed.

【0016】そこで本発明の目的は、上記従来技術の問
題点に鑑み、機械研磨で極力薄片化できる、薄膜試料作
製法を提供することである。
Accordingly, an object of the present invention is to provide a method for preparing a thin film sample which can be thinned as much as possible by mechanical polishing in view of the above-mentioned problems of the prior art.

【0017】本発明の他の目的は、イオン研磨に費やす
時間を最小限にした、薄膜試料作製法を提供することで
ある。
It is another object of the present invention to provide a method for preparing a thin film sample which minimizes the time spent for ion polishing.

【0018】本発明の更なる目的は、薄膜化した試料の
特定微細箇所の膜厚を手軽に監視できる、薄膜試料作製
法を提供することである。
It is a further object of the present invention to provide a method of preparing a thin film sample which can easily monitor the film thickness of a specific minute portion of a thinned sample.

【0019】[0019]

【課題を解決するための手段】上記目的を達成するため
に本発明は、観察目的部分を含む試料を薄くする機械研
磨工程と、該機械研磨工程で薄くした試料をさらに薄く
するイオン研磨工程とを含む薄膜試料作製方法におい
て、前記機械研磨工程で薄くしている時、試料厚みを、
薄膜物質を白色光で照光した時の厚みによる透過光色、
反射光色、および干渉色の変化を利用して監視すること
を特徴とする。また、この薄膜試料作製法は、前記機械
研磨工程で薄くした試料における特定微細箇所を前記イ
オン研磨工程で薄くする時、特定微細箇所の厚みを、薄
膜物質を照光した時の厚みによる干渉色の変化を利用し
て監視することを特徴とする。
In order to achieve the above object, the present invention provides a mechanical polishing step for thinning a sample including a portion to be observed, and an ion polishing step for further thinning the sample thinned in the mechanical polishing step. In the method for preparing a thin film sample including, when thinning in the mechanical polishing step, the sample thickness,
When the thin film material is illuminated with white light, the transmitted light color depends on the thickness ,
It is characterized in that monitoring is performed using changes in reflected light color and interference color. Further, this thin film sample preparation method, when the specific fine portion in the sample thinned in the mechanical polishing step is thinned in the ion polishing step, the thickness of the specific fine portion, the interference color due to the thickness when illuminating the thin film material It is characterized by monitoring using change.

【0020】好ましくは、本発明は、観察目的部分を含
む試料を薄くする機械研磨工程と、該機械研磨工程で薄
くした試料をさらに薄くするイオン研磨工程とを含む薄
膜試料作製方法において、前記機械研磨工程で薄くして
いる時、試料厚みを、薄膜物質を白色光で照光した時の
厚みによる透過光色、反射光色、および干渉色の変化を
利用して監視し、該干渉色が鮮明になった時点で前記機
械研磨工程を終了することを特徴とすることを特徴とす
る。また、この薄膜試料作製法は、前記機械研磨工程で
薄くした試料における特定微細箇所を前記イオン研磨工
程で薄くする時、特定微細箇所の厚みを金属顕微鏡で観
察すると同時に、薄膜物質を照光した時の厚みによる干
渉色の変化を利用して監視し、該干渉色が鮮明になった
時点で前記イオン研磨工程を終了するすることを特徴と
する。
Preferably, the present invention relates to a method for producing a thin film sample, comprising: a mechanical polishing step of thinning a sample including an observation target portion; and an ion polishing step of further thinning the sample thinned in the mechanical polishing step. When the thickness of the sample is reduced in the polishing process, the thickness of the sample is monitored using changes in transmitted light color, reflected light color, and interference color depending on the thickness when the thin film material is illuminated with white light , and the interference color is sharp. The mechanical polishing step is terminated at the time when the condition is satisfied. In addition, this thin film sample preparation method is characterized in that when a specific minute portion in a sample thinned in the mechanical polishing step is thinned in the ion polishing step, the thickness of the specific minute portion is observed with a metallographic microscope, and when the thin film material is illuminated. The method is characterized in that monitoring is performed using a change in interference color due to the thickness of the substrate, and the ion polishing step is terminated when the interference color becomes clear.

【0021】また好ましくは、本発明は、観察目的部分
を含む試料を薄くする機械研磨工程と、該機械研磨工程
で薄くした試料をさらに薄くするイオン研磨工程とを含
む薄膜試料作製法において、前記機械研磨工程で試料を
薄くしている時に、試料厚みを監視する薄片化試料厚モ
ニターを用いており、前記薄片化試料厚モニターは、試
料の一面より白色光を当て試料の他面より実体顕微鏡で
観察し試料を透過した光の色で試料薄片化状態を確認す
る第1モニターと、試料を白色光の元で観察し試料から
の反射光の色で試料薄膜化状態を確認する第2モニター
と、試料を金属顕徴鏡で観察し試料に現れる干渉色で試
料薄片化状態を確認する第3モニターとで構成されてい
ることを特徴とする。また、この薄膜試料作製法は、前
記機械研磨工程でシリコンからなる試料が薄くなるに従
って、前記第1モニターで確認される透過光色は赤〜橙
〜黄の順に変化し、前記第2モニターで確認される反射
光色はねずみ色〜白〜透明の順に変化し、前記第3モニ
ターで確認される干渉色は範囲が増し鮮明に変化し、前
記透過光色が橙で前記反射光色がねずみ色の場合の試料
厚みが10μm、前記反射光色が透明で前記干渉色が鮮
明の場合の試料厚みが数百nmであることを特徴とす
る。また、この薄膜試料作製法は、前記第3モニターで
確認される干渉色が鮮明になった時点で前記機械研磨工
程を終了することを特徴とする。さらに、この薄膜試料
作製法は、前記機械研磨工程で薄くした試料における特
定微細箇所を前記イオン研磨工程で薄くする時、特定微
細箇所を金属顕微鏡で観察すると同時に、特定微細箇所
の厚みを、薄膜物質を照光した時の厚みによる干渉色の
変化を利用して監視する薄膜化試料膜厚モニターを用い
ており、該薄膜化試料膜厚モニターで確認される干渉色
が鮮明になった時点で前記イオン研磨工程を終了するこ
とを特徴とする。
Preferably, the present invention provides a method for preparing a thin film sample, comprising: a mechanical polishing step of thinning a sample including an observation target portion; and an ion polishing step of further thinning the sample thinned in the mechanical polishing step. When the sample is thinned in the mechanical polishing step, a thinned sample thickness monitor for monitoring the sample thickness is used, and the thinned sample thickness monitor irradiates white light from one side of the sample to a stereoscopic microscope from the other side of the sample. And a second monitor for observing the sample with the color of light transmitted through the sample and checking the sample thinning state with the color of light reflected from the sample by observing the sample under white light. And a third monitor for observing the sample with a metallurgical microscope and confirming the thinned state of the sample with interference colors appearing on the sample. In this thin film sample preparation method, as the silicon sample becomes thinner in the mechanical polishing step, the transmitted light color confirmed on the first monitor changes in the order of red to orange to yellow, and The reflected light color observed changes in the order of gray to white to transparent, the interference color observed on the third monitor increases in range and changes sharply, the transmitted light color is orange, and the reflected light color is a gray color. In this case, the sample thickness is 10 μm, and when the reflected light color is transparent and the interference color is clear, the sample thickness is several hundred nm. Further, the thin film sample preparation method is characterized in that the mechanical polishing step is completed when the interference color confirmed by the third monitor becomes clear. Further, this thin film sample preparation method, when the specific fine portion in the sample thinned in the mechanical polishing step is thinned in the ion polishing step, at the same time as observing the specific fine portion with a metallographic microscope, the thickness of the specific fine portion, the thin film A thinned sample thickness monitor that monitors using a change in interference color due to the thickness when the substance is illuminated is used, and when the interference color confirmed by the thinned sample thickness monitor becomes clear, The ion polishing step is terminated.

【0022】(作用)上記のとおりの発明では、薄膜物
質を照光した時の干渉色の変化によって試料厚みをサブ
ミクロンオーダーで確認できる事を、機械研磨工程中の
試料厚みの監視に利用したことにより、機械研磨工程の
終点が明確になり、機械研磨で可能な限り試料は薄片化
される。これにより、機械研磨工程の次のイオン研磨工
程に多くの時間が費やされずに済み、また、試料を構成
する物質の硬度の差によるイオン研磨むらが発生する前
に試料の薄膜化が達成されるので膜厚の均一な薄膜試料
が作製できる。
(Function) In the invention as described above, the fact that the sample thickness can be confirmed on the order of submicrons by a change in interference color when the thin film material is illuminated is used for monitoring the sample thickness during the mechanical polishing process. As a result, the end point of the mechanical polishing step becomes clear, and the sample is sliced as much as possible by mechanical polishing. Thereby, much time is not spent in the ion polishing step subsequent to the mechanical polishing step, and the thinning of the sample is achieved before the ion polishing unevenness occurs due to the difference in hardness of the material constituting the sample. Therefore, a thin film sample having a uniform thickness can be manufactured.

【0023】また、機械研磨工程で薄くなった試料にお
ける特定微細箇所をさらにイオン研磨工程で薄くする時
に、干渉色の変化を利用して試料厚みを監視することに
より、透過型電子顕微鏡観察とイオン研磨工程とを交互
に行なうことなく特定微細箇所の厚みをサブミクロンオ
ーダーで確認できるので、手軽である。このため、試料
作製時間が短縮され、試料ハンドリングによる試料破壊
も生じない。
Further, when a specific fine portion of the sample thinned by the mechanical polishing step is further thinned by the ion polishing step, the sample thickness is monitored by using a change in interference color, thereby observing the sample with a transmission electron microscope. Since the thickness of the specific minute portion can be confirmed on the order of submicrons without alternately performing the polishing step, the method is simple. For this reason, the sample preparation time is shortened, and sample destruction due to sample handling does not occur.

【0024】[0024]

【発明の実施の形態】次に、本発明の実施の形態につい
て図面を参照して詳細に説明する。
Next, embodiments of the present invention will be described in detail with reference to the drawings.

【0025】(第1の実施形態)図1は本発明による薄
膜試料作製法の第1の実施形態を説明するための工程
図、図2は図1の機械研磨工程を詳細に説明するための
工程図、図3は図2の機械研磨工程内の平面研磨工程に
よる試料の様子を示す図、図4は図2の機械研磨工程内
のボウル研磨工程による試料の様子を示す図、図5は図
1のイオン研磨工程による試料の様子を示す図、図6は
図1の薄片試料厚モニターを詳細に説明するための図で
ある。
(First Embodiment) FIG. 1 is a process diagram for explaining a first embodiment of a thin film sample manufacturing method according to the present invention, and FIG. 2 is a diagram for explaining a mechanical polishing process of FIG. 1 in detail. FIG. 3 is a view showing a state of a sample in a plane polishing step in the mechanical polishing step of FIG. 2, FIG. 4 is a view showing a state of a sample in a bowl polishing step in the mechanical polishing step of FIG. 2, and FIG. FIG. 6 is a diagram showing a state of a sample in the ion polishing step of FIG. 1, and FIG. 6 is a diagram for explaining in detail the thin sample thickness monitor of FIG. 1.

【0026】この第1の実施形態の薄膜試料作製法は、
断面構造解析の場合に実施され、図1を参照すると、透
過型電子顕微鏡による観察目的部分が任意に存在する試
料0からダイシングソー等を用いて解析箇所を切り出す
試料切り出し工程1と、切り出した試料片の両面に別の
ダミー片を接着して試料ブロックを作製する試料接着工
程2と、試料片に対して垂直な方向にロースピードソー
を用いて試料ブロックを切断する切断工程3と、その試
料切断片を粗・鏡面研磨装置を用いて薄片になるように
研磨する機械研磨工程4と、その薄片化した試料をイオ
ン研磨装置を用いて薄膜になるように研磨するイオン研
磨工程5(図5参照)と、試料切り出し工程1〜イオン
研磨工程5を経て薄膜化した試料を観察する透過型電子
顕微鏡観察6と、機械研磨工程4において薄片化される
試料の厚みを、薄膜物質による光の吸収・回折・干渉作
用を利用して試料厚みを監視する薄片化試料厚モニター
7を有する。なお、平面構造解析の場合には接着工程2
と切断工程3は必要ない。
The method of preparing a thin film sample according to the first embodiment is as follows.
This is performed in the case of cross-sectional structure analysis. Referring to FIG. 1, a sample cutting step 1 for cutting out an analysis part from a sample 0 in which a target portion to be observed by a transmission electron microscope is arbitrarily present using a dicing saw or the like, and a cut-out sample A sample bonding step 2 in which another dummy piece is bonded to both sides of the piece to form a sample block, a cutting step 3 in which the sample block is cut using a low-speed saw in a direction perpendicular to the sample piece, and the sample A mechanical polishing step 4 in which the cut pieces are polished into thin pieces using a rough / mirror polishing apparatus, and an ion polishing step 5 in which the thinned sample is polished into thin films using an ion polishing apparatus (FIG. 5). ), A transmission electron microscope observation 6 for observing a thinned sample through the sample cutting step 1 to the ion polishing step 5, and a thinning of the sample to be sliced in the mechanical polishing step 4. Having a sliced sample thickness monitor 7 for monitoring the sample thickness by using an absorption-diffraction and interference of light by a substance. In the case of planar structure analysis, bonding step 2
And cutting step 3 is not required.

【0027】図2を参照すると、機械研磨工程4は、図
3に示した平面粗研磨工程41及び平面鏡面研磨工程4
2と、図4に示したボウル粗研磨工程43及びボウル鏡
面研磨工程44とを含む。
Referring to FIG. 2, the mechanical polishing step 4 includes a plane rough polishing step 41 and a plane mirror polishing step 4 shown in FIG.
2 and a bowl rough polishing step 43 and a bowl mirror polishing step 44 shown in FIG.

【0028】図6を参照すると、薄片化試料厚モニター
7は、第1モニター71と第2モニター72と第3モニ
ター73の3段階の試料膜厚モニターを備えている。第
1モニター71は、薄片化試料の裏面より白色光を当て
ておき、薄片化試料の表面より実体顕微鏡で観察し、試
料を透過した光の色(透過光色)で試料薄片化状態を監
視する。第2モニター72は、薄片化試料を蛍光燈(白
色光)の元で観察し、試料からの反射光の色(反射光
色)で試料薄片化状態を監視する。第3モニター73
は、薄片化試料を金属顕微鏡で観察し、白色光の照射に
よって薄片部分に現れる干渉色から試料薄片化状態を監
視する。
Referring to FIG. 6, the sliced sample thickness monitor 7 includes a three-stage sample thickness monitor of a first monitor 71, a second monitor 72, and a third monitor 73. The first monitor 71 irradiates white light from the back surface of the sliced sample, observes the surface of the sliced sample with a stereoscopic microscope, and monitors the sample sliced state by the color of light transmitted through the sample (transmitted light color). I do. The second monitor 72 observes the thinned sample under a fluorescent lamp (white light), and monitors the thinned state of the sample based on the color of reflected light from the sample (reflected light color). Third monitor 73
Monitors the sliced sample with a metallographic microscope and monitors the state of the sliced sample from the interference color that appears on the sliced portion when irradiated with white light.

【0029】図2に示した機械研磨工程4は、平面粗研
磨工程41、平面鏡面研磨工程42、ボウル粗研磨工程
43、ボウル鏡面研磨工程44の順に進む。
The mechanical polishing step 4 shown in FIG. 2 proceeds in the order of a plane rough polishing step 41, a plane mirror polishing step 42, a bowl rough polishing step 43, and a bowl mirror polishing step 44.

【0030】薄片試料膜厚のモニター7は、ボウル粗研
磨工程43の時は第1モニター71を用い、ボウル鏡面
研磨工程44の時は第1モニター71、第2モニター7
2、第3モニター73を順次あるいは同時に用いる。
As the monitor 7 for measuring the thickness of the thin sample, the first monitor 71 is used in the bowl rough polishing step 43, and the first monitor 71 and the second monitor 7 are used in the bowl mirror polishing step 44.
Second and third monitors 73 are used sequentially or simultaneously.

【0031】第3モニター73で干渉色が鮮明になった
時点で機械研磨工程4を終了し、次にイオン研磨工程5
で試料の一部に小さい穴が開くまで薄膜化した後、透過
型電子顕微鏡観察6を行う。
When the interference color becomes clear on the third monitor 73, the mechanical polishing step 4 is completed.
After thinning the film until a small hole is formed in a part of the sample, observation with a transmission electron microscope 6 is performed.

【0032】この第1の実施の形態の効果について説明
すると、第1の実施の形態は、薄膜物質による光の吸収
・回折・干渉作用を利用し、薄片化した試料に白色光を
照射した時に現れる透過光色・反射光色・干渉色によ
り、薄片試料の厚みをサブミクロンオーダーで監視でき
る。このため、機械研磨工程での試料薄片化の終点を明
確にでき、その後のイオン研磨工程に費やす時間を短縮
できる。また、試料を構成する物質の硬度の差によるイ
オン研磨むらが発生する前に、試料を薄膜化できる。よ
って、短時間で膜厚の均一な薄膜試料を作製できる。
The effect of the first embodiment will be described. The first embodiment utilizes a light absorption, diffraction and interference effect of a thin film material to irradiate a thinned sample with white light. The thickness of the thin sample can be monitored on the order of submicron by the transmitted light color, reflected light color, and interference color that appear. For this reason, the end point of sample thinning in the mechanical polishing step can be clarified, and the time spent in the subsequent ion polishing step can be reduced. In addition, the sample can be thinned before ion polishing unevenness occurs due to a difference in hardness of a material constituting the sample. Therefore, a thin film sample having a uniform thickness can be manufactured in a short time.

【0033】(第2の実施形態)図7は、本発明の薄膜
試料作製法の第2の実施形態を説明するための工程図で
ある。この図において第1の実施形態と同一の工程には
同一符号を付してある。また、図7に示した切り出し工
程1〜薄片化試料厚モニター7までの工程は第1の実施
の形態と同一のため、その説明は省略し、ここでは、異
なる工程についてのみ説明する。
(Second Embodiment) FIG. 7 is a process chart for explaining a second embodiment of the method for producing a thin film sample according to the present invention. In this figure, the same steps as those in the first embodiment are denoted by the same reference numerals. Further, since the steps from the cutting step 1 to the sliced sample thickness monitor 7 shown in FIG. 7 are the same as those in the first embodiment, the description thereof will be omitted, and only different steps will be described here.

【0034】この第2の実施形態の薄膜試料作製法は図
1に示された第1の実施の形態の場合と異なり、図7に
示すようにイオン研磨工程5と透過型電子顕微鏡観察6
との間に薄膜化試料膜厚モニター8があり、また、透過
型電子顕微鏡による観察目的部分が第1の実施の形態の
ようなイオン研磨工程で薄膜化された試料全体でなく、
機械研磨工程で薄片化された試料10における特定微細
箇所10Aをイオン研磨工程で薄膜化した部分である。
なお、本実施の形態においても平面構造解析の場合に
は、接着工程2と切断工程3は不要である。
The thin film sample preparation method of the second embodiment is different from that of the first embodiment shown in FIG. 1 in that an ion polishing step 5 and a transmission electron microscope observation 6 are carried out as shown in FIG.
There is a thinned sample thickness monitor 8 between the sample and the target portion to be observed by the transmission electron microscope is not the whole sample thinned by the ion polishing step as in the first embodiment,
This is a portion where the specific fine portion 10A in the sample 10 thinned in the mechanical polishing process is thinned in the ion polishing process.
Note that also in the present embodiment, the bonding step 2 and the cutting step 3 are unnecessary in the case of the planar structure analysis.

【0035】薄膜化試料膜厚モニター8は、機械研磨工
程で薄くした試料における特定微細箇所10Aをさらに
イオン研磨工程で薄くする時に、特定微細箇所を金属顕
微鏡で観察し、白色光が照射されて特定微細箇所10A
に現れる干渉色で、特定微細箇所10Aの薄膜化状態を
監視する。
The thinned sample film thickness monitor 8 observes the specific minute portion by a metallographic microscope when the specific minute portion 10A of the sample thinned by the mechanical polishing process is further thinned by the ion polishing process, and is irradiated with white light. Specific fine spot 10A
The thinning state of the specific minute portion 10A is monitored by the interference color appearing in the above.

【0036】この第2の実施の形態では、機械研磨工程
で薄くした試料における特定微細箇所10Aに対してイ
オン研磨工程5を行なう途中、薄膜化試料膜厚モニター
8でミクロンオーダーの特定微細箇所10Aの厚みを監
視する。すなわち、イオン研磨工程5と薄膜化試料膜厚
モニター8を繰り返し行い、特定微細箇所10Aを所望
の厚さまで薄膜化する。その後、所望の厚さに薄膜化さ
れた特定微細箇所10Aに関し透過型電子顕微鏡観察6
を行う。
In the second embodiment, while performing the ion polishing step 5 on the specific minute portion 10A of the sample thinned in the mechanical polishing step, the specific minute portion 10A on the order of microns is monitored by the thinned sample film thickness monitor 8. Monitor thickness. That is, the ion polishing step 5 and the thinning sample thickness monitor 8 are repeated to thin the specific minute portion 10A to a desired thickness. After that, observation with a transmission electron microscope 6 of the specific minute portion 10A thinned to a desired thickness 6
I do.

【0037】この第2の実施の形態の効果について説明
すると、第2の実施の形態は、薄膜化試料膜厚モニター
8に、金属顕微鏡を用いることにより、イオン研磨工程
でミクロンオーダーの特定微細箇所の薄膜化状態をサブ
ミクロンオーダー(数十nmオーダー)で監視できる。
このため、特定微細箇所の薄膜化状態を透過型電子顕微
鏡で観察せずに確認できる。よって、試料作製時間が短
縮でき、試料ハンドリングによる試料破壊を防ぐことが
できる。
The effect of the second embodiment will be described. In the second embodiment, a metallographic microscope is used for the thinned sample thickness monitor 8 to specify a specific minute portion of a micron order in the ion polishing process. Can be monitored on the submicron order (several tens nm order).
For this reason, the thinning state of a specific minute portion can be confirmed without observing with a transmission electron microscope. Therefore, the sample preparation time can be reduced, and sample destruction due to sample handling can be prevented.

【0038】(その他の実施形態)上述した第1又は第
2の実施の形態における機械研磨工程では、図2に示し
たように、平面粗研磨工程41と平面鏡面研磨工程42
とボウル粗研磨工程43とボウル鏡面研磨工程44を実
施しているが、本発明はこれに限られず、図2に示した
ボウル粗研磨43とボウル鏡面研磨44を実施せずに、
試料を薄片化してもよい。すなわち、試料の薄片化に際
し、薄片化試料厚モニター7で試料の厚みを監視しなが
ら、平面粗研磨41と平面鏡面研磨42のみで薄片化す
る。この実施の形態によれば、平面研磨のみで試料を薄
片化するため、観察視野を広範囲に得ることができる。
(Other Embodiments) In the mechanical polishing step in the first or second embodiment described above, as shown in FIG. 2, a plane rough polishing step 41 and a plane mirror polishing step 42.
And the bowl rough polishing step 43 and the bowl mirror polishing step 44 are performed, but the present invention is not limited to this, and the bowl rough polishing 43 and the bowl mirror polishing 44 shown in FIG.
The sample may be sliced. That is, when the sample is thinned, the thinning is performed only by the rough surface polishing 41 and the flat mirror polishing 42 while monitoring the thickness of the sample with the thinning sample thickness monitor 7. According to this embodiment, since the sample is sliced only by planar polishing, a wide observation field of view can be obtained.

【0039】また、第1又は第2の実施の形態では、透
過型電子顕微鏡観察の為の薄膜試料の作製の場合につい
て説明したが、その他の顕微鏡に用いる薄膜試料を作製
することもできる。また、試料の材質がGaAS・ガラ
ス等のシリコン以外の物も試料として作製できる。
In the first or second embodiment, the case of manufacturing a thin film sample for observation with a transmission electron microscope has been described. However, a thin film sample used for other microscopes can be manufactured. In addition, a material other than silicon, such as GaAs or glass, can be produced as a sample.

【0040】[0040]

【実施例】次に、上述した実施の形態の各々について具
体例を挙げて詳述する。
Next, each of the above-described embodiments will be described in detail with reference to specific examples.

【0041】(第1の実施例)ここでは、第1の実施形
態で説明した、断面構造解析用の薄膜試料の作製法の具
体例について図1、図2、図6および図8を参照して説
明する。
(First Example) Here, a specific example of a method for producing a thin film sample for analyzing a cross-sectional structure described in the first embodiment will be described with reference to FIGS. 1, 2, 6 and 8. Will be explained.

【0042】まず、LSI素子が形成されたシリコンウ
エハーの試料0から切り出し工程1で解析箇所を、ガラ
ス切りによるへき開またはダイシングソーで2〜3mm
角に切り出し、試料片を作製する。
First, in a cutting step 1 from a sample 0 of a silicon wafer on which an LSI element is formed, an analysis area is cut by a glass cutter or a dicing saw by 2 to 3 mm.
Cut out into corners to make sample pieces.

【0043】この試料片の表裏面に接着工程2にて、別
のダミー片を向い合わせに接着し、接着剤層が薄くなる
ように万力で加圧しながら硬化させ、試料ブロックを作
製する。
In a bonding step 2, another dummy piece is adhered to the front and back surfaces of the sample piece face-to-face, and cured while applying pressure with a vice so that the adhesive layer becomes thin, thereby producing a sample block.

【0044】試料ブロックを切断工程3で、低速刃(ロ
ースピードソー)を用いて前記試料片に対して垂直に切
断し、1mm以下の厚さの試料切断片を作製する。
In a cutting step 3, the sample block is cut perpendicularly to the sample piece using a low-speed blade (low speed saw) to produce a sample cut piece having a thickness of 1 mm or less.

【0045】機械研磨工程4の平面粗研磨工程41およ
び平面鏡面研磨工程42で試料切断片を、この試料切断
片の厚さが50μm前後になるまで研磨する。その後、
第1モニター71で、試料切断片を透過した光の色が赤
から橙になった事を確認するまで、試料切断片に対して
ボウル粗研磨工程43を3分間前後実施する。この時の
試料厚みは10μm前後となる。次にボウル鏡面研磨工
程44で、試料切断片の表面を鏡面に研磨しながらゆっ
くりと薄片化を行う。
The sample cut piece is polished in the plane rough polishing step 41 and the plane mirror polishing step 42 of the mechanical polishing step 4 until the thickness of the sample cut piece becomes about 50 μm. afterwards,
Until the first monitor 71 confirms that the color of the light transmitted through the sample piece has changed from red to orange, the bowl rough polishing step 43 is performed on the sample piece for about 3 minutes. At this time, the sample thickness is about 10 μm. Next, in a bowl mirror polishing step 44, thinning is performed slowly while polishing the surface of the sample cut piece to a mirror surface.

【0046】このボウル鏡面研磨工程44で試料が薄片
化するに従って、例えば図8の、第1〜第3モニターで
監視するシリコンからなる試料の透過光色・反射光色・
干渉色と、ボウル鏡面研磨による試料厚みとの対応関係
に示されるように、第1モニター71で監視する薄片部
分の透過光色はステップ1(赤)→ステップ2(橙)→
ステップ4(黄)と変化する。また、第2モニター72
で監視する薄片部分の反射光色は、ステップ2(ねずみ
色)→ステップ4(白)→ステップ6(透明)と変化す
る。そして、ステップ2の通り、第1モニター71で監
視する透過光色が橙の時、第2モニター72で監視する
反射光色はねずみ色に現れる。第3モニター73で監視
する干渉色は、第2モニター72で反射光が白から透明
になった事が確認されるステップ5において、微かに現
れる。そして試料がさらに薄片化するに従って、干渉色
の範囲が増し、鮮明になる。この干渉色が鮮明になった
ステップ6で、ボウル鏡面研磨工程44を終了する。な
お、試料がガラスからなる場合は、透過光および反射光
色の変化はないので透過光および反射光色による試料厚
みの監視はできない。しかし、干渉色についてはガラス
であっても厚みにより変化するため、試料がガラスの場
合は第3モニター73のみを用い、試料厚みを監視すれ
ばよい。
As the sample is thinned in the bowl mirror polishing step 44, for example, the transmitted light color, reflected light color, and the like of the sample made of silicon monitored by the first to third monitors shown in FIG.
As shown in the correspondence between the interference color and the sample thickness by the bowl mirror polishing, the transmitted light color of the thin section monitored by the first monitor 71 is step 1 (red) → step 2 (orange) →
Step 4 (yellow) is changed. Also, the second monitor 72
The reflected light color of the thin section to be monitored changes in step 2 (grey) → step 4 (white) → step 6 (transparent). Then, as in step 2, when the transmitted light color monitored by the first monitor 71 is orange, the reflected light color monitored by the second monitor 72 appears as a gray color. The interference color monitored by the third monitor 73 appears faintly in step 5 when the reflected light is changed from white to transparent on the second monitor 72. Then, as the sample becomes thinner, the range of the interference color increases and the image becomes sharper. In step 6 where the interference color becomes clear, the bowl mirror polishing step 44 is completed. When the sample is made of glass, the thickness of the sample cannot be monitored by the colors of the transmitted light and the reflected light since there is no change in the colors of the transmitted light and the reflected light. However, since the interference color changes depending on the thickness even of glass, the thickness of the sample may be monitored using only the third monitor 73 when the sample is glass.

【0047】次いで、以上のように厚みを監視しながら
薄片化した試料についてイオン研磨工程5で、試料の一
部に小さい穴が開くまで薄膜化した後、その穴の周囲の
薄膜部について透過型電子顕微鏡観察6を行う。
Next, in the ion polishing step 5, the sample thinned while monitoring the thickness as described above is thinned until a small hole is formed in a part of the sample. An electron microscope observation 6 is performed.

【0048】(第2の実施例)ここでは、第2の実施形
態で説明した、断面構造解析の場合の薄膜試料作製法の
具体例について図7を参照して説明する。また、本例は
第1の実施例と切り出し工程から機械研磨工程までは同
じであるので、以下では異なる工程について主に説明す
る。
(Second Example) Here, a specific example of a method of fabricating a thin film sample in the case of cross-sectional structure analysis described in the second embodiment will be described with reference to FIG. Further, since the present example is the same as the first embodiment from the cutting step to the mechanical polishing step, different steps will be mainly described below.

【0049】図7において、例えば、シリコンデバイス
のミクロンオーダーの特定微細箇所の解析を行う場合、
まず、第1の実施例と同様の機械研磨工程4において、
薄片化試料厚モニター7で確認される干渉色が試料10
の特定微細箇所10Aを中心に鮮明になるまで、薄片化
する。
In FIG. 7, for example, when analyzing a microscopic part of a micron order of a silicon device,
First, in the mechanical polishing step 4 similar to the first embodiment,
The interference color confirmed by the sliced sample thickness monitor 7 is the sample 10
The thin section is made until it becomes clear centering on the specific minute portion 10A.

【0050】次に、機械研磨工程4で薄片化された試料
における特定微細箇所10Aに対してイオン研磨工程5
と薄膜化試料膜厚モニター8を繰り返しながら、特定微
細箇所10Aを薄膜化する。干渉色は薄膜化が進行する
につれて、鮮明になる。
Next, an ion polishing step 5 is performed on a specific minute portion 10A of the sample sliced in the mechanical polishing step 4.
While repeating the sample thickness monitor 8 and thinning, the specific minute portion 10A is thinned. The interference color becomes sharper as the film thickness is reduced.

【0051】図9は、特定微細箇所の膜厚50nm前後
に薄膜化した時の、薄膜化試料膜厚モニターの干渉色を
示している。この図に示すように、特定微細箇所10A
の最も薄膜化した状態での干渉色の色はクリーム色で、
透過型電子顕微鏡観察6を行うと格子像が観察され、試
料膜厚は約50nm前後である。
FIG. 9 shows the interference color of the thinned sample film thickness monitor when the film thickness is reduced to about 50 nm at a specific minute portion. As shown in FIG.
The color of the interference color in the thinnest state of is cream,
When a transmission electron microscope observation 6 was performed, a lattice image was observed, and the sample film thickness was about 50 nm.

【0052】(第3の実施例)本発明の薄膜試料作製法
はシリコンデバイスの平面構造解析の為の試料の作製に
も用いる事ができるので、ここでは、平面構造解析用の
薄膜試料の作製法の具体例について図1、図2、図6お
よび図8を参照して説明する。
(Third Embodiment) Since the method of preparing a thin film sample of the present invention can be used for preparing a sample for analyzing a planar structure of a silicon device, here, a method of preparing a thin film sample for analyzing a planar structure is described. A specific example of the method will be described with reference to FIG. 1, FIG. 2, FIG. 6, and FIG.

【0053】まず、LSI素子が形成されたシリコンウ
エハーの試料0から切り出し工程1で解析箇所を、ダイ
シングソーで2.5mm角に切り出し、試料片を作製す
る。機械研磨工程4内の平面粗研磨工程41で試料片
を、この試料片の厚さが50μm前後になるまで研磨す
る。その後、第1モニター71で試料片の透過光色が赤
から橙になった事を確認するまで、試料片に対してボウ
ル粗研磨工程43を3.5分間実施する。この時の試料
厚みは15μm前後となる。次にボウル鏡面研磨工程4
4で、試料片の表面を鏡面に研磨しながらゆっくりと薄
片化を行う。
First, in a cutting step 1, a portion to be analyzed is cut into a 2.5 mm square by a dicing saw from a sample 0 of a silicon wafer on which an LSI element is formed, thereby preparing a sample piece. The sample piece is polished in the plane rough polishing step 41 in the mechanical polishing step 4 until the thickness of the sample piece becomes about 50 μm. Thereafter, the bowl rough polishing step 43 is performed on the sample piece for 3.5 minutes until the first monitor 71 confirms that the transmitted light color of the sample piece has changed from red to orange. The sample thickness at this time is about 15 μm. Next, bowl mirror polishing process 4
In 4, the thinning is performed slowly while polishing the surface of the sample piece to a mirror surface.

【0054】ここで、第1〜第3モニターで監視するシ
リコンからなる試料の透過光色・反射光色・干渉色と、
ボウル鏡面研磨工程による試料厚みとの関係について、
図8を参照しながら説明する。図8において、ステップ
1はボウル粗研磨工程43の終了時である。ボウル鏡面
研磨工程44の開始後10分経過したステップ2では、
第1モニター71で監視する透過光色は橙、第2モニタ
ー72で監視する反射光色はねずみ色、第3モニター7
3で監視する干渉色はまだ現れない。この状態での試料
膜厚は10μm前後である。その後、5分間隔でボウル
鏡面研磨工程44による試料厚みを薄片化試料厚モニタ
ー7で監視する。
Here, the transmitted light color, reflected light color and interference color of the sample made of silicon to be monitored by the first to third monitors,
Regarding the relationship with the sample thickness by the bowl mirror polishing process,
This will be described with reference to FIG. In FIG. 8, Step 1 is at the end of the bowl rough polishing step 43. In step 2 after 10 minutes from the start of the bowl mirror polishing process 44,
The transmitted light color monitored by the first monitor 71 is orange, the reflected light color monitored by the second monitor 72 is gray, and the third monitor 7
The interference color monitored in 3 has not yet appeared. The sample film thickness in this state is about 10 μm. Thereafter, the sample thickness in the bowl mirror polishing step 44 is monitored by the sliced sample thickness monitor 7 at intervals of 5 minutes.

【0055】ボウル鏡面研磨工程44開始後15分経過
したステップ3では、第1モニター71で監視する透過
光色で橙から黄、第2モニター72で監視する反射光色
は白、第3モニター73で監視する干渉色は無しであ
り、試料膜厚は7〜8μmである。
In step 3 15 minutes after the start of the bowl mirror polishing process 44, the transmitted light color monitored by the first monitor 71 is orange to yellow, the reflected light color monitored by the second monitor 72 is white, and the third monitor 73 There was no interference color monitored in the above, and the sample film thickness was 7 to 8 μm.

【0056】ボウル鏡面研磨工程44開始後20分経過
したステップ4では、第1モニター71で監視する透過
光色は黄、第2モニター72で監視する反射光色は白、
第3モニター73で監視する干渉色は無しであり、この
時の試料膜厚は4〜5μmである。これ以降は、第1モ
ニター71で監視する透過光では試料膜厚の変化が確認
できない。そこで、これ以降は第2モニター72と第3
モニター73で試料の厚みを監視する。
In step 4 20 minutes after the start of the bowl mirror polishing step 44, the transmitted light color monitored by the first monitor 71 is yellow, the reflected light color monitored by the second monitor 72 is white,
There is no interference color monitored by the third monitor 73, and the sample film thickness at this time is 4 to 5 μm. Thereafter, the change in the sample film thickness cannot be confirmed by the transmitted light monitored by the first monitor 71. Therefore, the second monitor 72 and the third monitor
The monitor 73 monitors the thickness of the sample.

【0057】ボウル研磨開始後22分経過したステップ
5では、第2モニター72で監視する反射光色は白〜透
明、第3モニター73で監視する干渉色はぼんやりと現
れ、この時の試料膜厚は1〜2μmである。
At step 5 after 22 minutes from the start of the bowl polishing, the reflected light color monitored by the second monitor 72 appears white to transparent, and the interference color monitored by the third monitor 73 appears faintly. Is 1 to 2 μm.

【0058】ボウル研磨開始後23分経過したステップ
6では、第2モニター72で監視する反射光色は透明、
第3モニター73で監視する干渉色は鮮明になり(図1
0参照)、この時の試料膜厚は数百nmである。これ以
上ボウル鏡面研磨工程44を継続すると試料破壊が起こ
る。このように干渉色が鮮明に現れた時点を機械研磨工
程4の終点と決定し、機械研磨工程4を終了する。な
お、試料がガラスからなる場合は、透過光および反射光
色の変化はないので透過光および反射光色による試料厚
みの監視はできない。しかし、干渉色についてはガラス
であっても厚みにより変化するため、試料がガラスの場
合は第3モニター73のみを用い、試料厚みを監視すれ
ばよい。
In step 6 after 23 minutes from the start of bowl polishing, the reflected light color monitored by the second monitor 72 is transparent,
The interference color monitored by the third monitor 73 becomes clear (see FIG. 1).
0), and the thickness of the sample at this time is several hundred nm. If the bowl mirror polishing step 44 is continued any more, the sample will be destroyed. The point at which the interference color clearly appears is determined as the end point of the mechanical polishing step 4, and the mechanical polishing step 4 ends. When the sample is made of glass, the thickness of the sample cannot be monitored by the colors of the transmitted light and the reflected light since there is no change in the colors of the transmitted light and the reflected light. However, since the interference color changes depending on the thickness even of glass, the thickness of the sample may be monitored using only the third monitor 73 when the sample is glass.

【0059】次に、試料の一部に小さい穴が開くまでイ
オン研磨工程5を約5分行い、薄膜化する。この時、穴
の周囲は約70μmφの領域で膜厚0.1μm以下に薄
膜化されており、この部分で透過型電子顕微鏡観察6を
行う。
Next, an ion polishing step 5 is carried out for about 5 minutes until a small hole is formed in a part of the sample to make a thin film. At this time, the area around the hole is thinned to a thickness of 0.1 μm or less in a region of about 70 μmφ, and observation with a transmission electron microscope 6 is performed at this portion.

【0060】[0060]

【発明の効果】以上説明したように本発明は、観察目的
部分を含む試料を薄くする機械研磨工程と、この機械研
磨工程で薄くした試料をさらに薄くするイオン研磨工程
とを含み、機械研磨工程で薄くしている時、試料厚み
を、薄膜物質を白色光で照光した時の厚みによる透過光
色、反射光色、干渉色の変化を利用して監視する薄膜試
料作製法とした事により、機械研磨工程での試料薄膜化
終点を明確にでき、できる限り薄片化した試料を作製
できる。よって、次工程のイオン研磨工程を短縮でき、
またイオン研磨むらによる試料膜厚の不均一等の弊害を
回避できる。
As described above, the present invention comprises a mechanical polishing step for thinning a sample including a portion to be observed and an ion polishing step for further thinning the sample thinned in the mechanical polishing step. When the sample is thinned, the thickness of the sample is determined by the transmitted light due to the thickness when the thin film is illuminated with white light
A thin film sample preparation method that monitors using changes in color, reflected light color, and interference color to reduce the sample thickness in the mechanical polishing process
Can the endpoint clearly, the thinned sample as possible can be produced. Therefore, it is possible to shorten the next ion polishing step,
Further, it is possible to avoid adverse effects such as non-uniform sample thickness due to uneven ion polishing.

【0061】また、機械研磨工程で薄くした試料におけ
る特定微細箇所をイオン研磨工程で薄くする時、薄膜物
質を照光した時の厚みによる干渉色の変化を利用して特
定微細箇所の厚みを監視することにより、特定微細箇所
の薄膜化状態を透過型電子顕微鏡観察せずに確認でき
る。すなわち、イオン研磨装置と透過型電子顕微鏡の試
料台の試料脱着がないので、試料作製時間が短縮でき、
試料ハンドリングによる試料破壊も生じない。
Further, when a specific fine portion of a sample thinned by a mechanical polishing process is thinned by an ion polishing process, the thickness of the specific fine portion is monitored by utilizing a change in interference color due to a thickness when a thin film material is illuminated. Thus, the thinning state of a specific minute portion can be confirmed without observation with a transmission electron microscope. In other words, since there is no sample detachment of the ion polishing device and the sample stage of the transmission electron microscope, the sample preparation time can be reduced,
No sample destruction occurs due to sample handling.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による薄膜試料作製法の第1の実施形態
を説明するための工程図である。
FIG. 1 is a process diagram for explaining a first embodiment of a thin film sample preparation method according to the present invention.

【図2】図1の機械研磨工程を詳細に説明するための工
程図である。
FIG. 2 is a process diagram for describing a mechanical polishing process of FIG. 1 in detail.

【図3】図2の機械研磨工程内の平面研磨工程による試
料の様子を示す図である。
FIG. 3 is a view showing a state of a sample in a plane polishing step in the mechanical polishing step of FIG. 2;

【図4】図2の機械研磨工程内のボウル研磨工程による
試料の様子を示す図である。
FIG. 4 is a view showing a state of a sample in a bowl polishing step in the mechanical polishing step of FIG. 2;

【図5】図1のイオン研磨工程による試料の様子を示す
図である。
FIG. 5 is a view showing a state of a sample in the ion polishing step of FIG. 1;

【図6】図1の薄片試料厚モニターを詳細に説明するた
めの図である。
FIG. 6 is a diagram for explaining in detail a slice sample thickness monitor of FIG. 1;

【図7】本発明の薄膜試料作製法の第2の実施形態を説
明するための工程図である。
FIG. 7 is a process chart for explaining a second embodiment of the thin film sample preparation method of the present invention.

【図8】第1〜第3モニターで監視するシリコンからな
る試料の透過光色・反射光色・干渉色と、ボウル鏡面研
磨による試料厚みとの対応関係を示す図である。
FIG. 8 is a diagram showing a correspondence relationship between a transmitted light color, a reflected light color, and an interference color of a silicon sample monitored by first to third monitors, and a sample thickness by bowl mirror polishing.

【図9】特定微細箇所の膜厚50nm前後に薄膜化した
時の、薄膜化試料膜厚モニターの干渉色を示す図であ
る。
FIG. 9 is a diagram showing an interference color of a thinned sample thickness monitor when the thickness of a specific minute portion is reduced to about 50 nm.

【図10】機械研磨工程の終点を表す薄片化試料厚モニ
ターによる干渉色を示す図である。
FIG. 10 is a diagram showing an interference color by a sliced sample thickness monitor indicating an end point of a mechanical polishing step.

【図11】従来の、断面構造解析の為の薄膜試料作製法
を説明するための工程図である。
FIG. 11 is a process chart for explaining a conventional method for producing a thin film sample for analyzing a cross-sectional structure.

【符号の説明】 0 透過型電子顕微鏡の観察目的箇所が任意に存在す
る試料 1 試料切り出し工程 2 試料接着工程 3 試料切断工程 4 試料機械研磨工程 41 平面粗研磨工程 42 平面鏡面研磨工程 43 ボウル粗研磨工程 44 ボウル鏡面研磨工程 5 イオン研磨工程 6 透過型電子顕微鏡観察 7 薄片化試料厚モニター 71 第1モニター 72 第2モニター 73 第3モニター 8 薄膜化試料膜厚モニター 10 透過型電子顕微鏡の観察目的箇所に特定微細箇
所を含む試料
[Description of Signs] 0 Sample in which the observation target position of the transmission electron microscope is arbitrarily present 1 Sample cutting step 2 Sample bonding step 3 Sample cutting step 4 Sample mechanical polishing step 41 Plane rough polishing step 42 Plane mirror polishing step 43 Bowl coarse Polishing process 44 Bowl mirror polishing process 5 Ion polishing process 6 Transmission electron microscope observation 7 Thinning sample thickness monitor 71 First monitor 72 Second monitor 73 Third monitor 8 Thin film sample thickness monitor 10 Observation purpose of transmission electron microscope Samples containing specific fine spots

Claims (8)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 観察目的部分を含む試料を薄くする機械
研磨工程と、該機械研磨工程で薄くした試料をさらに薄
くするイオン研磨工程とを含む薄膜試料作製方法におい
て、前記機械研磨工程で薄くしている時、試料厚みを、
薄膜物質を白色光で照光した時の厚みによる透過光色、
反射光色、および干渉色の変化を利用して監視すること
を特徴とする薄膜試料作製法。
1. A method for preparing a thin film sample comprising: a mechanical polishing step of thinning a sample including an observation target portion; and an ion polishing step of further thinning the sample thinned in the mechanical polishing step. The sample thickness,
When the thin film material is illuminated with white light, the transmitted light color depends on the thickness,
A method for preparing a thin film sample, characterized in that monitoring is performed using changes in reflected light color and interference color.
【請求項2】 請求項1に記載の薄膜試料作製法におい
て、前記機械研磨工程で薄くした試料における特定微細
箇所を前記イオン研磨工程で薄くする時、特定微細箇所
の厚みを、薄膜物質を照光した時の厚みによる干渉色の
変化を利用して監視することを特徴とする薄膜試料作製
法。
2. The thin film sample manufacturing method according to claim 1, wherein when the specific fine portion in the sample thinned in the mechanical polishing step is thinned in the ion polishing step, the thickness of the specific fine portion is illuminated with the thin film material. A method for preparing a thin film sample, characterized in that monitoring is performed using a change in interference color due to the thickness at the time of performing the measurement.
【請求項3】 観察目的部分を含む試料を薄くする機械
研磨工程と、該機械研磨工程で薄くした試料をさらに薄
くするイオン研磨工程とを含む薄膜試料作製方法におい
て、前記機械研磨工程で薄くしている時、試料厚みを、
薄膜物質を白色光で照光した時の厚みによる透過光色、
反射光色、および干渉色の変化を利用して監視し、該干
渉色が鮮明になった時点で前記機械研磨工程を終了する
ことを特徴とする薄膜試料作製法。
3. A thin film sample manufacturing method comprising: a mechanical polishing step of thinning a sample including an observation target portion; and an ion polishing step of further thinning the sample thinned in the mechanical polishing step. The sample thickness,
When the thin film material is illuminated with white light, the transmitted light color depends on the thickness,
A method for producing a thin film sample, characterized in that monitoring is performed by utilizing changes in reflected light color and interference color, and the mechanical polishing step is completed when the interference color becomes clear.
【請求項4】 請求項3に記載の薄膜試料作製法におい
て、前記機械研磨工程で薄くした試料における特定微細
箇所を前記イオン研磨工程で薄くする時、特定微細箇所
を金属顕微鏡で観察すると同時に、特定微細箇所の厚み
を、薄膜物質を照光した時の厚みによる干渉色の変化を
利用して監視し、該干渉色が鮮明になった時点で前記イ
オン研磨工程を終了することを特徴とする薄膜試料作製
法。
4. The thin film sample preparation method according to claim 3, wherein when the specific fine portion in the sample thinned in the mechanical polishing step is thinned in the ion polishing step, the specific fine portion is observed with a metallographic microscope, The thickness of the specific minute portion is monitored using a change in interference color due to the thickness when the thin film material is illuminated, and the ion polishing step is terminated when the interference color becomes clear. Sample preparation method.
【請求項5】 観察目的部分を含む試料を薄くする機械
研磨工程と、該機械研磨工程で薄くした試料をさらに薄
くするイオン研磨工程とを含む薄膜試料作製法におい
て、 前記機械研磨工程で試料を薄くしている時に、試料厚み
を監視する薄片化試料厚モニターを用いており、 前記薄片化試料厚モニターは、試料の一面より白色光を
当て試料の他面より実体顕微鏡で観察し試料を透過した
光の色で試料薄片化状態を確認する第1モニターと、試
料を白色光の元で観察し試料からの反射光の色で試料薄
膜化状態を確認する第2モニターと、試料を金属顕徴鏡
で観察し試料に現れる干渉色で試料薄片化状態を確認す
る第3モニターとで構成されていることを特徴とする薄
膜試料作製法。
5. A method for preparing a thin film sample, comprising: a mechanical polishing step of thinning a sample including an observation target portion; and an ion polishing step of further thinning the sample thinned in the mechanical polishing step. When thinning, a thinned sample thickness monitor that monitors the sample thickness is used, and the thinned sample thickness monitor is irradiated with white light from one side of the sample, observed with a stereomicroscope from the other side of the sample, and transmitted through the sample. A first monitor for checking the thinned state of the sample with the color of the light obtained, a second monitor for observing the sample under white light and checking the thinned state of the sample with the color of light reflected from the sample, and a metal microscope. A method for preparing a thin film sample, comprising: a third monitor for observing a sample and confirming a state of sample thinning by an interference color appearing on the sample by observation with a sign.
【請求項6】 請求項5に記載の薄膜試料作製法におい
て、前記機械研磨工程でシリコンからなる試料が薄くな
るに従って、前記第1モニターで確認される透過光色は
赤〜橙〜黄の順に変化し、前記第2モニターで確認され
る反射光色はねずみ色〜白〜透明の順に変化し、前記第
3モニターで確認される干渉色は範囲が増し鮮明に変化
し、前記透過光色が橙で前記反射光色がねずみ色の場合
の試料厚みが10μm、前記反射光色が透明で前記干渉
色が鮮明の場合の試料厚みが数百nmであることを特徴
とする薄膜試料作製法。
6. The method for producing a thin film sample according to claim 5, wherein as the silicon sample becomes thinner in the mechanical polishing step, the transmitted light color confirmed on the first monitor is in the order of red to orange to yellow. The reflected light color observed on the second monitor changes in the order of gray to white to transparent, the interference color observed on the third monitor increases in range and sharply changes, and the transmitted light color changes to orange. Wherein the sample thickness is 10 μm when the reflected light color is a gray color, and the sample thickness is several hundred nm when the reflected light color is transparent and the interference color is clear.
【請求項7】 請求項5又は6に記載の薄膜試料作製法
において、前記第3モニターで確認される干渉色が鮮明
になった時点で前記機械研磨工程を終了することを特徴
とする薄膜試料作製法。
7. The thin film sample according to claim 5, wherein the mechanical polishing step is completed when the interference color confirmed by the third monitor becomes clear. Production method.
【請求項8】 請求項5〜7の何れか1項に記載の薄膜
試料作製法において、前記機械研磨工程で薄くした試料
における特定微細箇所を前記イオン研磨工程で薄くする
時、特定微細箇所を金属顕微鏡で観察すると同時に、特
定微細箇所の厚みを、薄膜物質を照光した時の厚みによ
る干渉色の変化を利用して監視する薄膜化試料膜厚モニ
ターを用いており、該薄膜化試料膜厚モニターで確認さ
れる干渉色が鮮明になった時点で前記イオン研磨工程を
終了することを特徴とする薄膜試料作製法。
8. The method for producing a thin film sample according to claim 5, wherein when the specific minute portion in the sample thinned in the mechanical polishing step is thinned in the ion polishing step, the specific minute portion is removed. At the same time as observing with a metallographic microscope, a thinned sample thickness monitor is used to monitor the thickness of a specific minute portion using the change in interference color due to the thickness when illuminating the thin film material. A method for preparing a thin film sample, wherein the ion polishing step is terminated when the interference color confirmed by a monitor becomes clear.
JP8312162A 1996-11-22 1996-11-22 Thin film sample preparation method Expired - Fee Related JP2982721B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8312162A JP2982721B2 (en) 1996-11-22 1996-11-22 Thin film sample preparation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8312162A JP2982721B2 (en) 1996-11-22 1996-11-22 Thin film sample preparation method

Publications (2)

Publication Number Publication Date
JPH10153535A JPH10153535A (en) 1998-06-09
JP2982721B2 true JP2982721B2 (en) 1999-11-29

Family

ID=18025992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8312162A Expired - Fee Related JP2982721B2 (en) 1996-11-22 1996-11-22 Thin film sample preparation method

Country Status (1)

Country Link
JP (1) JP2982721B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4891830B2 (en) * 2007-04-18 2012-03-07 日本電子株式会社 Sample holder for electron microscope and observation method
CN102519778A (en) * 2011-12-26 2012-06-27 北京工业大学 Device convenient for grinding and polishing transmission electron microscope sample
CN103940655A (en) * 2014-05-07 2014-07-23 广西玉柴机器股份有限公司 Method for preparing high-pressure oil pipe metallographic specimen
US10546719B2 (en) * 2017-06-02 2020-01-28 Fei Company Face-on, gas-assisted etching for plan-view lamellae preparation

Also Published As

Publication number Publication date
JPH10153535A (en) 1998-06-09

Similar Documents

Publication Publication Date Title
KR100329322B1 (en) METOD OF PREPARING A PLAN-VIEW SAMPLE OF AN INTEGRATED CIRCUIT FOR TRANSMISSION ELECTRON MICROSCOPY, AND METlIOBS OF OBSERVING THE SAMPLE
US6042736A (en) Method for preparing samples for microscopic examination
JP2982721B2 (en) Thin film sample preparation method
JPH10104142A (en) Sample for transmission electron microscope analysis and method for manufacturing the same
JP2003194681A (en) Tem sample preparation method
KR100636029B1 (en) Method for forming specimen protecting layer and method for manufacturing transmission electron microscope of specimen for analyzing using the same
JP2754301B2 (en) How to make a sample for electron microscope observation
JPH07209155A (en) Sample preparing device and method
KR20080102877A (en) Method for manufacturing a test sample for transmission electron microscope
KR100655645B1 (en) Specimen for TEM and method of manufacturing specimen for TEM
JPH1084020A (en) Processing method and inspection method for semiconductor
JP2500772B2 (en) Sample preparation method for transmission electron microscope
KR100620728B1 (en) Method for Manufacturing Specimen for Analyzing by Transmission Electron Microscope
JPS6315137A (en) Preparation of specimen for cross-sectional transmission electron microscope
KR100744267B1 (en) specimen manufacturing method for Transmission Electron Microscope
KR20050033699A (en) Method for forming sample using analysis by tem
KR100382608B1 (en) Sample Preparation Method for Transmission Electron Microscope_
US6007409A (en) Sample holder for parallel lapping tool and method of using
KR100506827B1 (en) Method of preparing dimple of specimen and method of manufacturing specimen for tem by using the same
KR20070054811A (en) Method of forming an analysis sample using the transmission electron microscope and the scanning capacitance microscope
Madden et al. A variation of transmission electron microscope sample preparation for VLSI analysis
KR20050112261A (en) Method of forming sample using analysis by tem
JPH04143633A (en) Method and jig for preparing sample for electron microscope
JPH04351937A (en) Electron microscope
KR100683115B1 (en) Specimen for TEM and method of manufacturing the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees