JP2980396B2 - Sample surface position measurement device - Google Patents

Sample surface position measurement device

Info

Publication number
JP2980396B2
JP2980396B2 JP3082318A JP8231891A JP2980396B2 JP 2980396 B2 JP2980396 B2 JP 2980396B2 JP 3082318 A JP3082318 A JP 3082318A JP 8231891 A JP8231891 A JP 8231891A JP 2980396 B2 JP2980396 B2 JP 2980396B2
Authority
JP
Japan
Prior art keywords
light
sample surface
optical system
light beams
beams
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3082318A
Other languages
Japanese (ja)
Other versions
JPH04315904A (en
Inventor
徹 東條
光雄 田畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3082318A priority Critical patent/JP2980396B2/en
Publication of JPH04315904A publication Critical patent/JPH04315904A/en
Application granted granted Critical
Publication of JP2980396B2 publication Critical patent/JP2980396B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

[発明の目的] [Object of the invention]

【0001】[0001]

【産業上の利用分野】本発明は、半導体ウエハあるいは
マスク等の試料の表面位置を非接触で測定す試料面位置
測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for measuring a surface position of a sample such as a semiconductor wafer or a mask in a non-contact manner.

【0002】[0002]

【従来の技術】従来、電子ビーム露光装置や縮小投影露
光装置などの半導体製造装置では、ウエハ表面の高さ
を、また、マスクやウエハの検査装置等では、やはりマ
スクやウエハの表面の高さを正確に測定する必要であ
る。前者を例にとれば、電子ビーム露光装置では電子ビ
ームの焦点深度以内に、縮小投影露光装置では投影レン
ズの焦点深度以内にウエハの表面を位置決めし、描画あ
るいは転写を行うために、ウエハの表面を正確に測定す
ることが必要となるからである。さらにこのためには、
電子線レジスト或いは光露光レジストを感光させない波
長(例えば600nm以上の波長)を用いて、ウエハの
表面の高さ測定が必要となる。
2. Description of the Related Art Conventionally, a semiconductor manufacturing apparatus such as an electron beam exposure apparatus or a reduction projection exposure apparatus has a wafer surface height, and a mask or wafer inspection apparatus has a mask or wafer surface height. Must be measured accurately. Taking the former as an example, an electron beam exposure apparatus positions the wafer surface within the depth of focus of the electron beam, and a reduced projection exposure apparatus positions the wafer surface within the depth of focus of the projection lens. Is required to be measured accurately. Further to this,
It is necessary to measure the height of the wafer surface using a wavelength that does not expose the electron beam resist or the light exposure resist (for example, a wavelength of 600 nm or more).

【0003】半導体製造装置では、ウエハ表面に対して
斜め方向から光を照射してその反射光の位置からウエハ
の高さを測定する方法が実施されている。しかし、この
方法では、ウエハ面(或いはマスク面でも同様)にパタ
ーンが描かれていて場所によって反射光の光の強度或い
は反射光の光束内強度分布が異なる場合にはウエハ表面
の高さ位置測定の精度低下を生じ、正確な位置測定がで
きないという問題がある。これらの問題を解決する方法
として特開昭56−2632号公報、特開昭57−13
9607号公報や米国特許第(USP)4,698,5
13に開示された位置測定装置などがあげられるが、こ
れらにおいても測定誤差の発生は認められる。
In a semiconductor manufacturing apparatus, a method of irradiating light to a wafer surface from an oblique direction and measuring the height of the wafer from the position of the reflected light is implemented. However, in this method, when a pattern is drawn on the wafer surface (or the same on the mask surface) and the intensity of the reflected light or the intensity distribution in the luminous flux of the reflected light varies depending on the location, the height position measurement of the wafer surface is performed. This causes a problem that the accuracy of the measurement is lowered and accurate position measurement cannot be performed. As a method for solving these problems, JP-A-56-2632 and JP-A-57-13
No. 9607 and US Pat. No. (USP) 4,698,5.
The position measuring device disclosed in No. 13 can be cited, but also in these, occurrence of a measurement error is recognized.

【0004】最近、図9に示すような共焦点法と呼ばれ
る技術が、例えばレーザ顕微鏡等に応用され実用化され
ているが、この共焦点法を用いてウエハ面の高さ方向の
位置を測定することが考えられる。しかし、この共焦点
法は測定可能な範囲が数μmと小さく、このような方法
を装置に組み込んだ場合、測定範囲を越えた場合には何
らかの方法で測定レンジを広げるようなことが必要であ
る。さらに、半導体製造装置の一つであるX線露光装置
で採用されているウエハやマスクの高さ方向の測定に、
斜め方向から2本の光束を特別に製作した回折格子状マ
ークに照射してマークから反射される0次反射光以外の
回折光の一部を同軸で回折させるようにし、その同軸反
射回折光を光ヘテロダイン測定して高さ方向を測定する
ことが文献(M.SUZUKI,A.Une:An optical-heterodyne a
lignment technique for quarter-micron x-ray lithog
raphy,J.Vac.Sci.Technol.B(6),Nov/Dec1989,1971.) に
報告されている。しかし、このような方法では測定面に
必ず特殊なマーク(回折格子等)を必要とし、あらゆる
場所でのウエハ面の測定は困難である。
Recently, a technique called a confocal method as shown in FIG. 9 has been applied to, for example, a laser microscope, and has been put to practical use. Using this confocal method, a position in a height direction of a wafer surface can be measured. It is possible to do. However, in this confocal method, the measurable range is as small as several μm, and when such a method is incorporated in an apparatus, it is necessary to extend the measurement range by some method if the measurement range is exceeded. . Furthermore, in the measurement of the height direction of a wafer or a mask employed in an X-ray exposure apparatus which is one of semiconductor manufacturing apparatuses,
By irradiating two beams from an oblique direction to a specially manufactured diffraction grating mark, a part of the diffracted light other than the 0th-order reflected light reflected from the mark is coaxially diffracted, and the coaxial reflected diffracted light is Measuring optical heterodyne and measuring the height direction is described in the literature (M. SUZUKI, A. Une: An optical-heterodyne a
lignment technique for quarter-micron x-ray lithog
raphy, J. Vac. Sci. Technol. B (6), Nov / Dec1989, 1971.). However, such a method always requires a special mark (such as a diffraction grating) on the measurement surface, and it is difficult to measure the wafer surface everywhere.

【0005】[0005]

【発明が解決しようとする課題】このように従来の位置
測定装置では、試料表面の反射率の変化などの問題によ
って測定精度が高くとれないといった問題、測定精度が
良い方法では測定の可能な範囲が非常に小さい問題など
があった。
As described above, in the conventional position measuring apparatus, there is a problem that the measurement accuracy cannot be high due to a problem such as a change in the reflectance of the sample surface. There was a very small problem.

【0006】本発明は上記事情を考慮して成されたもの
で、その目的とするところは、試料面の反射率の影響を
受けない、さらに測定範囲が十分に大きく取れ、特殊な
マーク等を必要としない試料面位置測定装置を提供する
ことにある。 [発明の構成]
The present invention has been made in consideration of the above circumstances, and has as its object the purpose of being free from the influence of the reflectance of the sample surface, providing a sufficiently large measurement range, and making special marks and the like. An object of the present invention is to provide a sample surface position measuring device that is not required. [Configuration of the Invention]

【0007】[0007]

【課題を解決するための手段】本発明の骨子は、基本的
には先の文献(M.SUZUKI,A.Une:An optical-heterodyne
alignment technique for quarter-micronx-ray litho
graphy,J.Vac.Sci.Technol.B(6),Nov/Dec1989,1971.)
の技術をベースとしているが、特殊なマークを必要とす
ることなく、十分に実用性のある試料面位置測定装置と
している。まず、本発明の実施例で説明している方法で
反射光は2光束である状態を作りだし、光の位相を測定
する方式を採用している。このために光ヘテロダインを
採用する。また、特殊なマークを必要としないために、
正反射光をそれぞれ測定するものとする。
The gist of the present invention is basically based on the above-mentioned literature (M. SUZUKI, A. Une: An optical-heterodyne).
alignment technique for quarter-micronx-ray litho
(graphy, J.Vac.Sci.Technol.B (6), Nov / Dec1989, 1971.)
Although it is based on the technology described above, the sample surface position measuring device is sufficiently practical without requiring a special mark. First, according to the method described in the embodiment of the present invention, a state is created in which the reflected light is two light beams, and the phase of the light is measured. For this purpose, optical heterodyne is adopted. Also, because there is no need for special marks,
It is assumed that the specularly reflected light is measured.

【0008】すなわち本発明は、所定の光束を試料面に
照射する照射光学系と、前記照射された光束が試料面で
正反射し、この正反射光のうち反射角度が異なる2光束
を受光し、この2光束に含まれる周波数の異なる2つの
光の波動の干渉により生じるうなりの位相を検出するこ
とで試料面の位置を検出する反射検出光学系と、を具備
することを特徴としている。
That is, according to the present invention, there is provided an irradiation optical system for irradiating a predetermined light beam to a sample surface, and the irradiated light beam is specularly reflected on the sample surface, and receives two light beams having different reflection angles among the specularly reflected light. And a reflection detection optical system that detects the position of the sample surface by detecting the phase of the beat generated by the interference between the waves of the two lights having different frequencies contained in the two light beams.

【0009】[0009]

【作用】上記構成であれば、正反射の角度の異なる2光
束を受光し、この角度の差から試料面が高さ方向に変位
した時、光路差が発生することにより2光束の位相が変
化する。この量を測定することで特殊なマークを必要と
することのない位置測定装置が構成できる。
According to the above construction, when the sample surface is displaced in the height direction from the difference in the angle of regular reflection, the phase of the two light beams changes due to the occurrence of an optical path difference. I do. By measuring this amount, a position measuring device that does not require a special mark can be configured.

【0010】また、光ヘテロダインを採用した位相測定
のため試料面からの反射光量の変化に依存しない位置測
定が可能となる。これによって従来発生していた測定誤
差の発生を招くことのない信号が取れる。また上述した
ように正反射光を測定しているため試料面に特殊なマー
クを設ける必要がなく、原理的にはあらゆる試料面の測
定が可能となる。測定の範囲は2光束の受光の角度差
(斜め入射の角度差)を適当に変更することによってい
かようにも設定することができ、様々な装置の要求に合
わせる事ができ、より実用性の高い位置測定装置を提供
することができる。
In addition, since the phase is measured using optical heterodyne, the position can be measured without depending on the change in the amount of reflected light from the sample surface. As a result, a signal which does not cause the occurrence of a measurement error which has conventionally occurred can be obtained. Further, since the specular reflection light is measured as described above, it is not necessary to provide a special mark on the sample surface, and in principle, measurement on any sample surface is possible. The range of measurement can be set in any manner by appropriately changing the angle difference between the two light beams (the angle difference of oblique incidence), and can be adapted to the requirements of various devices, making it more practical. A high position measuring device can be provided.

【0011】[0011]

【実施例】以下本発明の詳細を図示の実施例によって説
明する。図1は本発明の一実施例に関わる試料面測定装
置を示す概略構成図である。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. FIG. 1 is a schematic configuration diagram showing a sample surface measuring apparatus according to one embodiment of the present invention.

【0012】レーザ等の光源1から放出された光を偏向
ビームスプリッタ2によって分離し、それぞれBragg セ
ル(超音波光変調素子)あるいはAOM(音響光学変調
素子)3、4を通してf1 ,f2 の周波数偏移(シフ
ト)を与える。図1中矢印の方向がその偏向方向を示し
ている。それぞれのf1 ,f2 の光束は偏向ビームスプ
リッタ5とハーフミラー6、ミラー7によって一方は、
1 とf2 とが混合され、他方がf2 のみの2光束に再
編成される。この2本の光束は適当な光学素子8によっ
て、ある決められた入射角度θ1 と入射角度差Δθを持
って試料面9に斜め方向から照射される。
[0012] The light emitted from the light source 1 such as a laser is separated by the deflection beam splitter 2, respectively Bragg cell (ultrasonic optical modulator) or AOM through (acousto-optic modulation element) 3 and 4 f 1, f 2 Gives a frequency shift. The direction of the arrow in FIG. 1 indicates the deflection direction. One of the light beams of f 1 and f 2 is deflected by a deflection beam splitter 5, a half mirror 6 and a mirror 7,
and f 1 and f 2 are mixed, the other is reorganized into two beams of only f 2. The two light beams are irradiated from a diagonal direction onto the sample surface 9 by an appropriate optical element 8 with a predetermined incident angle θ 1 and an incident angle difference Δθ.

【0013】この2光束の正反射光は光の反射の法則に
したがって反射し、図に示したように入射角度差Δθを
持って分離したものとなる。入射角度θ1 の反射光束の
途中に偏向ビームスプリッタ12を挿入し、f1の偏向
光を反射、および1/2波長板10によって偏向面を9
0度回転させ、コーナキューブ11、ハーフミラー16
aによって一部の光を入射角度θ1 の反射光に戻す。こ
れによって波動の干渉により生じるうなりを光電素子1
3aによって測定することができる。
The specularly reflected light of the two light beams is reflected according to the law of light reflection, and is separated with an incident angle difference Δθ as shown in the figure. The deflecting beam splitter 12 is inserted in the middle of the reflected light beam at the incident angle θ 1 to reflect the deflecting light at f 1, and the deflecting surface is changed to 9 by the half-wave plate 10.
Rotate 0 degrees, corner cube 11, half mirror 16
By a, a part of the light is returned to the reflected light at the incident angle θ 1 . This causes the beat generated by the interference of the wave to be generated by the photoelectric element 1.
3a.

【0014】一方入射角度θ1 +Δθの反射光の一部に
ハーフミラー16bを挿入し、先の偏向面を90度回転
させた光を干渉させる。これによって光電素子13bで
1−f2 の波動の干渉を測定することができる。これ
らの信号の位相差を位相計14を用いて測定することに
よって、位相差に比例した試料面位置を知ることができ
る。
On the other hand, the half mirror 16b is inserted into a part of the reflected light at the incident angle θ 1 + Δθ, and interferes with the light obtained by rotating the deflection surface by 90 degrees. This makes it possible to measure the interference of the waves of f 1 -f 2 with the photoelectric element 13b. By measuring the phase difference between these signals using the phase meter 14, the sample surface position proportional to the phase difference can be known.

【0015】ここで、例えば図2に示すようにそれぞれ
の入射光の入射角度をθ1 、θ2 として試料面がzだけ
変位したとすると、それぞれ2光束の光路差は次のよう
に求めることができる。θ1 の入射角の光束に関して
は、原点O(2光束の集光位置)から試料面がz変位し
たときの反射光に垂線を引くことによって、OA−AB
間が光路長変化であることがわかる。OAの光路長は、
z/cosθ1 、ABの光路長はzcos2θ1 /co
sθ1 であるので全体の光路長は 2zcosθ1 ・・・ (1) で表される。θ2 の入射角の光束に関しては同様にし
て、 2zcosθ2 ・・・ (2) と求めることができる。この2光束の相対的な光路差
は、上記式(1)、(2)の差 2z(cosθ1 −cosθ2 ) ・・・ (3) で求めることができ、2光束の位相差は 4πz(cosθ1 −cosθ2 )/λ (4) となる。なお、λは光の波長である。
Here, assuming that the sample surface is displaced by z, as shown in FIG. 2, for example, where the incident angles of the respective incident lights are θ 1 and θ 2 , the optical path difference of each of the two light beams is obtained as follows. Can be. For the light beam incidence angle theta 1, by dropping a perpendicular to the reflected light when the sample surface from the origin O (condensing position of the two light beams) is z displacement, OA-AB
It can be seen that the interval is a change in the optical path length. The optical path length of OA is
z / cos θ 1 , the optical path length of AB is zcos 2θ 1 / co
the optical path length of the whole since it is S.theta 1 is represented by 2zcosθ 1 ··· (1). Similarly, the light flux having an incident angle of θ2 can be obtained as 2zcos θ 2 (2). The relative optical path difference between the two light beams can be obtained by the difference 2z (cos θ 1 −cos θ 2 ) (3) in the above equations (1) and (2), and the phase difference between the two light beams is 4πz ( cos θ 1 −cos θ 2 ) / λ (4) Here, λ is the wavelength of light.

【0016】式(4)からわかるように、(cosθ1
−cosθ2 )/λの値を適当に設定することによって
zの測定範囲で位相差が2π変化するように調整するこ
とができる。図3は式(4)で求められる位相変化特性
である。これが本発明の位置測定装置の基本的な原理と
実施例である。本発明は上述した方法以外にも様々な実
施例が考えられる。以下に、本発明の変形例を説明す
る。
As can be seen from equation (4), (cos θ 1
By appropriately setting the value of −cos θ 2 ) / λ, adjustment can be made so that the phase difference changes by 2π in the z measurement range. FIG. 3 shows a phase change characteristic obtained by Expression (4). This is the basic principle and embodiment of the position measuring device of the present invention. The present invention may have various embodiments other than the method described above. Hereinafter, modified examples of the present invention will be described.

【0017】例えば入射光でf1 、f2 の干渉光束を作
らずに、図4に示すように反射光側でミラー17、ハー
フミラー18を用いて干渉させ、光電検出器13を一個
にしてf1 −f2 の信号を測定する方法が実現できる。
この場合、基準となるf1 −f2 の信号が必要である
が、この基準信号と検出信号の位相差を測定して試料面
の高さ方向の変位を測定することができる。この基準と
なるf1 −f2 の信号は図4で示すようにBragg セル
(超音波光変調素子)3、4の電気信号を取りだし、位
相計14に入力させても良いし、また、図5に示したよ
うに入射光学系側でハーフミラー20、21を用いてf
1 ,f2 の光を干渉させ、これを測定し、基準信号とし
ても良い。このような方法でも先に式で示した出力と同
様な結果が得られる。
For example, interference light beams f 1 and f 2 are not generated by the incident light, but are caused to interfere by using the mirror 17 and the half mirror 18 on the reflected light side as shown in FIG. A method of measuring the signal of f 1 -f 2 can be realized.
In this case, a reference signal f 1 −f 2 is required, but the phase difference between the reference signal and the detection signal can be measured to measure the displacement of the sample surface in the height direction. As shown in FIG. 4, the signals of f 1 -f 2 serving as the reference may be obtained by extracting the electric signals of Bragg cells (ultrasonic light modulation elements) 3 and 4 and inputting them to the phase meter 14. As shown in FIG. 5, by using the half mirrors 20 and 21 on the incident optical system side, f
1, by interfering light f 2, which was measured, it may be used as the reference signal. Even with such a method, a result similar to the output shown by the above equation can be obtained.

【0018】また、図4、5で示した実施例の場合、測
定範囲の選定によってはΔθの角度が小さく、現実的に
2光束が完全に分離しにくい場合が考えられる。このよ
うな場合には、入射光側の片側の光束に偏向板を挿入
し、一方の光束を他方の光束と偏向方向を変えておく、
反射光側で偏向ビームスプリッタによって2光束を分離
し、再度偏向板を用いて偏向方向を一致させ、再度重ね
合せる方法が考えられる。この偏向とは、例えば光をP
波、S波のように変更するような場合であって、このよ
うな偏向を利用した分離方法によって1度以下のΔθの
角度でも容易に分離、重ね合せができる。現実問題とし
て、非常に高精度な位置測定を実施する場合には、角度
差Δθは10度以内、さらに望ましくは、1度前後が望
ましく、この様に上記偏向という概念は、本発明を実施
する上で有用である。
In the case of the embodiment shown in FIGS. 4 and 5, the angle of Δθ may be small depending on the selection of the measurement range, and it may be practically difficult to completely separate the two light beams. In such a case, a deflecting plate is inserted into the light beam on one side on the incident light side, and the deflection direction of one light beam is changed from that of the other light beam.
A method is considered in which two light beams are separated on the reflected light side by a deflecting beam splitter, the deflecting directions are matched again by using a deflecting plate, and the light beams are superposed again. This deflection means, for example,
In a case where the wave is changed like a wave or an S wave, separation and superimposition can be easily performed even at an angle of Δθ of 1 ° or less by a separation method using such a deflection. As a practical matter, when very high-precision position measurement is performed, the angle difference Δθ is preferably within 10 degrees, more preferably, about 1 degree. Thus, the concept of the deflection implements the present invention. Useful on

【0019】以上の実施例は、光を試料面の斜め方向か
ら照射する場合について述べたが、多くの場合試料面を
観察するためにその上面に観察用のレンズなどが設置さ
れている場合がある。この様な場合、前述の斜め入射の
入射角度を大きくして、本発明の試料面位置測定装置を
構成することも可能であるが、図6に示したように例え
ば2光束をミラー25で垂直に対物レンズ26に入射さ
せて光束を通すTTL(Through The Lens)方式も可能
である。また、入射光の1本は傾いている必要はなく試
料面に対して垂直でも良く、他の1本が傾いていれば良
い。要するに試料面に対して傾いた光束を含んだ2本の
光束を試料面に入射させ、その正反射光を測定し、それ
ぞれの光束が通る光路差を測定(実施例の場合それぞれ
の光の位相差を何等かの方法で測定)すれば良く、本発
明の要旨を逸脱しない範囲で様々な実施例が考えられ
る。
In the above embodiment, the case where light is irradiated from the oblique direction of the sample surface has been described. In many cases, however, an observation lens or the like is provided on the upper surface of the sample surface in order to observe the sample surface. is there. In such a case, it is possible to configure the sample surface position measuring apparatus of the present invention by increasing the angle of incidence of the above-mentioned oblique incidence. However, for example, as shown in FIG. A TTL (Through The Lens) system in which the light beam is made incident on the objective lens 26 and passes the light beam is also possible. In addition, one of the incident lights does not need to be inclined, and may be perpendicular to the sample surface, and the other may be inclined. In short, two light beams including a light beam inclined with respect to the sample surface are incident on the sample surface, the specularly reflected light is measured, and the optical path difference through which each light beam passes is measured (in the case of the embodiment, each light position is different). The phase difference may be measured by any method), and various embodiments can be considered without departing from the gist of the present invention.

【0020】なお、上述した実施例では2本の光束に適
当な入射角度差Δθをつける光学素子8の詳しい記述を
していないが、これは例えば図7に示すように光学素子
8として2つのミラー27a,27bを用いることによ
って、2光束を試料面上に対して斜めに反射させ、試料
面上に入射角度差Δθで集光する光束を作り出すことが
できる。この場合2光束を平行光で入射させ、レンズ2
8の焦点位置に試料面を置くようにする。平行光の間隔
を、例えばこの場合ミラー27a,27bの間隔をミラ
ー駆動機構30によって動かすことで容易に入射角度差
Δθの設定、微調整を行うことができる。このミラー駆
動機構30を設けることで前述した角度差Δθを現実的
な、例えば10度以内程度に微調整できる。
In the above-described embodiment, the optical element 8 for giving an appropriate incident angle difference .DELTA..theta. To two light beams is not described in detail, but for example, as shown in FIG. By using the mirrors 27a and 27b, it is possible to reflect the two light beams obliquely with respect to the sample surface and create a light beam that is condensed on the sample surface with an incident angle difference Δθ. In this case, two light beams are made incident as parallel light, and the lens 2
The sample surface is placed at the focal position of No. 8. By setting the distance between the parallel lights, for example, in this case, the distance between the mirrors 27a and 27b by the mirror driving mechanism 30, the setting and fine adjustment of the incident angle difference Δθ can be easily performed. By providing the mirror driving mechanism 30, the above-described angle difference Δθ can be finely adjusted to be realistic, for example, within about 10 degrees.

【0021】また、レンズを用いた場合試料面上では球
面波となって集光するが、反射光側に同様なレンズを設
けることによって検出器で測定するあるいは干渉させる
部分では平行光を作り出すことができる。さらに球面波
状の2光束を適当な角度でレンズに入射させることによ
ってレンズの出射光を平行光とし集光させることも可能
である。別の方法として図8に示すように1対のミラー
29a,29bによって簡単に2光束の集光光を作り出
す事ができるし、プリズムなど様々な光学素子を用いて
2光束およびその角度差Δθをつける方法が考えられ
る。
When a lens is used, the light is condensed as a spherical wave on the sample surface, but by providing a similar lens on the reflected light side, it is necessary to produce parallel light at the part where measurement or interference occurs with the detector. Can be. Further, it is also possible to make the light emitted from the lens parallel and converge it by making the two light beams having a spherical wave incident on the lens at an appropriate angle. As another method, as shown in FIG. 8, it is possible to easily generate two light fluxes by a pair of mirrors 29a and 29b, and to use two optical elements such as a prism to determine the two light fluxes and the angle difference Δθ. There is a way to attach it.

【0022】さらに、本発明は次のような場合にも実施
可能であって、前述の実施例の概念を拡張して、Δθの
角度全体で集光する1本の光を照明光学系で作り出し
(1本の光束の場合には、すでに周波数偏移f1 ,f2
された光)、反射光をプリズム等の適当な方法で角度差
Δθの2光束に分離し(例えば1本の光束の端部をそれ
ぞれ分離することで角度差Δθの2光束が得られる)、
その光束を干渉させて位置測定することも可能である。
Further, the present invention can be implemented in the following cases. The concept of the above-described embodiment is extended to produce one light beam condensed over the entire angle of Δθ by the illumination optical system. (In the case of one light beam, the frequency shifts f 1 and f 2
Separated light), and the reflected light is separated into two light beams having an angle difference Δθ by an appropriate method such as a prism (for example, two light beams having an angle difference Δθ can be obtained by separating the ends of one light beam).
The position can also be measured by causing the light beam to interfere.

【0023】なお、、微細な像をレンズによって観察し
ようとする場合、最近の傾向として波長の短い光を用い
て観察することが盛んに行われている。このような装置
では、オートフォーカス用に観察光とは異なった光を用
いて試料面を性格に測定することが要求される場合が多
い。観察光に対して色収差補正されたレンズに、観察光
とは異なった光を通すことで様々な問題が生じる。この
ような場合、非常に細く絞った光束をレンズに通すこと
で色収差の問題を比較的簡単に解決することができる。
上述したような条件で試料面を測定するのにも、本発明
の技術が使用できる。さらに2光束の角度差Δθを適当
に変更することによって(角度差Δθが小さい場合に
は、一方の光に対して他方の光を偏向できるような機構
を設けることによって)、測定範囲をいかようにも設定
することができ、様々な装置の要求に合わせてより実用
性の高い位置測定装置を提供することができるなど本発
明は工業上の利点が多い。
In the case where a fine image is to be observed with a lens, observation using light having a short wavelength has recently been actively performed. In such an apparatus, it is often required to accurately measure the sample surface using light different from observation light for autofocusing. Passing light different from the observation light to the lens whose chromatic aberration has been corrected for the observation light causes various problems. In such a case, the problem of chromatic aberration can be relatively easily solved by passing a very narrowly focused light beam through the lens.
The technique of the present invention can also be used to measure the sample surface under the conditions described above. Further, by appropriately changing the angle difference Δθ between the two light beams (by providing a mechanism that can deflect one light with respect to the other light when the angle difference Δθ is small), the measurement range can be improved. The present invention has many industrial advantages, for example, it is possible to provide a more practical position measuring device according to the requirements of various devices.

【0024】[0024]

【発明の効果】光ヘテロダインにより反射光の位相を測
定しているため、試料面からの反射光量の変化に依存し
ない位置測定が可能となり、従来発生していた測定誤差
の発生を招くことのない信号が取れる。さらに反射0次
光(正反射光)を測定しているため試料面に特殊なマー
クを設ける必要がなく、原理的にはあらゆる試料面の測
定が可能となる。
Since the phase of the reflected light is measured by optical heterodyne, position measurement independent of a change in the amount of reflected light from the sample surface can be performed, and a measurement error which has conventionally occurred does not occur. Signal can be taken. Further, since zero-order reflected light (specular reflection light) is measured, it is not necessary to provide a special mark on the sample surface, and measurement on any sample surface is possible in principle.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の試料面位置測定装置の一実施例を説明
した概略構成図。
FIG. 1 is a schematic configuration diagram illustrating an embodiment of a sample surface position measuring apparatus according to the present invention.

【図2】本発明の測定原理を説明するための説明図。FIG. 2 is an explanatory diagram for explaining a measurement principle of the present invention.

【図3】本発明の試料面測定装置により得られる出力特
性の一例を示す特性図。
FIG. 3 is a characteristic diagram showing an example of an output characteristic obtained by the sample surface measuring device of the present invention.

【図4】本発明の試料面位置測定装置の他の実施例を説
明した概略構成図。
FIG. 4 is a schematic configuration diagram illustrating another embodiment of the sample surface position measuring device of the present invention.

【図5】本発明の試料面位置測定装置の他の実施例を説
明した概略構成図。
FIG. 5 is a schematic configuration diagram illustrating another embodiment of the sample surface position measuring device of the present invention.

【図6】本発明の試料面位置測定装置の光学系部分の変
形例を説明した概略構成図。
FIG. 6 is a schematic configuration diagram illustrating a modified example of the optical system portion of the sample surface position measuring device of the present invention.

【図7】本発明の試料面位置測定装置の光学系部分の変
形例を説明した概略構成図。
FIG. 7 is a schematic configuration diagram illustrating a modified example of an optical system portion of the sample surface position measuring device of the present invention.

【図8】本発明の試料面位置測定装置の光学系部分の変
形例を説明した概略構成図。
FIG. 8 is a schematic configuration diagram illustrating a modified example of the optical system portion of the sample surface position measuring device of the present invention.

【図9】従来の共焦点法の簡単な光学構成を説明した
図。
FIG. 9 is a diagram illustrating a simple optical configuration of a conventional confocal method.

【符号の説明】[Explanation of symbols]

1 光源 2 偏向ビームスプリッタ 3 Bragg セル 4 Bragg セル 5 偏向ビームスプリッタ 6 ハーフミラー 7 ミラー 8 光学素子 9 試料面 10 1/2波長板 11 コーナーキューブ 13,13a,13b 光電検出器 14 位相計 Reference Signs List 1 light source 2 deflection beam splitter 3 Bragg cell 4 Bragg cell 5 deflection beam splitter 6 half mirror 7 mirror 8 optical element 9 sample surface 10 1/2 wavelength plate 11 corner cube 13, 13a, 13b photoelectric detector 14 phase meter

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】試料の表面に対し可干渉性のある光を照射
して、前記試料面の表面で反射された光を検出器に導き
試料面の位置を測定する試料面位置測定装置において、 所定の光束を前記試料面に照射する照射光学系と、 前記照射された光束が前記試料面で正反射し、この正反
射光のうち反射角度が異なる2光束を受光し、この2光
束に含まれる周波数の異なる2つの光の波動の干渉によ
り生じるうなりの位相を検出することで前記試料面の位
置を検出する反射検出光学系と、前記照射光学系の周波数が異なる2つの光束をそれぞれ
異なった入射角で前記試料面に入射させる光学系とを具
備し、 前記反射検出光学系は、前記2つの入射光のそれぞれの
正反射光をお互いに干渉するように重ねあわせる光学手
段と、前記正反射光の2光束の波動の干渉により生じる
うなりと等しい周波数を持つ基準となる信号と前記正反
射光の2光束の干渉により生じるうなりの信号との位相
差を測定する測定手段とを具備し、 前記2光束は偏向手段を用いてそれぞれ異なる偏向方向
あるいは回転方向を持つように偏向され、それぞれの正
反射光を偏向分離手段で分離した後に前記反射検出光学
系に導くように構成したこと を特徴とする試料面位置測
定装置。
1. A method of irradiating a coherent light on a surface of a sample.
Guide the light reflected by the surface of the sample surface to the detector
In a sample surface position measuring device for measuring a position of a sample surface, an irradiation optical system for irradiating a predetermined light beam on the sample surface, and the irradiated light beam is regularly reflected on the sample surface.
Two light beams having different reflection angles are received among the emitted light, and these two light beams are received.
Due to the interference of the waves of the two lights with different frequencies contained in the bundle
The phase of the sample surface is detected by detecting the phase of the beat generated.
Reflection detection optical system for detecting the position,Two light beams having different frequencies of the irradiation optical system
An optical system for entering the sample surface at different angles of incidence.
Be prepared, The reflection detection optical system is provided for each of the two incident lights.
Optical hand that superimposes specularly reflected light so as to interfere with each other
Caused by the interference of the wave of the two beams of the specularly reflected light with the step
The reference signal having the frequency equal to the beat and the positive and negative
Phase with beat signal generated by interference of two beams of emitted light
Measuring means for measuring the difference, The two light beams are deflected in different directions using a deflecting means.
Or, it is deflected to have a rotation direction,
After the reflected light is separated by the deflection separation means, the reflection detection optical
That it is configured to lead to the system Sample position measurement characterized by
Setting device.
【請求項2】試料の表面に対し可干渉性のある光を照射
して、前記試料面の表面で反射された光を検出器に導き
試料面の位置を測定する試料面位置測定装置において、 所定の光束を前記試料面に照射する照射光学系と、 前記照射された光束が前記試料面で正反射し、この正反
射光のうち反射角度が異なる2光束を受光し、この2光
束に含まれる周波数の異なる2つの光の波動の干渉によ
り生じるうなりの位相を検出することで前記試料面の位
置を検出する反射検出光学系と、 前記照射光学系の周波数が異なる2つの光束をそれぞれ
異なった入射角で前記試料面に入射させる光学系とを具
備し、 前記反射検出光学系は、前記2つの入射光のそれぞれの
正反射光をお互いに干渉するように重ねあわせる光学手
段と、前記正反射光の2光束の波動の干渉により生じる
うなりと等しい周波数を持つ基準となる信号と前記正反
射光の2光束の干渉により生じるうなりの信号との位相
差を測定する測定手段とを具備し、 前記試料面上に入射する2光束の入射角度差を調整可能
な入射角度変更機構を設けたこと を特徴とする試料面位
置測定装置。
2. A sample surface position measuring device which irradiates a surface of a sample with coherent light, guides light reflected on the surface of the sample surface to a detector, and measures the position of the sample surface. An irradiation optical system for irradiating a predetermined light beam to the sample surface; the irradiated light beam being specularly reflected on the sample surface, receiving two light beams having different reflection angles among the specularly reflected light, and being included in the two light beams A reflection detection optical system that detects the position of the sample surface by detecting a phase of a beat generated by interference of two light waves having different frequencies, and two light beams having different frequencies of the irradiation optical system. An optical system for entering the sample surface at an incident angle, wherein the reflection detection optical system is an optical unit that superimposes the respective regular reflected lights of the two incident lights so as to interfere with each other; Wave of two light beams Measuring means for measuring a phase difference between a reference signal having a frequency equal to the beat generated by the interference of the beat and a beat signal generated by the interference of the two light beams of the specularly reflected light, and is incident on the sample surface. Adjustable angle difference between two light beams
A sample surface position measuring device provided with a simple incident angle changing mechanism .
JP3082318A 1991-04-15 1991-04-15 Sample surface position measurement device Expired - Fee Related JP2980396B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3082318A JP2980396B2 (en) 1991-04-15 1991-04-15 Sample surface position measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3082318A JP2980396B2 (en) 1991-04-15 1991-04-15 Sample surface position measurement device

Publications (2)

Publication Number Publication Date
JPH04315904A JPH04315904A (en) 1992-11-06
JP2980396B2 true JP2980396B2 (en) 1999-11-22

Family

ID=13771222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3082318A Expired - Fee Related JP2980396B2 (en) 1991-04-15 1991-04-15 Sample surface position measurement device

Country Status (1)

Country Link
JP (1) JP2980396B2 (en)

Also Published As

Publication number Publication date
JPH04315904A (en) 1992-11-06

Similar Documents

Publication Publication Date Title
JP2658051B2 (en) Positioning apparatus, projection exposure apparatus and projection exposure method using the apparatus
EP0634702B1 (en) Measuring method and apparatus
US5576829A (en) Method and apparatus for inspecting a phase-shifted mask
US5343292A (en) Method and apparatus for alignment of submicron lithographic features
CN101251718B (en) Inspection method and apparatus, lithographic apparatus, lithographic processing cell and device manufacturing method
US5184196A (en) Projection exposure apparatus
US20050094153A1 (en) Metrology system using optical phase
US5751426A (en) Positional deviation measuring device and method for measuring the positional deviation between a plurality of diffraction gratings formed on the same object
JP3364382B2 (en) Sample surface position measuring device and measuring method
US5610718A (en) Apparatus and method for detecting a relative displacement between first and second diffraction gratings arranged close to each other wherein said gratings have different pitch sizes
TWI631321B (en) Illumination source for an inspection apparatus, inspection apparatus and inspection method
JP2980396B2 (en) Sample surface position measurement device
JP3275273B2 (en) Alignment device and exposure device
JP3335868B2 (en) Exposure equipment with optical position measuring device
US20230266233A1 (en) System for measuring thickness and physical properties of thin film using spatial light modulator
JPH02133913A (en) Alignment apparatus
JP4565248B2 (en) Position detection apparatus and adjustment method thereof
JP2892747B2 (en) Tilt or height detection method and device, and projection exposure method and device
JP2691298B2 (en) Positioning device and exposure apparatus including the same
JP3548665B2 (en) Position measuring device
JPH06160020A (en) Measuring device
JP3106490B2 (en) Positioning apparatus and exposure apparatus having the same
KR0136213B1 (en) Photomask inspecting method and apparatus
JPH06342748A (en) Position detector
JPH0340417A (en) Projection aligner

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070917

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080917

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080917

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090917

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees