JP2976762B2 - Sealed alkaline storage battery - Google Patents

Sealed alkaline storage battery

Info

Publication number
JP2976762B2
JP2976762B2 JP5223253A JP22325393A JP2976762B2 JP 2976762 B2 JP2976762 B2 JP 2976762B2 JP 5223253 A JP5223253 A JP 5223253A JP 22325393 A JP22325393 A JP 22325393A JP 2976762 B2 JP2976762 B2 JP 2976762B2
Authority
JP
Japan
Prior art keywords
separator
battery
fiber
positive electrode
fiber diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5223253A
Other languages
Japanese (ja)
Other versions
JPH0778630A (en
Inventor
道代 秋元
弘美 丸山
徳之 藤岡
隆二 秋元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP5223253A priority Critical patent/JP2976762B2/en
Publication of JPH0778630A publication Critical patent/JPH0778630A/en
Application granted granted Critical
Publication of JP2976762B2 publication Critical patent/JP2976762B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Cell Separators (AREA)
  • Secondary Cells (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、密閉形アルカリ蓄電
池、特にそのセパレータの構造に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sealed alkaline storage battery, and more particularly to a structure of a separator thereof.

【0002】[0002]

【従来の技術】一般に密閉形アルカリ蓄電池用セパレー
タは、正負極間に介在されて両者の接触を防止するとと
もに、電解液を十分に保持して起電反応を円滑に進行さ
せるものでなければならない。同時に、過充電時に正極
から発生する酸素ガスが速やかに負極に吸収されるよ
う、ガスを効率よく通過させる性質も備える必要があ
る。このような特性を満足させるセパレータとして、従
来から繊維径10〜20μm、厚み0.1〜0.2mm、
繊維密度60〜100g/m2のナイロン、ポリプロピレン
などの繊維からなる不織布状のものが一般に用いられて
きた。
2. Description of the Related Art Generally, a sealed alkaline storage battery separator must be interposed between a positive electrode and a negative electrode so as to prevent contact between the two and to sufficiently hold an electrolytic solution so that an electromotive reaction proceeds smoothly. . At the same time, it is necessary to have a property of allowing gas to pass efficiently so that oxygen gas generated from the positive electrode during overcharging can be quickly absorbed by the negative electrode. Conventionally, as a separator satisfying such characteristics, a fiber diameter of 10 to 20 μm, a thickness of 0.1 to 0.2 mm,
Nonwoven fabrics made of fibers such as nylon and polypropylene having a fiber density of 60 to 100 g / m 2 have been generally used.

【0003】しかし、このようなセパレータでは厚みに
対して繊維径が太いために、単繊維分布のムラによって
孔径の大きい部分が生じやすい。とくに、ニッケルカド
ミウム蓄電池においては、充放電サイクルの進行にとも
なって負極活物質であるカドミウムがセパレータ繊維表
面や繊維の隙間に樹枝状結晶を生成し、正極との微小短
絡に至るために、セパレータの孔径を必要以上に大きく
しないことが電池の長寿命化にとって重要である。
However, in such a separator, since the fiber diameter is large with respect to the thickness, a portion having a large pore diameter is likely to occur due to uneven distribution of single fibers. In particular, in nickel cadmium storage batteries, cadmium, which is the negative electrode active material, forms dendritic crystals on the separator fiber surface and in the interstices between fibers as the charge / discharge cycle progresses, leading to a minute short circuit with the positive electrode. It is important not to make the pore diameter unnecessarily large for prolonging the life of the battery.

【0004】さらに、ニッケルカドミウム蓄電池、ある
いはニッケル水素蓄電池等の正極活物質である水酸化ニ
ッケルは、充放電サイクルの進行にともなって膨潤が進
行するため、電解液が正極に取り込まれてゆく。その結
果、電池の充放電反応に必要なセパレータ中の電解液が
減少し、サイクル劣化をまねく。したがって、電池の長
寿命化のためにはセパレータの保液性を向上させ、前記
のような電解液の移動を抑止することも重要である。
Further, nickel hydroxide, which is a positive electrode active material of a nickel cadmium storage battery or a nickel hydride storage battery, swells with the progress of a charge / discharge cycle, so that the electrolyte is taken into the positive electrode. As a result, the amount of electrolyte in the separator required for the charge / discharge reaction of the battery decreases, leading to cycle deterioration. Therefore, in order to extend the life of the battery, it is also important to improve the liquid retention of the separator and to suppress the movement of the electrolytic solution as described above.

【0005】これらのセパレータが必要とする性能を得
る一つの手段として、セパレータ単繊維の径を細くする
ことがあげられる。すなわち細繊維化することによっ
て、単繊維分布のバラツキによる孔径のムラが少なくな
り、しかも繊維の比表面積が増加するためにセパレータ
の保液性の向上が図れるのである。しかし、一般に入手
できる太さ3μm 以下の細繊維からなる不織布はメルト
ブロー方式によるものが主であり、従来の乾式不織布と
比較すると引張強度やせん断強度が強い。そのため、基
板群を構成する際の衝撃に耐えられず、セパレータが極
板先端部において破断したり、極板のクラックによっ
て、セパレータに穴が開くなどの欠点があった。
[0005] One means of obtaining the performance required by these separators is to reduce the diameter of the separator single fiber. That is, by making the fibers finer, the unevenness of the pore diameter due to the dispersion of the single fibers is reduced, and the specific surface area of the fibers is increased, so that the liquid retention of the separator can be improved. However, generally available nonwoven fabrics made of fine fibers having a thickness of 3 μm or less are mainly formed by a melt blow method, and have higher tensile strength and shear strength than conventional dry nonwoven fabrics. For this reason, there has been a drawback that the separator cannot withstand the impact when forming the substrate group, the separator breaks at the tip of the electrode plate, and a hole is formed in the separator due to a crack of the electrode plate.

【0006】そこで、細繊維セパレータを実用化するた
めにはセパレータの強度を向上させることが必要であ
る。その一つの手段として、特願平2−289146号
公報において次のような密閉形アルカリ蓄電池が提案さ
れている。すなわち、平均繊維径が3μm 以下の保液性
の優れたセパレータを巻芯からみて正極の外側に配設す
ることにより、電解液が正極に移動することを抑制して
長寿命化をはかり、平均繊維径5μm 以上のセパレータ
を巻芯からみて負極の外側に配設することにより、負極
のクラックによる電極間の短絡を防止するというもので
ある。しかし、このような構造では負極に接するセパレ
ータのうち片側は従来通りの孔径が大きいものであるた
め、負極活物質の樹枝状結晶による正負極の短絡は十分
に防げない。また、強度の面においても平均繊維径3μ
m 以下のセパレータが、クラック以外の原因、たとえば
極板の先端部などで切れたりするという問題があった。
Therefore, in order to put the fine fiber separator into practical use, it is necessary to improve the strength of the separator. As one of the means, Japanese Patent Application No. 2-289146 proposes the following sealed alkaline storage battery. That is, by arranging a separator having an average fiber diameter of 3 μm or less and having excellent liquid retention properties outside the positive electrode as viewed from the winding core, the electrolyte is prevented from migrating to the positive electrode, and a longer life is achieved. By providing a separator having a fiber diameter of 5 μm or more outside the negative electrode as viewed from the winding core, a short circuit between the electrodes due to cracks in the negative electrode is prevented. However, in such a structure, one side of the separator in contact with the negative electrode has a conventional large pore size, and thus a short circuit between the positive and negative electrodes due to dendritic crystals of the negative electrode active material cannot be sufficiently prevented. In terms of strength, the average fiber diameter is 3μ.
There has been a problem that the separator of m or less may be cut at a cause other than the crack, for example, at the tip of the electrode plate.

【0007】さらに細繊維セパレータの強度向上のもう
一つの手段として、細繊維からなる不織布の一方に太繊
維からなる不織布を張り合わせる方法があげられる。こ
のようなセパレータとしては、特開昭60−17015
9号公報において0.3〜1.0デニールと2〜3デニ
ールの二種類のポリプロピレン繊維からなるセパレータ
として提案されている。しかしながら、このセパレータ
を急速充電タイプのニッケルカドミウム蓄電池に使用し
た場合、充電時の内圧上昇が著しく、安全弁からの電解
液の漏れが生じるなどの問題が生じた。その原因は、ポ
リプロピレン繊維からなるセパレータはナイロン繊維な
どと比較して電解液の保持性が悪く、電解液含有状態で
のガス透過性が劣っているためであった。
As another means for improving the strength of the fine fiber separator, there is a method in which a nonwoven fabric made of a thick fiber is bonded to one of the nonwoven fabrics made of a fine fiber. As such a separator, Japanese Patent Application Laid-Open No. 60-17015
No. 9 proposes a separator composed of two types of polypropylene fibers of 0.3 to 1.0 denier and 2 to 3 denier. However, when this separator is used in a quick-charge type nickel-cadmium storage battery, the internal pressure during charging rises significantly, causing problems such as leakage of the electrolyte from the safety valve. The reason for this is that the separator made of polypropylene fiber has a lower retention of the electrolytic solution than nylon fiber or the like, and the gas permeability in the state containing the electrolytic solution is inferior.

【0008】[0008]

【発明が解決しようとする課題】本発明は前記のような
問題点を解決するもので、電池の極板群を構成する際に
必要な強度を有し、かつすぐれた保液性、正負極の絶縁
性を示すセパレータを使用することにより、長寿命の密
閉形アルカリ蓄電池を得ることを目的とする。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems, and has the strength necessary for forming a battery electrode group, and has excellent liquid retention properties and positive and negative electrodes. An object of the present invention is to obtain a long-life sealed alkaline storage battery by using a separator having an insulating property.

【0009】[0009]

【課題を解決するための手段】この目的を達成するため
に、本発明の密閉形アルカリ蓄電池は、繊維径の異なる
二種類のナイロン不織布を予め圧着して作られたセパレ
ータを用いて構成されている。
In order to achieve this object, a sealed alkaline storage battery according to the present invention is constituted by using a separator made by pre-pressing two kinds of nylon nonwoven fabrics having different fiber diameters. I have.

【0010】具体的には平均繊維径3μm 以下のナイロ
ン繊維を用いた第1の不織布を正極側に、平均繊維径5
μm 以上のナイロン繊維を用いた第2の不織布を負極側
に配して構成されたものである。
Specifically, a first nonwoven fabric using nylon fibers having an average fiber diameter of 3 μm or less is placed on the positive electrode side with an average fiber diameter of 5 μm.
The second nonwoven fabric using nylon fibers of μm or more is arranged on the negative electrode side.

【0011】[0011]

【作用】このセパレータのうち、平均繊維径3μm 以下
の第1の不織布は、セパレータ比表面積を増加させ、か
つセパレータの孔径が大きくなることを防ぐ。これによ
って、セパレータの保液性が向上し、水酸化ニッケルの
膨潤により正極へ電解液が取りこまれてゆくのを防ぐこ
とができる。また、セパレータの孔径が小さくなること
で、カドミウム樹枝状結晶の成長による正負極間の短絡
を抑止する。
The first non-woven fabric having an average fiber diameter of 3 μm or less among the separators increases the specific surface area of the separator and prevents the pore diameter of the separator from increasing. Thereby, the liquid retention of the separator is improved, and it is possible to prevent the electrolyte solution from being taken into the positive electrode due to swelling of the nickel hydroxide. In addition, by reducing the pore diameter of the separator, a short circuit between the positive and negative electrodes due to the growth of cadmium dendritic crystals is suppressed.

【0012】さらに、平均繊維径5μm 以上の第2の不
織布によって、細繊維化による強度低下を防ぎ、極板群
を形成する際の衝撃に耐えうる強度をもつセパレータを
提供することができる。
Further, the second nonwoven fabric having an average fiber diameter of 5 μm or more can provide a separator having a strength that can prevent a decrease in strength due to fine fiber formation and withstand an impact in forming an electrode plate group.

【0013】[0013]

【実施例】以下、本発明の実施例について、図面を参照
しながら説明する。図1において、本発明の実施例によ
るセパレータ3の構造を説明する。このセパレータ3
は、互いに密着した第1セパレータ層1および第2セパ
レータ層2からなっている。第1セパレータ層1は、繊
維径が1〜3μm のナイロン繊維を用いて形成された繊
維密度約45g/m2、厚さ約0.08mmの第1の不織布で
構成されている。一方、第2セパレータ層2は、繊維径
が7〜15μm のナイロン繊維を用いて形成された繊維
密度約30g/m2の第2の不織布で構成されている。これ
らの第1および第2セパレータ層1、2を互いに面圧着
して、厚さ0.16mmの二層のセパレータ3とされてい
る。図2は、前記のようにして作成されたセパレータを
使用した場合の極板群形成前の部品上面図である。極板
群4は、正極板5と負極板6と、これらの間に介挿され
るセパレータ3を巻芯7を中心に矢印の方向へ捲回して
構成される。このとき、二層のセパレータ3は、繊維径
の細い第1セパレータ層1が正極板5と、繊維径の太い
第2セパレータ層2が負極板6と接するように配置す
る。
Embodiments of the present invention will be described below with reference to the drawings. 1, the structure of the separator 3 according to the embodiment of the present invention will be described. This separator 3
Consists of a first separator layer 1 and a second separator layer 2 which are in close contact with each other. The first separator layer 1 is made of a first nonwoven fabric having a fiber density of about 45 g / m 2 and a thickness of about 0.08 mm formed using nylon fibers having a fiber diameter of 1 to 3 μm. On the other hand, the second separator layer 2 is composed of a second nonwoven fabric having a fiber density of about 30 g / m 2 formed using nylon fibers having a fiber diameter of 7 to 15 μm. These first and second separator layers 1 and 2 are pressure-bonded to each other to form a two-layer separator 3 having a thickness of 0.16 mm. FIG. 2 is a top view of the parts before forming the electrode plate group when the separator prepared as described above is used. The electrode plate group 4 is configured by winding a positive electrode plate 5, a negative electrode plate 6, and a separator 3 interposed therebetween in a direction indicated by an arrow around a core 7. At this time, the two-layer separator 3 is disposed such that the first separator layer 1 having a small fiber diameter is in contact with the positive electrode plate 5 and the second separator layer 2 having a large fiber diameter is in contact with the negative electrode plate 6.

【0014】さらに、図3に示すように、この極板群を
電池外装ケース8に挿入し、溝入れ加工した後、正極リ
ード板9の先端部を封口板10の裏面に溶接し、ケース
8を封口板10で閉塞して、公称容量1200mAhの
密閉形ニッケルカドミウム蓄電池、すなわち本発明によ
る実施例である電池Aを作成した。また、Aとの比較例
として、本発明のセパレータを用い、繊維径の細い第
1セパレータ層1が負極側に、繊維型の太い第2セパレ
ータ層2が正極側に接するよう、Aとは逆に極板群を構
成して作られた電池B、従来の繊維径7〜15μm の
ナイロン繊維からなる単一層不織布セパレータを用いた
電池C、繊維径1〜3μm のナイロン繊維からなる単
一層不織布セパレータを用いた電池D、繊維径7〜1
5μm のナイロン繊維からなる不織布セパレータを巻き
芯から見て負極の外側に、繊維径1〜3μm のナイロン
繊維からなる不織布セパレータを正極の外側に配設した
電池E、さらに繊維径1〜3μm と7〜15μm のポ
リプロピレン繊維からなる不織布を圧着して作成した二
層セパレータを用いて本発明と同様に作成した電池Fを
用意した。なお、Fで使用したポリプロピレンセパレー
タはナイロンとの比重差を考慮し、繊維径1〜3μm の
不織布の繊維密度を約40g/m2、7〜15μm の不織布
は繊維密度を約25g/m2とした。
Further, as shown in FIG. 3, this electrode plate group is inserted into the battery outer case 8 and grooving processing is performed. Then, the front end of the positive electrode lead plate 9 is welded to the back surface of the sealing plate 10 to form the case 8. Was sealed with a sealing plate 10 to produce a sealed nickel-cadmium storage battery having a nominal capacity of 1200 mAh, that is, a battery A according to an embodiment of the present invention. Further, as a comparative example with A, the separator of the present invention was used, and the first separator layer 1 having a small fiber diameter was in contact with the negative electrode side, and the second separator layer 2 having a large fiber type was in contact with the positive electrode side. A battery B using a conventional single-layer nonwoven fabric separator made of nylon fibers having a fiber diameter of 7 to 15 μm; a single-layer nonwoven fabric separator made of nylon fibers having a fiber diameter of 1 to 3 μm. D using fiber, fiber diameter 7-1
A battery E in which a non-woven fabric separator made of a nylon fiber having a fiber diameter of 1 to 3 μm and a non-woven fabric separator made of a nylon fiber having a fiber diameter of 1 to 3 μm is arranged outside the positive electrode when viewed from the winding core. A battery F prepared in the same manner as in the present invention was prepared by using a two-layer separator prepared by pressing a nonwoven fabric made of polypropylene fibers having a thickness of 15 μm. The polypropylene separator used in F has a fiber density of about 40 g / m 2 for a nonwoven fabric having a fiber diameter of 1 to 3 μm and a fiber density of about 25 g / m 2 for a nonwoven fabric of 7 to 15 μm in consideration of the specific gravity difference from nylon. did.

【0015】まず、本発明のセパレータおよび従来セパ
レータの引張強度を測定し、さらに本発明による実施例
の電池とその比較例の電池を各々1000個ずつ構成し
たときの内部短絡不良の発生数を比較した。表1にこの
結果を示す。
First, the tensile strengths of the separator of the present invention and the conventional separator were measured, and the number of occurrences of internal short-circuit failure was compared when each of the batteries according to the present invention and the batteries according to the comparative example was constituted by 1000 pieces. did. Table 1 shows the results.

【0016】[0016]

【表1】 [Table 1]

【0017】表1からわかるように、繊維径7〜15μ
m のセパレータに対して繊維径1〜3μm のセパレータ
の引張強度は約半分しかなく、それを使用した電池Dの
内部短絡不良は7個発生している。また、電池Eにおい
ても、内部短絡不良が1個発生した、これは正極側に配
設された細繊維径のセパレータに、正極板巻終わりの先
端部で穴が明いたためであった。これと比較して、本発
明品のセパレータを用いた電池Aでは内部短絡不良が発
生しておらず、極板群構成時に必要な強度を十分に保有
していることがわかる。
As can be seen from Table 1, the fiber diameter is 7 to 15 μm.
The tensile strength of the separator having a fiber diameter of 1 to 3 μm is only about half of that of the separator having a diameter of m, and the battery D using the separator has seven internal short circuit failures. Also in the battery E, one internal short-circuit failure occurred, because a hole was formed in the fine fiber diameter separator disposed on the positive electrode side at the end of the positive electrode plate winding end. In comparison with this, it can be seen that the battery A using the separator of the present invention did not suffer from internal short-circuit failure, and had sufficient strength necessary for forming the electrode plate group.

【0018】次に、電池A、B、C、D、E、Fにおい
て、過充電時の電池内部圧力を比較した。充電は温度0
℃の恒温槽内にて、1.2Aの電流で2時間行った。こ
の結果を図4にまとめる。ポリプロピレンの二層セパレ
ータを用いた電池Fは本発明のセパレータを用いた電池
Aと比較して、過充電時の電池内部圧力が約3倍と非常
に高くなっている。この理由は前述の通り、ポリプロピ
レンセパータが電解液保持状態での酸素ガス透過性がナ
イロンよりも悪いためと考えられる。
Next, the internal pressures of the batteries A, B, C, D, E, and F at the time of overcharge were compared. Charging is at temperature 0
The operation was performed for 2 hours at a current of 1.2 A in a constant temperature bath at ℃. The results are summarized in FIG. Battery F using the polypropylene two-layer separator has a very high internal pressure of the battery at the time of overcharge, which is about three times higher than battery A using the separator of the present invention. It is considered that the reason for this is that, as described above, the polypropylene separator has poorer oxygen gas permeability in the state of holding the electrolyte than nylon.

【0019】また、電池Bにおいても過充電時の内部圧
力が約2倍となった。この原因として、セパレータ内の
電解液が保液性の良い細繊維の不織布側に移動して、負
極の表面に電解液量が増加し、それが正極から発生した
酸素ガスが負極に吸収されるのを阻害するためと推察さ
れる。
In the battery B, the internal pressure at the time of overcharging was approximately doubled. As a cause of this, the electrolytic solution in the separator moves to the nonwoven fabric side of the fine fiber having a good liquid retaining property, the amount of the electrolytic solution increases on the surface of the negative electrode, and the oxygen gas generated from the positive electrode is absorbed by the negative electrode. It is supposed to hinder this.

【0020】このことから本発明のセパレータを電池に
構成する際には、細繊維側を正極側に、太繊維側を負極
側に配設することが必要である。
Therefore, when the separator of the present invention is constructed in a battery, it is necessary to arrange the fine fiber side on the positive electrode side and the thick fiber side on the negative electrode side.

【0021】さらに、前記セパレータを使用した電池で
の20℃における寿命試験の結果を図5に示した。寿命
試験は、充電を1.2Aの電流で1.5時間、放電を
1.2Aで電圧が1.0Vに達するまで行い、放電容量
が初期の半分以下になるまでこのサイクルをくり返し
た。なお、図5の横軸は繊維径7〜15μm の従来品セ
パレータを用いた電池Cの寿命サイクル数に対しての各
セパレータでの寿命サイクル数の比を示している。この
結果によると、本発明のセパレータを用い太繊維側が負
極板に、細繊維側が正極板に接するように構成された電
池Aの寿命サイクル数は従来品Cの約2倍であり、すぐ
れた寿命特性を示している。一方、本発明のセパレータ
を用い太繊維側が正極板に、細繊維側が負極板に接する
ように構成された電池Bでは寿命サイクル数は電池Cと
ほとんど変わらず、ポリプロピレンの二層セパレータを
用いた電池Fでは寿命サイクル数が0.8倍と短くなっ
た。これらの劣化原因を調べた結果を以下に述べる。
FIG. 5 shows the results of a life test at 20 ° C. for a battery using the separator. In the life test, charging was performed at a current of 1.2 A for 1.5 hours, discharging was performed at 1.2 A until the voltage reached 1.0 V, and this cycle was repeated until the discharge capacity became half or less of the initial value. The horizontal axis of FIG. 5 shows the ratio of the number of life cycles of each separator to the number of life cycles of the battery C using the conventional separator having a fiber diameter of 7 to 15 μm. According to this result, the life cycle number of the battery A, which is configured so that the thick fiber side is in contact with the positive electrode plate and the thin fiber side is in contact with the positive electrode plate using the separator of the present invention, is about twice as long as that of the conventional product C. The characteristics are shown. On the other hand, in the battery B using the separator of the present invention so that the thick fiber side is in contact with the positive electrode plate and the thin fiber side is in contact with the negative electrode plate, the life cycle number is almost the same as that of the battery C, and the battery using the two-layer polypropylene separator is used. In F, the number of life cycles was reduced to 0.8 times. The results of examining the causes of these deteriorations are described below.

【0022】まず、電池Bと電池Fには漏液の痕跡があ
ることから、充電時の内圧上昇によって安全弁から電解
液が漏れ、充放電に必要な電解液が減少したための劣化
と考えられる。また、劣化した電池Cを分解したとこ
ろ、セパレータ中に多くのカドミウムの結晶が析出し、
その一部が正極に達して微小短絡していることが判っ
た。同様に電池Eにおいても、太繊維径のセパレータ側
にカドミウムの結晶が成長しており、正極との微小短絡
が起こっていた。しかしながら本発明のセパレータを用
いた電池Aを寿命試験途中で分解し電池Cと比較したと
ころ、細繊維の緻密な不織布層によってセパレータ中の
カドミウム結晶の成長が抑制されていることがわかっ
た。
First, since the batteries B and F have traces of liquid leakage, it is considered that the electrolyte leaks from the safety valve due to an increase in the internal pressure during charging, and the electrolyte required for charging and discharging is reduced. When the deteriorated battery C was disassembled, many cadmium crystals precipitated in the separator,
It was found that a part thereof reached the positive electrode and a short circuit occurred. Similarly, also in battery E, cadmium crystals grew on the side of the separator having a large fiber diameter, and a short circuit with the positive electrode occurred. However, when the battery A using the separator of the present invention was disassembled during the life test and compared with the battery C, it was found that the growth of cadmium crystals in the separator was suppressed by the fine nonwoven fabric layer of fine fibers.

【0023】[0023]

【発明の効果】以上のように本発明による二層セパレー
タを用いることによって、極板群構成時に内部短絡不良
を起こすことなく、すぐれた寿命特性を保つ細繊維セパ
レータを密閉形アルカリ蓄電池に導入することを可能と
したものである。
As described above, by using the two-layer separator according to the present invention, a fine fiber separator which maintains excellent life characteristics without causing an internal short-circuit failure in the construction of an electrode plate group is introduced into a sealed alkaline storage battery. This is what made it possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例における密閉形アルカリ蓄電池
に用いるセパレータの断面略図
FIG. 1 is a schematic cross-sectional view of a separator used in a sealed alkaline storage battery according to an embodiment of the present invention.

【図2】本発明のセパレータを使用した極板群構成前の
部品上面図
FIG. 2 is a top view of a part before the construction of an electrode group using the separator of the present invention.

【図3】本発明のセパレータを使用した密閉形アルカリ
蓄電池の縦断面図
FIG. 3 is a longitudinal sectional view of a sealed alkaline storage battery using the separator of the present invention.

【図4】実施例と比較例の充電時の電池内部圧力を比較
した図
FIG. 4 is a diagram comparing the internal pressures of the batteries at the time of charging of the example and the comparative example

【図5】充放電サイクルと電池容量との関係を比較した
FIG. 5 is a diagram comparing the relationship between charge / discharge cycles and battery capacity.

【符号の説明】[Explanation of symbols]

1 第1セパレータ層 2 第2セパレータ層 3 セパレータ 4 極板群 5 正極板 6 負極板 7 巻き芯 8 電池外装ケース 9 正極リード板 10 封口板 REFERENCE SIGNS LIST 1 first separator layer 2 second separator layer 3 separator 4 electrode plate group 5 positive electrode plate 6 negative electrode plate 7 winding core 8 battery outer case 9 positive electrode lead plate 10 sealing plate

───────────────────────────────────────────────────── フロントページの続き (72)発明者 秋元 隆二 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 昭51−12645(JP,A) 特開 昭60−170159(JP,A) 特開 平5−314961(JP,A) 実開 昭54−86321(JP,U) (58)調査した分野(Int.Cl.6,DB名) H01M 10/04 H01M 10/24 - 10/30 H01M 10/34 H01M 2/16 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Ryuji Akimoto 1006 Kazuma Kadoma, Kadoma City, Osaka Inside Matsushita Electric Industrial Co., Ltd. (56) References JP-A-51-12645 (JP, A) JP-A-60- 170159 (JP, A) JP-A-5-314496 (JP, A) JP-A-54-86321 (JP, U) (58) Fields investigated (Int. Cl. 6 , DB name) H01M 10/04 H01M 10 / 24-10/30 H01M 10/34 H01M 2/16

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 正負極間にセパレータを介在して渦巻状
に捲回した極板群を有し、前記セパレータが、平均繊維
径3μm 以下のナイロン繊維からなる第1の不織布と、
平均繊維径5μm 以上のナイロン繊維からなり、前記第
1の不織布の片面に圧着された第2の不織布とから構成
され、前記セパレータの第1の不織布が正極側に、第2
の不織布が負極側に配置されていることを特徴とする密
閉形アルカリ蓄電池。
1. A first nonwoven fabric comprising a spirally wound electrode plate group with a separator interposed between positive and negative electrodes, wherein the separator is made of a nylon fiber having an average fiber diameter of 3 μm or less;
A second nonwoven fabric which is made of nylon fibers having an average fiber diameter of 5 μm or more and is pressed against one surface of the first nonwoven fabric;
Wherein the nonwoven fabric is disposed on the negative electrode side.
JP5223253A 1993-09-08 1993-09-08 Sealed alkaline storage battery Expired - Lifetime JP2976762B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5223253A JP2976762B2 (en) 1993-09-08 1993-09-08 Sealed alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5223253A JP2976762B2 (en) 1993-09-08 1993-09-08 Sealed alkaline storage battery

Publications (2)

Publication Number Publication Date
JPH0778630A JPH0778630A (en) 1995-03-20
JP2976762B2 true JP2976762B2 (en) 1999-11-10

Family

ID=16795205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5223253A Expired - Lifetime JP2976762B2 (en) 1993-09-08 1993-09-08 Sealed alkaline storage battery

Country Status (1)

Country Link
JP (1) JP2976762B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3332139B2 (en) * 1996-09-26 2002-10-07 松下電器産業株式会社 Sealed alkaline storage battery
KR100502320B1 (en) * 1998-12-16 2005-09-26 삼성에스디아이 주식회사 Lithium ion polymer battery
JP2002099095A (en) 2000-09-25 2002-04-05 Orc Mfg Co Ltd Automatic both-side exposing device and method of using the same
JP5706214B2 (en) * 2011-03-30 2015-04-22 帝人株式会社 Separator

Also Published As

Publication number Publication date
JPH0778630A (en) 1995-03-20

Similar Documents

Publication Publication Date Title
US5008165A (en) Electrochemical cell
US4414295A (en) Battery separator
US5558682A (en) Process for producing a wind-type alkaline secondary battery
US20080206646A1 (en) Alkaline secondary battery with separator containing aromatic polyamide fiber
JP2976762B2 (en) Sealed alkaline storage battery
JP2001023680A (en) Battery having winding structure electrode body
US3716411A (en) Rechargeable alkaline manganese cell
US4444854A (en) Electrochemical cell having internal short inhibitor
EP1039566B1 (en) Alkaline storage battery with two separators
JPH01187760A (en) Cylindrical alkaline zinc storage battery
JPS60170159A (en) Seald type alkaline storage cell
US5932370A (en) Group of winding electrodes
JP2917702B2 (en) Sealed nickel-hydrogen battery
JP4017212B2 (en) Alkaline secondary battery having a wound structure electrode body
JP3209071B2 (en) Alkaline storage battery
US5955216A (en) Sealed alkaline storage battery
EP0834939B1 (en) Alkaline storage battery and separator therefor
JP3973115B2 (en) Battery having an electrode body with a wound structure
JPH10199502A (en) Separator and battery using the same
JPS6381763A (en) Enclosed type alkaline storage battery
JPH1064577A (en) Rolled polar plate group and manufacture thereof
JP2751618B2 (en) Sealed alkaline storage battery
JPH10284117A (en) Alkaline storage battery
CA1166687A (en) Electrochemical cell having internal short inhibitor
JPH01100872A (en) Sealed type nickel-zinc cell

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080910

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080910

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090910

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090910

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100910

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110910

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120910

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 14