JP2978607B2 - Method for producing silicon single crystal - Google Patents

Method for producing silicon single crystal

Info

Publication number
JP2978607B2
JP2978607B2 JP3236630A JP23663091A JP2978607B2 JP 2978607 B2 JP2978607 B2 JP 2978607B2 JP 3236630 A JP3236630 A JP 3236630A JP 23663091 A JP23663091 A JP 23663091A JP 2978607 B2 JP2978607 B2 JP 2978607B2
Authority
JP
Japan
Prior art keywords
single crystal
flow rate
gas
pulling
melt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3236630A
Other languages
Japanese (ja)
Other versions
JPH0570279A (en
Inventor
久雄 江阪
正博 田中
郁夫 沢田
清 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NITSUTETSU DENSHI KK
Nippon Steel Corp
Original Assignee
NITSUTETSU DENSHI KK
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NITSUTETSU DENSHI KK, Nippon Steel Corp filed Critical NITSUTETSU DENSHI KK
Priority to JP3236630A priority Critical patent/JP2978607B2/en
Publication of JPH0570279A publication Critical patent/JPH0570279A/en
Application granted granted Critical
Publication of JP2978607B2 publication Critical patent/JP2978607B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はシリコン融液からシリコ
ン単結晶を引き上げて製造する際に、シリコンウェハの
特性を左右する酸素濃度を結晶の長手方向で一定とし、
歩留り高く製造する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a silicon single crystal by pulling a silicon single crystal from a silicon melt, wherein the oxygen concentration which affects the characteristics of the silicon wafer is kept constant in the longitudinal direction of the crystal.
The present invention relates to a method for manufacturing with high yield.

【0002】[0002]

【従来の技術】シリコン結晶中の酸素は、石英るつぼか
らシリコン融液中に溶解する量と、シリコン融液の自由
表面から蒸発する量のバランスで決定されている。例え
ば、結晶の引上げと共に、るつぼと融液との接触面積が
減少するため、単結晶の長さ方向に酸素濃度が減少する
のが一般的である。シリコン結晶中の酸素濃度を左右す
る引上げ操業上の因子として、従来から述べられている
ように、るつぼ位置、るつぼ回転数、ヒーターパワー、
炉内圧力、不活性ガス(アルゴン)流量、るつぼ上部お
よび下部の断熱状況、結晶回転数等が挙げられる。従
来、これらの因子の中で、るつぼ回転数、ヒーターパワ
ーを結晶の長さの関数として変更し、長手方向で酸素濃
度を制御する技術が確立されてきた。例えば、結晶の引
上げと共に酸素濃度が減少するが、これを防止するため
に、るつぼ温度を引上げと共に上昇させ、酸素の溶け
込みを促進させる操業およびるつぼ回転数を引上げと
共に上昇させ、酸素の溶け込みを促進させる操業などが
一般的に行なわれている。しかし、これらの方法によっ
ても得られるシリコン単結晶の長手方向の酸素濃度が一
般的なスペックの、±0.8×1017atoms/cm3 以内に
入るのは、通常単結晶長さの65%程度であり、必ずし
も歩留り高く生産されていたとは言い難い。
2. Description of the Related Art The amount of oxygen in a silicon crystal is determined by the balance between the amount dissolved from a quartz crucible into a silicon melt and the amount evaporated from the free surface of the silicon melt. For example, as the crystal is pulled up, the contact area between the crucible and the melt decreases, so that the oxygen concentration generally decreases in the length direction of the single crystal. As a factor in the pulling operation that affects the oxygen concentration in the silicon crystal, as previously described, the crucible position, the crucible rotation speed, the heater power,
The pressure in the furnace, the flow rate of an inert gas (argon), the heat insulation state of the upper and lower portions of the crucible, the number of rotations of the crystal, and the like are included. Conventionally, among these factors, a technique has been established in which the crucible rotation speed and the heater power are changed as a function of the crystal length to control the oxygen concentration in the longitudinal direction. For example, to prevent this, the oxygen concentration decreases with the crystal pulling, but in order to prevent this, the crucible temperature is increased with the raising, the operation to promote the melting of oxygen and the crucible rotation speed are increased with the raising, and the melting of the oxygen is promoted. Such operations are generally performed. However, the oxygen concentration in the longitudinal direction of the silicon single crystal obtained by these methods falls within ± 0.8 × 10 17 atoms / cm 3 of the general specification, usually 65% of the length of the single crystal. It is hard to say that production was always high.

【0003】ところで、(1)融液直上での結晶への放
射熱を遮断し、結晶の冷却を促進することによって結晶
の引上げ速度を上昇させ、生産性を向上させる、(2)
ガス流れを整流し、少ないガス量でSiOガスを効率的
に排出し単結晶歩留りを上昇させる等の目的で、図1に
模式的に示す如く融液直上にガスガイドが設置されるこ
とがある。しかしこの場合には、上記したごとき従来の
技術を用いると酸素濃度を目的の値に制御することはで
きず、特に結晶引上げの後半(約50%以降)では図2
に示す如く酸素濃度が極端に低下する現象がある。この
ため、酸素濃度が目標の±0.8×1017atoms/cm3
内に入るのは結晶長さの30〜40%にすぎず、酸素濃
度外れのために歩留りが非常に悪いという問題点があっ
た。これを改善するために、特公平1−160893号
公報では不活性ガス流量を変化させることを特徴とする
酸素濃度制御法が開示されている。しかしこの方法によ
っても、酸素濃度が目標の±0.8×1017atoms/cm3
以内に入るのは結晶長さの50%程度であり、改善はさ
れるものの歩留りは必ずしも高いとは言えない。さらに
不活性ガスのシリコン融液表面近傍の流速を制御する考
え方については全く言及されておらず、技術内容も明ら
かにされていない。
By the way, (1) the radiant heat to the crystal just above the melt is cut off, and the cooling of the crystal is promoted to increase the pulling speed of the crystal, thereby improving the productivity.
A gas guide may be installed directly above the melt as schematically shown in FIG. 1 for the purpose of rectifying the gas flow, efficiently discharging the SiO gas with a small amount of gas, and increasing the single crystal yield. . However, in this case, the oxygen concentration cannot be controlled to a target value by using the conventional technique as described above, and particularly in the latter half (about 50% or more) of the crystal pulling, FIG.
As shown in the figure, there is a phenomenon that the oxygen concentration is extremely reduced. For this reason, the oxygen concentration falls within the target of ± 0.8 × 10 17 atoms / cm 3 only for 30 to 40% of the crystal length, and the yield is very poor due to the lack of oxygen concentration. was there. In order to improve this, Japanese Patent Publication No. 1-160893 discloses an oxygen concentration control method characterized by changing the flow rate of an inert gas. However, even with this method, the oxygen concentration is set at the target ± 0.8 × 10 17 atoms / cm 3.
The content falls within about 50% of the crystal length, and the yield is not necessarily high although the improvement is achieved. Further, there is no mention of the concept of controlling the flow rate of the inert gas near the surface of the silicon melt, and no technical content is disclosed.

【0004】[0004]

【発明が解決しようとする課題】本発明はシリコン単結
晶の製造において、ガスガイドを用いて生産性および単
結晶歩留りを向上させ、かつシリコン単結晶の酸素濃度
を長手方向で一定とすることにより、シリコン単結晶を
歩留り良く製造する技術を提供するものである。
SUMMARY OF THE INVENTION The present invention provides a method of manufacturing a silicon single crystal by improving productivity and the yield of a single crystal by using a gas guide, and by keeping the oxygen concentration of the silicon single crystal constant in the longitudinal direction. And a technique for manufacturing a silicon single crystal with high yield.

【0005】[0005]

【課題を解決するための手段および作用】本発明者らは
シリコン融液の自由表面からの酸素の移動メカニズム
を、融液流動とガス流れとの双方から検討し、ガス流れ
により融液表面の流動が影響を受け、このために酸素の
移動が影響されることを見出した。すなわち、単結晶中
心からるつぼ壁の方向に流れる不活性ガスによって、融
液表面の流動方向および速度が変化する。酸素の移動を
考慮し、引上げに伴なう石英るつぼからの酸素の溶け込
み量減少を補償するには、シリコン融液の表面流れの方
向および大きさを、ガス流れによって制御することが必
要となる。そのために、ガスガイドと融液との間隙を通
過するガスの平均流速を、結晶の引上げ長さと共に増大
させることがポイントとなる。ガスガイドと融液との間
隙を通過するガスの平均流速(V:cm/s)は、V=
(1.7×104・Q)/(2π×zP)で示される。
ただし、炉内圧力をP(mbar)、不活性ガスの流量
をQ(リットル/分)とし、不活性ガスの温度は変化し
ないものと仮定する。また、図1に示した様に、ガスガ
イドと融液との間隙をz(cm)、結晶中心からガスガ
イドまでの距離をx(cm)と置く。このように、ガス
ガイドと融液との間隙を通過するガスの平均流速はガス
流量に比例し、炉内圧力に反比例する。したがって、ガ
スガイドと融液との間隙を通過するガス流速を、結晶の
引き上げ長さに実質的に正比例させて一定割合で増加さ
せるためには、不活性ガス流量を増加してもよいし、炉
内圧力を減少させても良いし、また両者を組合せ、炉内
圧力、ガス流量の両方を変更しても良い。さらに操作性
は劣るが、ガスガイドと融液表面の距離を引上げと共に
小さくして間隙を流れるガス流速を増大させるなどの方
法も考えられる。またガスガイドと融液との間隙を通過
するガス流速は、結晶の長手方向の長さと共に滑らかに
変更する、すなわち、長さの増加に全く正比例させて直
線的に変化させることが望ましいが、3段階以上のステ
ップとした段階状にして、実質的に正比例させて変更し
てもよい。
The present inventors have studied the mechanism of oxygen transfer from the free surface of the silicon melt from both the melt flow and the gas flow, and determined the oxygen flow on the melt surface by the gas flow. It has been found that flow is affected, which in turn affects oxygen transfer. That is, the flow direction and velocity of the melt surface are changed by the inert gas flowing from the center of the single crystal toward the crucible wall. In order to compensate for the decrease in the amount of dissolved oxygen from the quartz crucible due to pulling in consideration of the movement of oxygen, the direction and magnitude of the surface flow of the silicon melt must be controlled by the gas flow. . For this purpose, it is important to increase the average flow velocity of the gas passing through the gap between the gas guide and the melt together with the crystal pulling length. The average flow velocity (V: cm / s) of the gas passing through the gap between the gas guide and the melt is V =
It is represented by (1.7 × 10 4 · Q) / (2π × zP).
However, it is assumed that the furnace pressure is P (mbar), the flow rate of the inert gas is Q (liter / minute), and the temperature of the inert gas does not change. In addition, as shown in FIG. 1, the gap between the gas guide and the melt is set as z (cm), and the distance from the crystal center to the gas guide is set as x (cm). Thus, the average flow velocity of the gas passing through the gap between the gas guide and the melt is gas
It is proportional to the flow rate and inversely proportional to the furnace pressure. Accordingly, the gas flow rate through the gap between the gas guide and the melt, the crystal
In order to increase the inert gas flow rate at a constant rate substantially in direct proportion to the pulling length , the inert gas flow rate may be increased, the furnace pressure may be decreased, or both may be combined and the furnace pressure may be increased. Alternatively, both of the gas flow rates may be changed. Further, although the operability is inferior, a method of raising the distance between the gas guide and the melt surface and reducing the distance to increase the gas flow velocity flowing through the gap may be considered. Also, the gas flow rate passing through the gap between the gas guide and the melt changes smoothly with the longitudinal length of the crystal, that is, it is directly proportional to the increase in the length.
Although it is desirable to change it linearly , the change may be made in three or more steps in a stepwise manner and substantially in direct proportion .

【0006】ここで、不活性ガスの平均的な流速を、シ
リコン融液と種結晶とのコンタクトから直胴開始直後ま
で(以下初期という)の流速と、直胴最後のテールイン
直前(以下末期という)の流速の二点で定義する。これ
らの比(末期流速を初期流速で除した値)を2から20
の間として末期流速を大きくすることが必要である。こ
の値が2より小さいと、不活性ガス流速を増加させる効
果が小さく、酸素濃度が直胴後半で低下する現象が現れ
る。逆に20より増大させると、不活性ガスの流速が過
大となるために、引上げ後半にフリー化(単結晶化)率
が急激に悪化してしまう。また単結晶の直胴全長に対し
て流速を連続して変動させない領域が50%未満とする
ことも必要である。連続して変動させない領域が50%
以上であると流速を増大させることによる作用効果が十
分には得られない。
Here, the average flow rate of the inert gas is defined as the flow rate from the contact between the silicon melt and the seed crystal and immediately after the start of the straight body (hereinafter referred to as the initial stage) and the flow rate immediately before the last tail-in of the straight body (hereinafter referred to as the end stage). ) Is defined by two points of flow velocity. The ratio (the value obtained by dividing the terminal flow velocity by the initial flow velocity) is 2 to 20.
During the period, it is necessary to increase the terminal flow velocity. If this value is smaller than 2, the effect of increasing the flow rate of the inert gas is small, and a phenomenon appears in which the oxygen concentration decreases in the latter half of the straight body. Conversely, if it is increased beyond 20, the free gas (single crystallization) rate will rapidly deteriorate in the latter half of the pulling because the flow rate of the inert gas will be excessive. Also, for the total length of the single crystal body
The area where the flow velocity does not fluctuate continuously should be less than 50%
It is also necessary. 50% of the area that does not fluctuate continuously
Above this, the effect of increasing the flow velocity is not sufficient.
Not available in minutes.

【0007】次に、るつぼ回転数の小さい条件での酸素
濃度制御の考え方を例にとって説明する。(1)るつぼ
の回転数が小さく、融液の比較的多い引上げ初期の場合
には、図3aに示すように、融液中では、るつぼ内壁に
沿って上昇し、引上げ結晶の下部で下降する流れ(以降
ここではα流と略す)が優勢である。ここでは、ガスガ
イドと融液との間隙を流れるガスによってシリコン融液
の表面がガスの流れる方向に引張られ、α流が見掛け上
弱くなる。そのために、融液表面とガス間の物質移動が
小さくなり、SiOの蒸発が抑えられ、その結果酸素濃
度は上昇する方向になる。したがって、るつぼ表面と融
液の接触面積の低下に伴う酸素の溶け込みの減少が補償
され、融液中の酸素濃度は一定となる。(2)融液の比
較的少ない引上げ後期の場合には、自然対流の大きさを
評価するグラスホッフ数(Gr数)が小さくなるため、
自然対流の寄与が小さくなる。これにより、α流が顕著
ではなくなり、るつぼ内の流動状態は図3bに示すよう
に乱れてくる。したがって、るつぼ内表面からの酸素の
溶け込みは、るつぼの内表面と融液の接触面積の減少を
補償することができ、さらに増加する可能性がある状況
であると考えられる。ガス流れがあることによって、融
液表面ではα流とは逆向きの流れとなる。このため、融
液表面とガス間の物質移動が促進され、SiOの蒸発が
大きくなり、酸素濃度は減少する方向になる。したがっ
て、全体的には融液の減少に伴う流動の乱れに伴なう酸
素の溶け込みの増加が補償され、融液中の酸素濃度は一
定となる。酸素の融液と固相間の分配係数は1であると
考えられており、融液中の酸素濃度がそのままシリコン
結晶中に取り込まれるものとできる。したがって、シリ
コン結晶中の酸素濃度は長手方向で一定となる。
Next, the concept of oxygen concentration control under the condition of a low crucible rotation speed will be described as an example. (1) In the initial stage of pulling, in which the number of rotations of the crucible is small and the melt is relatively large, as shown in FIG. 3a, the melt rises along the inner wall of the crucible and falls at the lower part of the pulled crystal. The flow (hereinafter abbreviated as α flow) is dominant. Here, the gas flowing through the gap between the gas guide and the melt pulls the surface of the silicon melt in the gas flowing direction, and the α flow is apparently weakened. Therefore, mass transfer between the melt surface and the gas is reduced, and the evaporation of SiO is suppressed. As a result, the oxygen concentration tends to increase. Therefore, a decrease in the penetration of oxygen due to a decrease in the contact area between the crucible surface and the melt is compensated, and the oxygen concentration in the melt becomes constant. (2) In the latter stage of pulling up, where the melt is relatively small, the Grashof number (Gr number) for evaluating the magnitude of natural convection becomes small.
The contribution of natural convection is reduced. As a result, the α flow is not remarkable, and the flow state in the crucible is disturbed as shown in FIG. 3B. Therefore, it is considered that the dissolution of oxygen from the inner surface of the crucible can compensate for a decrease in the contact area between the inner surface of the crucible and the melt, and may further increase the area. Due to the presence of the gas flow, the flow on the melt surface is opposite to the α flow. For this reason, mass transfer between the melt surface and the gas is promoted, the evaporation of SiO increases, and the oxygen concentration tends to decrease. Therefore, an increase in the oxygen dissolution due to the turbulence of the flow due to the decrease in the melt is compensated as a whole, and the oxygen concentration in the melt becomes constant. It is considered that the partition coefficient between oxygen melt and solid phase is 1, and the oxygen concentration in the melt can be taken into the silicon crystal as it is. Therefore, the oxygen concentration in the silicon crystal becomes constant in the longitudinal direction.

【0008】[0008]

【実施例】以下にガスガイドを用いたシリコン単結晶引
上げ装置を用いて、表1に示す条件でシリコン単結晶を
製造した。本発明例1は、不活性ガス(アルゴン)の流
量を図4に示すように、初期流量を15リットル/分、
末期流量を150リットル/分に結晶引上げと共に一定
割合で増加させた。この時の単結晶の長手方向の酸素濃
度は同図に示す如くほぼ一定となった。酸素濃度が目標
中央値10±0.8×1017atoms/cm3 以内に入るのは
結晶長さの100%であった(これを酸素濃度的中率と
する)。本発明例2では、不活性ガスの流量を図5に示
すように、初期流量10リットル/分から末期流量20
0リットル/分に結晶引上げと共に段階的に変更した。
この時の酸素濃度的中率は90%であって、非常に歩留
りが高い。本発明例3では、引上げ炉内の圧力を図6に
示すような段階的なパターンで35mbarから5mb
arに双曲線状に変化させた(ガスガイドとシリコン融
液間隙の平均ガス流速は単結晶引上げ炉内の圧力に反比
例することは上記で詳述した。)この時の酸素濃度的中
率は100%であり、歩留りは非常に高い。本発明4で
は、引上げ炉内の圧力を図7に示すようなパターンで5
0mbarから10mbarに変化させた。この時の酸
素濃度的中率は100%であった。
EXAMPLE A silicon single crystal was manufactured under the conditions shown in Table 1 using a silicon single crystal pulling apparatus using a gas guide. In the present invention example 1, as shown in FIG. 4, the inert gas (argon) flow rate was set to an initial flow rate of 15 liter / min.
The terminal flow was increased to 150 liter / min at a constant rate with the crystal pulling. At this time, the oxygen concentration in the longitudinal direction of the single crystal became almost constant as shown in FIG. It was 100% of the crystal length that the oxygen concentration was within the target median value of 10 ± 0.8 × 10 17 atoms / cm 3 (this is regarded as the oxygen concentration hit ratio). In Example 2 of the present invention, as shown in FIG. 5, the flow rate of the inert gas was changed from the initial flow rate of 10 L / min to the final flow rate of 20 L / min.
It was changed stepwise with the crystal pulling to 0 liter / min.
At this time, the oxygen concentration hit ratio is 90%, and the yield is very high. In Example 3 of the present invention, the pressure in the pulling furnace was changed from 35 mbar to 5 mbar in a stepwise pattern as shown in FIG.
(It was described above that the average gas flow velocity between the gas guide and the silicon melt gap is inversely proportional to the pressure in the single crystal pulling furnace.) At this time, the oxygen concentration ratio is 100. %, And the yield is very high. In the present invention 4, the pressure in the pulling furnace is set to 5 in a pattern as shown in FIG.
It was changed from 0 mbar to 10 mbar. The oxygen concentration hit ratio at this time was 100%.

【0009】次に比較例について述べる。比較例1は、
不活性ガス(アルゴン)の流量を図8に示す如く単結晶
の引上げと共に変更した。ガスガイドと融液間隙を流れ
るガス流速は図に示した通りである。ガス流速を初期か
ら直胴長さ500mmまで変化させず、直胴部後半に急
増させたために、酸素濃度的中率は45%であった。比
較例2は、不活性ガス(アルゴン)の流量を図9に示す
如く単結晶の引上げと共に変更した。ガスガイドと融液
間隙を流れるガス流速は図に示した通りである。ガス流
を初期に急増させ、直胴長さ500mm以降変化させ
なかったため、酸素濃度的中率は42%である。比較例
3は、不活性ガス(アルゴン)の流量を、引き上げ末期
のアルゴン流量を初期のアルゴン流量の1.7倍とした
ものである。酸素濃度的中率は48%であり、歩留りは
低い。比較例4は、不活性ガス(アルゴン)の流量を、
引き上げ末期のアルゴン流量を初期のアルゴン流量の2
5倍とした。直胴長さの65%程度の所でポリ化(単結
晶でなくなること)し、その影響が結晶長さの50%程
度まで及び、歩留りは低い。以上示したように、本発明
例の歩留りは比較例に比べて著しく向上している。
Next, a comparative example will be described. Comparative Example 1
The flow rate of the inert gas (argon) was changed with the pulling of the single crystal as shown in FIG. The flow velocity of the gas flowing between the gas guide and the melt gap is as shown in the figure. Initial gas flow rate
Without changing the straight body length to 500 mm,
Due to the increase , the oxygen concentration predictive value was 45%. In Comparative Example 2, the flow rate of the inert gas (argon) was changed as the single crystal was pulled as shown in FIG. The flow velocity of the gas flowing between the gas guide and the melt gap is as shown in the figure. Increase the gas flow rate at the beginning and change the straight body length after 500mm.
As a result, the predictive value for oxygen concentration was 42%. In Comparative Example 3, the flow rate of the inert gas (argon) was set to 1.7 times the initial argon flow rate at the last stage of the raising. The oxygen concentration predictive value is 48%, and the yield is low. In Comparative Example 4, the flow rate of the inert gas (argon) was
The argon flow rate at the end of raising is 2 times the initial argon flow rate.
5 times. Polycrystalline (becoming a non-single crystal) at about 65% of the length of the straight body, the influence of which extends to about 50% of the crystal length, and the yield is low. As described above, the yield of the example of the present invention is remarkably improved as compared with the comparative example.

【0010】[0010]

【表1】 [Table 1]

【0011】[0011]

【発明の効果】シリコン単結晶の長手方向の酸素濃度が
均一となることにより、歩留り良く単結晶が製造でき
る。さらに、酸素濃度の的中率が向上することから、酸
素濃度の検定工程が簡略化でき、生産性も向上する。ま
たガスガイドを用いることから、単結晶の生産性は向上
し、単結晶歩留りも向上する。
According to the present invention, a single crystal can be manufactured with good yield by making the oxygen concentration in the longitudinal direction of the silicon single crystal uniform. Further, since the accuracy of the oxygen concentration is improved, the step of testing the oxygen concentration can be simplified, and the productivity is also improved. Further, since the gas guide is used, the productivity of the single crystal is improved, and the yield of the single crystal is also improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】は、ガスガイドを用いたシリコン単結晶引上げ
装置の模式図、
FIG. 1 is a schematic diagram of a silicon single crystal pulling apparatus using a gas guide,

【図2】は、ガスガイドを用いた従来のシリコン単結晶
引上げによって得られ単結晶における酸素濃度の長手方
向変化の一例を示すグラフ、
FIG. 2 is a graph showing an example of a longitudinal change in oxygen concentration in a single crystal obtained by pulling a conventional silicon single crystal using a gas guide;

【図3】は、シリコン融液のるつぼ内流動状況を示す模
式図であり、(a)は引上げ初期のもの、(b)は引上
げ末期のもの、
FIGS. 3A and 3B are schematic diagrams showing the flow of a silicon melt in a crucible, wherein FIG. 3A shows an initial state of pulling, FIG.

【図4】は、実施例1における単結晶引上げ時のガス流
量の変更パターンと得られた単結晶における酸素濃度の
長手方向変化を示すグラフ、
FIG. 4 is a graph showing a change pattern of a gas flow rate at the time of pulling a single crystal and a longitudinal change of an oxygen concentration in the obtained single crystal in Example 1,

【図5】は、実施例2における単結晶引上げ時のガス流
量の変更パターンと得られた単結晶における酸素濃度の
長手方向変化を示すグラフ、
FIG. 5 is a graph showing a change pattern of a gas flow rate at the time of pulling a single crystal and a longitudinal change of an oxygen concentration in the obtained single crystal in Example 2.

【図6】は、実施例3における単結晶引上げ時の炉内圧
力の変更パターンと得られた単結晶における酸素濃度の
長手方向変化を示すグラフ、
FIG. 6 is a graph showing a change pattern of a furnace pressure at the time of pulling a single crystal and a longitudinal change of an oxygen concentration in the obtained single crystal in Example 3,

【図7】は、実施例4における単結晶引上げ時の炉内圧
力の変更パターンと得られた単結晶における酸素濃度の
長手方向変化を示すグラフ、
FIG. 7 is a graph showing a change pattern of a furnace pressure at the time of pulling a single crystal and a longitudinal change of an oxygen concentration in the obtained single crystal in Example 4,

【図8】は、比較例1における単結晶引上げ時のガス流
量の変更パターンと得られた単結晶における酸素濃度の
長手方向変化を示すグラフ、
FIG. 8 is a graph showing a change pattern of a gas flow rate during pulling of a single crystal and a longitudinal change of oxygen concentration in the obtained single crystal in Comparative Example 1,

【図9】は、比較例2における単結晶引上げ時のガス流
量の変更パターンと得られた単結晶における酸素濃度の
長手方向変化を示すグラフである。
FIG. 9 is a graph showing a change pattern of a gas flow rate during pulling of a single crystal and a longitudinal change of oxygen concentration in the obtained single crystal in Comparative Example 2.

【符号の説明】[Explanation of symbols]

1…シリコン単結晶引上げ炉、2…シリコン融液、3…
シリコン単結晶、4…石英るつぼ、5…黒鉛るつぼ、6
…黒鉛ヒーター、7…断熱材、8…ガスガイド。
1. Silicon single crystal pulling furnace, 2. Silicon melt, 3.
Silicon single crystal, 4 ... quartz crucible, 5 ... graphite crucible, 6
... graphite heater, 7 ... heat insulating material, 8 ... gas guide.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 沢田 郁夫 山口県 光市 大字島田 3434番地 新 日本製鐵株式会社 光製鐵所内 (72)発明者 小島 清 山口県 光市 大字島田 3434番地 ニ ッテツ電子株式会社内 (56)参考文献 特開 平3−122089(JP,A) (58)調査した分野(Int.Cl.6,DB名) C30B 1/00 - 35/00 ──────────────────────────────────────────────────の Continued on the front page (72) Inventor Ikuo Sawada 3434 Shimada, Oji, Hikari-shi, Yamaguchi Prefecture Nippon Steel Corporation Inside the Hikari Works (72) Inventor Kiyoshi Kojima 3434, Shimada, Hikari-shi, Yamaguchi Prefecture Nittetsu Electronics (56) References JP-A-3-122089 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) C30B 1/00-35/00

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ガスガイドを用いたシリコン単結晶引上
装置によるシリコン単結晶の製造において、該ガスガイ
ドとシリコン融液との間を流れる不活性ガスの該シリコ
ン融液表面近傍の流速、前記シリコン単結晶引上げ初
期の流速に対して引上げ末期の流速が2〜20倍とな
り、かつ、単結晶の引上げ初期から引上げ末期に亘り、
育成される単結晶の長手方向の長さの増加と実質的に比
例させて、直線的にあるいは3段階以上のステップとし
て段階的に増大するように、不活性ガスの流速を調節し
ながら引き上げることを特徴とするシリコン単結晶の製
造方法。
In the production of a silicon single crystal by a silicon single crystal pulling apparatus using a gas guide, the flow rate of an inert gas flowing between the gas guide and the silicon melt near the surface of the silicon melt is The flow rate at the end of pulling is 2 to 20 times that at the initial stage of pulling the silicon single crystal.
And from the initial stage of pulling the single crystal to the end of pulling,
Increase in the longitudinal length of the single crystal to be grown
For example, linear or three or more steps
Wherein the inert gas is pulled up while adjusting the flow rate of the inert gas so as to increase stepwise .
【請求項2】 前記不活性ガスの流速の調整を、供給ガ
スの流量を調整することによって行なうことを特徴とす
る請求項1に記載のシリコン単結晶の製造方法。
2. The method according to claim 1, wherein the flow rate of the inert gas is adjusted by adjusting a flow rate of a supply gas.
【請求項3】 前記不活性ガスの流速の調整を、炉内の
圧力を調整することによって行なうことを特徴とする請
求項1に記載のシリコン単結晶の製造方法。
3. The method for producing a silicon single crystal according to claim 1, wherein the flow rate of the inert gas is adjusted by adjusting a pressure in a furnace.
JP3236630A 1991-09-17 1991-09-17 Method for producing silicon single crystal Expired - Fee Related JP2978607B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3236630A JP2978607B2 (en) 1991-09-17 1991-09-17 Method for producing silicon single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3236630A JP2978607B2 (en) 1991-09-17 1991-09-17 Method for producing silicon single crystal

Publications (2)

Publication Number Publication Date
JPH0570279A JPH0570279A (en) 1993-03-23
JP2978607B2 true JP2978607B2 (en) 1999-11-15

Family

ID=17003472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3236630A Expired - Fee Related JP2978607B2 (en) 1991-09-17 1991-09-17 Method for producing silicon single crystal

Country Status (1)

Country Link
JP (1) JP2978607B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2687103B2 (en) * 1995-03-24 1997-12-08 科学技術振興事業団 Method for growing Si single crystal with controlled temperature distribution
JP3670504B2 (en) * 1999-01-14 2005-07-13 東芝セラミックス株式会社 Silicon single crystal manufacturing method
JP2007112663A (en) 2005-10-20 2007-05-10 Sumco Techxiv株式会社 Apparatus and method for manufacturing semiconductor single crystal
JP5172202B2 (en) 2007-05-10 2013-03-27 Sumco Techxiv株式会社 Single crystal manufacturing method
JP5118386B2 (en) * 2007-05-10 2013-01-16 Sumco Techxiv株式会社 Single crystal manufacturing method
JP5186684B2 (en) 2007-08-02 2013-04-17 Sumco Techxiv株式会社 Semiconductor single crystal manufacturing equipment
JP5453749B2 (en) * 2008-09-05 2014-03-26 株式会社Sumco Manufacturing method of silicon wafer for vertical silicon device and silicon single crystal pulling apparatus for vertical silicon device
FR2997096B1 (en) * 2012-10-23 2014-11-28 Commissariat Energie Atomique PROCESS FOR FORMING A SILICON INGOT OF UNIFORM RESISTIVITY
CN107604430A (en) * 2016-07-11 2018-01-19 上海超硅半导体有限公司 Low oxygen content monocrystalline silicon growing method

Also Published As

Publication number Publication date
JPH0570279A (en) 1993-03-23

Similar Documents

Publication Publication Date Title
US7611580B2 (en) Controlling melt-solid interface shape of a growing silicon crystal using a variable magnetic field
US7070649B2 (en) Process for producing a silicon single crystal which is doped with highly volatile foreign substances
US7918934B2 (en) Single crystal semiconductor manufacturing apparatus and manufacturing method, and single crystal ingot
EP0388503B1 (en) Method for pulling single crystals
CN1936108A (en) Apparatus for growing high quality silicon single crystal ingot and growing method using the same
JP2978607B2 (en) Method for producing silicon single crystal
WO2018198606A1 (en) N-type silicon single crystal production method, n-type silicon single crystal ingot, silicon wafer, and epitaxial silicon wafer
EP0055619B1 (en) Method for regulating concentration and distribution of oxygen in czochralski grown silicon
US6136090A (en) Method for producing a silicon single crystal
US5840116A (en) Method of growing crystals
US20240125005A1 (en) Method for crystal pulling
JP2018140915A (en) Method for manufacturing silicon single crystal ingot, and silicon single crystal growing apparatus
JPH10167892A (en) Method for pulling silicon single crystal
US6258163B1 (en) Method for producing silicon single crystal
JP4063904B2 (en) Semiconductor single crystal pulling method
EP0429847B1 (en) Method for pulling up single crystal silicon
JP4433865B2 (en) Method for producing silicon single crystal
JP2759105B2 (en) Single crystal manufacturing method
JP2760948B2 (en) Single crystal growing method using crucible with convection control function
JP2615968B2 (en) Single crystal pulling method
JPH0826884A (en) Device for pulling up single crystal
JPH09202695A (en) Production of single crystal silicon doped with antimony
JPH05148078A (en) Production of single crystal
JPH08245293A (en) Production of si single crystal by cz method
JPH06305878A (en) Apparatus for producing silicon single crystal

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990831

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070910

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080910

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080910

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090910

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100910

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees