JP2978204B2 - Non-aqueous secondary battery - Google Patents

Non-aqueous secondary battery

Info

Publication number
JP2978204B2
JP2978204B2 JP2104546A JP10454690A JP2978204B2 JP 2978204 B2 JP2978204 B2 JP 2978204B2 JP 2104546 A JP2104546 A JP 2104546A JP 10454690 A JP10454690 A JP 10454690A JP 2978204 B2 JP2978204 B2 JP 2978204B2
Authority
JP
Japan
Prior art keywords
negative electrode
current collector
secondary battery
electrolyte
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2104546A
Other languages
Japanese (ja)
Other versions
JPH044563A (en
Inventor
享子 井川
成興 西村
守 水本
勝 難波
昇 江波戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Showa Denko Materials Co Ltd
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Hitachi Chemical Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK, Hitachi Chemical Co Ltd, Hitachi Ltd filed Critical Showa Denko KK
Priority to JP2104546A priority Critical patent/JP2978204B2/en
Publication of JPH044563A publication Critical patent/JPH044563A/en
Application granted granted Critical
Publication of JP2978204B2 publication Critical patent/JP2978204B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、非水電解液を用いた二次電池に係わり、特
にアルカリ金属を含む合金を負極活物質に用いた高エネ
ルギー密度の扁平型非水二次電池に関する。
Description: TECHNICAL FIELD The present invention relates to a secondary battery using a non-aqueous electrolyte, and particularly to a high energy density flat type using an alloy containing an alkali metal as a negative electrode active material. It relates to a non-aqueous secondary battery.

[従来の技術] リチウムやナトリウムなどのアルカリ金属を負極活物
質とし、有機電解液を用いる非水二次電池は高エネルギ
ー密度電池として注目されている。
[Related Art] A non-aqueous secondary battery using an alkali electrolyte such as lithium or sodium as a negative electrode active material and an organic electrolyte has attracted attention as a high energy density battery.

このような電池では、一般に負極活物質として金属リ
チウムや金属ナトリウムを、また、正極活物質として各
種層間化合物や導電性高分子など、さらに電解液として
リチウム塩やナトリウム塩を,安定な有機溶媒に溶かし
た溶液を用いる。しかし、負極としてアルカリ金属をそ
のまま用いた場合、充放電を繰り返すうちにリチウムや
ナトリウムが樹枝状(デンドライト)に析出して、電池
の内部短絡を引き起こしたり、電流効率が低下するなど
の問題があった。
In such a battery, generally, lithium or metal sodium is used as a negative electrode active material, various interlayer compounds or conductive polymers are used as a positive electrode active material, and lithium salt or sodium salt is used as an electrolyte. Use the dissolved solution. However, when an alkali metal is used as the negative electrode as it is, lithium and sodium precipitate in dendrites during repeated charging and discharging, causing internal short-circuiting of the battery and a reduction in current efficiency. Was.

上記の解決策として、アルカリ金属を単体で用いる代
りに、他の母材金属(例えばAlやPbなど)と合金化させ
る試みが知られている(特公昭49−12044号公報)。
As the above-mentioned solution, an attempt to alloy with another base metal (for example, Al or Pb) instead of using an alkali metal alone has been known (Japanese Patent Publication No. 49-12044).

しかし、これらの合金化電極を用いた場合、次のよう
な問題点があった。
However, the use of these alloyed electrodes has the following problems.

(i)母材金属内、もしくは合金相内におけるリチウム
またはナトリウムの拡散速度が小さく、そのため、急速
充電時に電流密度を大きくとると、アルカリ金属が負極
の表面層に高濃度で析出して、デンドライトショートが
起こり易い。
(I) The diffusion rate of lithium or sodium in the base metal or alloy phase is low, and therefore, if the current density is increased during rapid charging, alkali metal precipitates at a high concentration on the surface layer of the negative electrode, and dendrite Shorts are likely to occur.

(ii)充放電に伴う合金の膨張収縮により、負極活物質
の一部が脱落して電池の容量低下や電流効率の低下が起
こり、電池のサイクル寿命が短い。
(Ii) Due to expansion and contraction of the alloy due to charge and discharge, a part of the negative electrode active material falls off, resulting in a decrease in battery capacity and a decrease in current efficiency, and a short cycle life of the battery.

前記(i)については、電極を多孔質化して電極反応
面積を増大させ、真の電流密度を低下させることによっ
て、デンドライトの形成を抑制する試みがなされてい
る。しかし、多孔質化した場合、電極内部の電気的集電
を均一にとることが難しく、電流集中が起こり易い。最
も簡便で有効な多孔質化の方法として、活物質合金を粉
砕し、これを加圧成型する方法があるが、成型性および
集電性が悪い。特に、集電性に関しては、成型体の外
周、特に集電体近傍の合金が主に充放電に使われ、内部
の合金は電気的つながり(ネットワーク)が断たれてい
るために使われない部分がでてくる。
Regarding the above (i), attempts have been made to suppress the formation of dendrites by making the electrode porous to increase the electrode reaction area and reduce the true current density. However, when the electrode is made porous, it is difficult to uniformly collect electric current inside the electrode, and current concentration tends to occur. The simplest and most effective method for forming a porous material is to pulverize the active material alloy and press-mold the active material alloy, but the moldability and current collecting properties are poor. In particular, regarding the current collecting property, the outer periphery of the molded body, especially the alloy near the current collector is mainly used for charging and discharging, and the inner alloy is not used because the electrical connection (network) is cut off. Comes out.

また、(ii)については、膨張収縮時の脱落を防ぐた
め成型強度を上げる方法が効果的である。しかしこれま
で、集電体として専ら網状体や貫通孔を有する導電板を
用いていたために、成型強度は十分ではなかった。これ
を改善するため、負極集電板に舌状突起を設け負極の圧
着強度を上げる(特開平1−38966号公報)方法が知ら
れている。しかし、上記の方法でも合金粉末粒子を加圧
成型した多孔質負極の、充放電に伴う膨張収縮時の脱落
を防ぐに十分な成型強度は得られない。さらに、網状の
ものと比べて活物質の密着力が弱く、集電体と活物質と
の接触部の抵抗が高いと云う欠点がある。
Regarding (ii), it is effective to increase the molding strength to prevent falling off during expansion and contraction. However, the molding strength was not sufficient because a current collector or a conductive plate having a through hole was used exclusively as a current collector. In order to improve this, a method has been known in which a tongue-shaped projection is provided on the negative electrode current collector plate to increase the pressure-bonding strength of the negative electrode (Japanese Patent Application Laid-Open No. 1-38966). However, even with the above-described method, a molding strength sufficient to prevent the porous negative electrode obtained by press-molding the alloy powder particles from falling off during expansion and contraction due to charge and discharge cannot be obtained. Further, there is a disadvantage that the adhesion of the active material is weaker than that of the net-like material, and the resistance of the contact portion between the current collector and the active material is high.

[発明が解決しようとする課題] リチウムやナトリウムなどアルカリ金属を負極活物質
とする二次電池において、負極活物質中のリチウムやナ
トリウムの総量に対し、一回の充放電に使用される割
合、すなわち負極の利用率は高エネルギー密度化の要求
とともに増大する傾向にある。しかし、前述のように負
極内部の集電が均一でないために、負極の利用率を高く
とると一部の電極活物質のみに電流が集中して、容量低
下やデンドライトショートが起こり、電池の寿命が短か
った。
[Problems to be Solved by the Invention] In a secondary battery using an alkali metal such as lithium or sodium as a negative electrode active material, a ratio used for one charge / discharge with respect to a total amount of lithium and sodium in the negative electrode active material, That is, the utilization rate of the negative electrode tends to increase with the demand for higher energy density. However, as described above, since the current collection inside the negative electrode is not uniform, when the utilization rate of the negative electrode is increased, the current concentrates only on some of the electrode active materials, causing a capacity reduction or dendrite short circuit, and the battery life is shortened. Was short.

本発明の目的は、電極内部の集電性が均一で、電極の
成型強度が高く、リチウム、ナトリウム等の負極の利用
率を高くとっても負極のサイクル寿命の優れた長寿命の
電池を提供することにある。
An object of the present invention is to provide a long-life battery having a uniform current collection property inside the electrode, a high molding strength of the electrode, and an excellent cycle life of the negative electrode even when the utilization rate of the negative electrode such as lithium and sodium is high. It is in.

[課題を解決するための手段] 前記目的を達成する本発明の要旨は次のとおりであ
る。
[Means for Solving the Problems] The gist of the present invention for achieving the above object is as follows.

(1)正極、アルカリ金属またはアルカリ金属合金を含
む負極集電体および電解液を含むセパレータを有し、電
解液として非水電解液を用いた非水二次電池において、 前記負極集電体は、セパレータと対向する側の面が凸
型形状を有していることを特徴とする非水二次電池。
(1) In a non-aqueous secondary battery having a positive electrode, a negative electrode current collector containing an alkali metal or an alkali metal alloy, and a separator containing an electrolyte, and using a non-aqueous electrolyte as an electrolyte, the negative electrode current collector A non-aqueous secondary battery, wherein a surface on a side facing the separator has a convex shape.

(2)正極、アルカリ金属またはアルカリ金属合金を含
む負極集電体および電解液を含むセパレータを有し、電
解液として非水電解液を用いた非水二次電池において、 前記負極集電体は、セパレータと対向する側の面が微
細な突起群で構成された凸型形状を有していることを特
徴とする非水二次電池。
(2) In a non-aqueous secondary battery including a positive electrode, a negative electrode current collector containing an alkali metal or an alkali metal alloy, and a separator containing an electrolyte, and using a non-aqueous electrolyte as an electrolyte, the negative electrode current collector A non-aqueous secondary battery characterized in that the surface on the side facing the separator has a convex shape composed of a group of fine projections.

後述する比較例から明らかなように、電池の負極とし
てリチウム−鉛合金を粉砕し、これを集電体であるエキ
スパンドメタル上に加圧成型した多孔質電極を用い、充
放電サイクルを繰り返した。その結果、第7図Bに示し
たように50サイクルで放電容量が初期の半分に低下し
た。試験後の電池を解体したところ、負極の外周および
集電体近傍が著しく崩壊していたのに対し、内周部は極
めて健全であった。崩壊した外周部は合金の色が変色
し、微粉化しているのに対し、内周部は変色しておら
ず、微粉化も起こっていなかった。また、X線回折法に
よって残存する合金相を調べたところ、外周部ではリチ
ウムの消費が著しく、Li/Pb比が低下していた。これに
対し、内周部では合金相の組成の変化は小さかった。
As is clear from a comparative example described later, a lithium-lead alloy was pulverized as a negative electrode of a battery, and a charge / discharge cycle was repeated using a porous electrode obtained by press-molding this on an expanded metal as a current collector. As a result, as shown in FIG. 7B, the discharge capacity was reduced to half of the initial value in 50 cycles. When the battery after the test was disassembled, the outer periphery of the negative electrode and the vicinity of the current collector were significantly collapsed, while the inner periphery was extremely healthy. The color of the alloy was discolored and pulverized on the collapsed outer peripheral portion, whereas the inner peripheral portion was not discolored and no pulverization occurred. Further, when the remaining alloy phase was examined by the X-ray diffraction method, lithium was significantly consumed in the outer peripheral portion, and the Li / Pb ratio was lowered. On the other hand, the change in the composition of the alloy phase was small in the inner peripheral portion.

上記の結果から、電極の外周部および集電体近傍は電
気的集電が良好で充放電における活物質の利用が均一で
あるのに対し、内周部では粒子間の電気的接触が不十分
なために、充放電に有効に寄与しない部分があると推定
した。
From the above results, the outer peripheral portion of the electrode and the vicinity of the current collector have good electric current collection and the active material is uniformly used in charge and discharge, whereas the inner peripheral portion has insufficient electrical contact between particles. For this reason, it was estimated that there was a portion that did not effectively contribute to charge and discharge.

このように電極中に使われないリチウムが存在する、
即ち、使用されるリチウムが限られると云うことは、結
果的に負極寿命を短くしている原因であると考え本発明
に到達した。
Thus, there is lithium that is not used in the electrode,
That is, the fact that the lithium used is limited is considered to be the cause of shortening the life of the negative electrode as a result, and the present invention has been reached.

そこで粉砕したアルカリ金属粉末を、電極内部の接触
が良好となるように、集電体の形状を工夫して加圧成型
し負極集電体として用いた。
Thus, the pulverized alkali metal powder was shaped by devising the shape of the current collector so as to improve the contact inside the electrode, and was pressed and used as a negative electrode current collector.

前記負極集電体は二層以上の同心円の積層構造よりな
り、負極缶側の面が平面で、セパレータ側の面は、内周
部(凸部)の集電体の厚さが外周部集電体の厚さより厚
い構造とするのが好ましい。
The negative electrode current collector has a laminated structure of two or more concentric circles, and the surface on the negative electrode can side is flat, and the surface on the separator side has a thickness of the current collector on the inner peripheral portion (convex portion) of the outer peripheral portion. It is preferable to make the structure thicker than the thickness of the conductor.

第1図は、エキスパンドメタルを用いた集電体の断面
図である。内側のエキスパンドメタルの厚さを外側より
も厚くすることにより、アルカリ合金粉末を加圧成型し
た際に、内側のエキスパンドメタルの活物質が成型体の
奥深くまで入り込み、合金内部の集電性を改善すること
ができる。
FIG. 1 is a cross-sectional view of a current collector using expanded metal. By making the thickness of the inner expanded metal thicker than the outer one, when the alkali alloy powder is molded under pressure, the active material of the inner expanded metal penetrates deep into the molded body and improves the current collection inside the alloy can do.

同様に、第2図は内側の部分に複数個の針状の突起物
を加えた集電体の断面図である。また、第3図は成型体
の大きさのエキスパンドメタルもしくは網状体上にこれ
よりも80%から50%の大きさに縮小した別のエキスパン
ドメタルを溶接した集電体の断面図である。
Similarly, FIG. 2 is a cross-sectional view of a current collector in which a plurality of needle-like projections are added to an inner portion. FIG. 3 is a sectional view of a current collector obtained by welding expanded metal having a size of a molded body or another expanded metal reduced in size from 80% to 50% to a mesh body.

第4図は集電体上にニッケルもしくはステンレスのウ
ールを溶接した集電体の断面図である。
FIG. 4 is a sectional view of a current collector obtained by welding nickel or stainless steel wool to the current collector.

これらの集電体を用いることにより、従来の平面型の
ものと比べて、合金内部の集電性が改善でき、さらに、
成型強度も向上することができる。
By using these current collectors, the current collection inside the alloy can be improved as compared with the conventional flat type, and further,
Molding strength can also be improved.

[作用] 扁平型電池の負極集電体として、内周部の厚みを外周
部の厚さより厚くし、集電体全体の形状を第1〜4図に
示すように凸型形状とすることにより、電極活物質内部
の電気的集電性を均一にすることができ、また、成型強
度も向上した。その結果、一部の電極部分にのみ電流が
集中してアルカリ金属が析出し、デンドライトショート
が起こる頻度が低下し、また、充放電に伴う膨張収縮に
よる崩壊も抑制され、負極のサイクル寿命を向上するこ
とができる。
[Operation] As the negative electrode current collector of the flat battery, the inner peripheral portion is made thicker than the outer peripheral portion, and the entire current collector is made to have a convex shape as shown in FIGS. In addition, the electric current collecting property inside the electrode active material could be made uniform, and the molding strength was improved. As a result, the current concentrates only on a part of the electrode, and the alkali metal precipitates, the frequency of dendrite short-circuiting decreases, and the collapse due to expansion and contraction associated with charging and discharging is suppressed, and the cycle life of the negative electrode is improved. can do.

[実施例] 実施例により本発明を具体的に説明する。[Examples] The present invention will be specifically described by way of examples.

Li、Pbを原子比で3.5:1の割合に秤量し、鉄製るつぼ
に入れ、Arガス雰囲気中800℃で加熱溶融後、焼鈍し、L
i−Pb合金を調製した。該合金は、乳鉢で粉砕し負極合
剤とし、負極集電体12上に6ton/cm2の圧力を加えて0.4m
m厚さ、15mmφの第1図に示すようなディスク状に成型
した。
Li and Pb were weighed at a ratio of 3.5: 1 in atomic ratio, placed in an iron crucible, heated and melted at 800 ° C. in an Ar gas atmosphere, and then annealed.
An i-Pb alloy was prepared. The alloy was ground in a mortar to form a negative electrode mixture, and a pressure of 6 ton / cm 2 was applied on the negative electrode current collector 12 to 0.4 m
It was molded into a disk having a thickness of 15 mm and a thickness of 15 mm as shown in FIG.

上記のディスク状合金を負極、二酸化マンガンを正極
とする第5図に示すようなコイン型の電池を組立てた。
A coin-type battery as shown in FIG. 5 was assembled using the disc-shaped alloy as a negative electrode and manganese dioxide as a positive electrode.

該電池は正極1、リチウム合金負極2、ポリプロピレ
ン製不織布よりなるセパレータ3、セパレータ3に含浸
したLiPF6のプロピレンカーボネート、エチレンカーボ
ネート、および1、2−ジメトキシエタン溶液よりな
り、これらは負極缶ケース9、ガスケット16、正極缶ケ
ース8により密閉されている。
The battery comprises a positive electrode 1, a lithium alloy negative electrode 2, a separator 3 made of a nonwoven fabric made of polypropylene, a propylene carbonate and ethylene carbonate solution of LiPF 6 impregnated in the separator 3, and a 1,2-dimethoxyethane solution. , Gasket 16 and positive electrode can case 8.

上記電池に電流2.5mAで4Vまで充電し、次いで電流2.5
mAで2Vまで放電する操作を繰り返したところ、電池の放
電容量は第7図Aのように推移し、容量が10mAhに低下
するまでに、200サイクルの充放電が可能であった。
Charge the above battery to 4V at 2.5mA, then 2.5
When the operation of discharging to 2 V at mA was repeated, the discharge capacity of the battery changed as shown in FIG. 7A, and charging and discharging of 200 cycles were possible before the capacity was reduced to 10 mAh.

[比較例] 第6図に示す平面型の負極集電体17上に、前記実施例
と同様にして負極合剤6を加圧成型した負極を用いた電
池を組立て、該電池の充放電を繰り返したところ、第7
図Bのように推移し、50サイクルで容量が10mAhに低下
した。
Comparative Example A battery using a negative electrode obtained by press-molding the negative electrode mixture 6 in the same manner as in the above example was assembled on the flat negative electrode current collector 17 shown in FIG. 6, and charge and discharge of the battery were performed. Repeatedly, the seventh
As shown in FIG. B, the capacity decreased to 10 mAh in 50 cycles.

[発明の効果] 本発明の負極集電体は、繰り返し充放電に対する寿命
が優れており、これを用いた非水二次電池の寿命を著し
く向上することができる。
[Effects of the Invention] The negative electrode current collector of the present invention has an excellent life for repeated charging and discharging, and can significantly improve the life of a non-aqueous secondary battery using the same.

【図面の簡単な説明】[Brief description of the drawings]

第1図、第2図、第3図および第4図は本発明の負極集
電体の断面図、第5図は本発明の実施例の扁平型二次電
池の断面図、第6図は比較例で用いた負極の断面図、第
7図は実施例および比較例の二次電池の放電容量と充放
電サイクル数との関係を示すグラフ、である。 1……正極、2……負極、3……セパレータ、4……正
極合剤、5……正極集電体、6……負極合剤、7……負
極集電体、8……正極缶、9……負極缶、10……内周部
集電体、11……外周部集電体、12〜15……負極集電体、
16……ガスケット、17……負極集電体、A……実施例、
B……比較例。
1, 2, 3, and 4 are cross-sectional views of the negative electrode current collector of the present invention, FIG. 5 is a cross-sectional view of the flat secondary battery of the embodiment of the present invention, and FIG. FIG. 7 is a sectional view of the negative electrode used in the comparative example, and FIG. 7 is a graph showing the relationship between the discharge capacity and the number of charge / discharge cycles of the secondary batteries of the example and the comparative example. DESCRIPTION OF SYMBOLS 1 ... Positive electrode, 2 ... Negative electrode, 3 ... Separator, 4 ... Positive electrode mixture, 5 ... Positive electrode current collector, 6 ... Negative electrode mixture, 7 ... Negative electrode current collector, 8 ... Positive electrode can , 9 ... negative electrode can, 10 ... inner peripheral current collector, 11 ... outer peripheral current collector, 12-15 ... negative electrode current collector,
16 ... gasket, 17 ... negative electrode current collector, A ... Example,
B: Comparative example.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西村 成興 茨城県日立市久慈町4026番地 株式会社 日立製作所日立研究所内 (72)発明者 水本 守 茨城県日立市久慈町4026番地 株式会社 日立製作所日立研究所内 (72)発明者 難波 勝 茨城県日立市久慈町4026番地 株式会社 日立製作所日立研究所内 (72)発明者 江波戸 昇 茨城県日立市久慈町4026番地 株式会社 日立製作所日立研究所内 (58)調査した分野(Int.Cl.6,DB名) H01M 4/70 - 4/74 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Seiko Nishimura 4026 Kuji-cho, Hitachi City, Ibaraki Prefecture Within Hitachi Research Laboratory, Hitachi, Ltd. Hitachi Research Laboratory (72) Inventor Masaru Namba 4026 Kuji-cho, Hitachi City, Ibaraki Prefecture Hitachi, Ltd.Hitachi Research Laboratory Co., Ltd. Field surveyed (Int.Cl. 6 , DB name) H01M 4/70-4/74

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】正極、アルカリ金属またはアルカリ金属合
金を含む負極集電体および電解液を含むセパレータを有
し、電解液として非水電解液を用いた非水二次電池にお
いて、 前記負極集電体は、セパレータと対向する側の面が凸型
形状を有していることを特徴とする非水二次電池。
1. A non-aqueous secondary battery comprising a positive electrode, a negative electrode current collector containing an alkali metal or an alkali metal alloy, and a separator containing an electrolyte, wherein a non-aqueous electrolyte is used as the electrolyte. A nonaqueous secondary battery, wherein the body has a convex shape on a surface facing the separator.
【請求項2】正極、アルカリ金属またはアルカリ金属合
金を含む負極集電体および電解液を含むセパレータを有
し、電解液として非水電解液を用いた非水二次電池にお
いて、 前記負極集電体は、セパレータと対向する側の面が微細
な突起群で構成された凸型形状を有していることを特徴
とする非水二次電池。
2. A non-aqueous secondary battery comprising a positive electrode, a negative electrode current collector containing an alkali metal or an alkali metal alloy, and a separator containing an electrolyte, wherein a non-aqueous electrolyte is used as the electrolyte. A non-aqueous secondary battery, wherein the body has a convex shape in which a surface facing the separator is formed of a group of fine projections.
JP2104546A 1990-04-20 1990-04-20 Non-aqueous secondary battery Expired - Fee Related JP2978204B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2104546A JP2978204B2 (en) 1990-04-20 1990-04-20 Non-aqueous secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2104546A JP2978204B2 (en) 1990-04-20 1990-04-20 Non-aqueous secondary battery

Publications (2)

Publication Number Publication Date
JPH044563A JPH044563A (en) 1992-01-09
JP2978204B2 true JP2978204B2 (en) 1999-11-15

Family

ID=14383482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2104546A Expired - Fee Related JP2978204B2 (en) 1990-04-20 1990-04-20 Non-aqueous secondary battery

Country Status (1)

Country Link
JP (1) JP2978204B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101017529B1 (en) * 2002-04-04 2011-02-28 소니 주식회사 Battery

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1840425A4 (en) * 2004-12-28 2011-03-16 Eagle Ind Co Ltd Shaft sealing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101017529B1 (en) * 2002-04-04 2011-02-28 소니 주식회사 Battery

Also Published As

Publication number Publication date
JPH044563A (en) 1992-01-09

Similar Documents

Publication Publication Date Title
JP3923157B2 (en) Alkaline storage battery
US20060194106A1 (en) Negative electrode plate for nickel-metal hydride storage battery, method for producing the same and nickel-metal hydride storage battery using the same
JP3387381B2 (en) Alkaline storage battery
US3672998A (en) Extended area zinc anode having low density for use in a high rate alkaline galvanic cell
JP2978204B2 (en) Non-aqueous secondary battery
JP3344234B2 (en) Paste-type nickel positive electrode for alkaline storage battery and its manufacturing method
JPS60167280A (en) Electrochemical device capable of recharging
JP3152307B2 (en) Lithium secondary battery
JP3183414B2 (en) Hydrogen storage alloy electrode and alkaline secondary battery using the same
JPH1021897A (en) Secondary battery electrode
JPS63155552A (en) Enclosed type nickel-cadmium storage battery
JP2001266867A (en) Alkaline battery and positive electrode for use in alkaline battery
JP3321541B2 (en) Lithium secondary battery
JP2944152B2 (en) Method for manufacturing nickel-hydrogen storage battery
JP3263603B2 (en) Alkaline storage battery
JP2001006688A (en) Nickel-hydrogen secondary battery
JP2001297758A (en) Positive electrode active material for alkaline storage cell and manufacturing method and alkaline storage cell using above
JP2000012011A (en) Manufacture of nickel-hydrogen storage battery
JP3625655B2 (en) Hydrogen storage alloy electrode and nickel metal hydride storage battery
JP3393978B2 (en) Alkaline secondary battery
JP4334783B2 (en) Negative electrode plate for nickel / hydrogen storage battery, method for producing the same, and nickel / hydrogen storage battery using the same
JPS60170172A (en) Rechargeable electrochemical device
JP3498545B2 (en) Alkaline storage battery
JP3197658B2 (en) Non-aqueous secondary battery
JP3524808B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees