JP2976109B2 - Liquid crystal composition and liquid crystal device containing the same - Google Patents

Liquid crystal composition and liquid crystal device containing the same

Info

Publication number
JP2976109B2
JP2976109B2 JP63188109A JP18810988A JP2976109B2 JP 2976109 B2 JP2976109 B2 JP 2976109B2 JP 63188109 A JP63188109 A JP 63188109A JP 18810988 A JP18810988 A JP 18810988A JP 2976109 B2 JP2976109 B2 JP 2976109B2
Authority
JP
Japan
Prior art keywords
liquid crystal
μsec
weight
crystal composition
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63188109A
Other languages
Japanese (ja)
Other versions
JPH0238485A (en
Inventor
眞孝 山下
匡宏 寺田
剛司 門叶
正信 朝岡
隆雄 滝口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP63188109A priority Critical patent/JP2976109B2/en
Priority to AT89111494T priority patent/ATE118029T1/en
Priority to EP89111494A priority patent/EP0347944B1/en
Priority to DE68920919T priority patent/DE68920919T2/en
Priority to ES89111494T priority patent/ES2068851T3/en
Publication of JPH0238485A publication Critical patent/JPH0238485A/en
Priority to US08/329,619 priority patent/US5501818A/en
Application granted granted Critical
Publication of JP2976109B2 publication Critical patent/JP2976109B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Liquid Crystal Substances (AREA)

Description

【発明の詳細な説明】 [技術分野] 本発明は液晶表示素子や液晶−光シャッター等に利用
される液晶素子に用いる液晶組成物に関し、更に詳しく
は、電界に対する応答特性が改善された新規な液晶組成
物に関するものである。
Description: TECHNICAL FIELD The present invention relates to a liquid crystal composition used for a liquid crystal device used for a liquid crystal display device, a liquid crystal-optical shutter, and the like, and more particularly, to a novel liquid crystal composition having improved response characteristics to an electric field. The present invention relates to a liquid crystal composition.

[背景技術] 従来より、液晶は電気光学素子として種々の分野で応
用されている。現在実用化されている液晶素子はほとん
どが、例えばM.ScheadtとW.Helfrich著“Applied Physi
cs Letters"Vo.18、No.4(1971.2.15)、P.127〜128の
“Voltage−Spendent Optical Activity of a Twisted
Nematic Liquid Crystal"に示されたTN(twisted nemat
ic)型の液晶を用いたものである。
BACKGROUND ART Conventionally, liquid crystals have been applied in various fields as electro-optical elements. Most liquid crystal devices currently in practical use are described in, for example, “Applied Physiology” by M. Scheadt and W. Helfrich.
cs Letters "Vo.18, No.4 (1971.2.15)," Voltage-Spendent Optical Activity of a Twisted "
Nematic Liquid Crystal "(twisted nemat
ic) type liquid crystal.

これらは、液晶の誘電的配列効果に基づいており、液
晶分子の誘電異方性のために平均分子軸方向が、加えら
れた電場により特定の方向を向く効果を利用している。
これらの素子の光学的な応答速度の限界はミリ秒である
といわれ、多くの応用のためには遅すぎる。一方、大型
平面ディスプレイへの応用では、価格,生産性などを考
え合せると単純マトリクス方式による駆動が最も有力で
ある。単純マトリクス方式においては、走査電極群と信
号電極群をマトリクス状に構成した電極構成が採用さ
れ、その駆動のためには、走査電極群に順次周期的にア
ドレス信号を選択印加し、信号電極群には所定の情報信
号をアドレス信号と同期させて並列的に選択印加する時
分割駆動方式が採用される。
These are based on the dielectric alignment effect of liquid crystal, and use the effect that the average molecular axis direction is directed in a specific direction by an applied electric field due to the dielectric anisotropy of liquid crystal molecules.
The limit on the optical response speed of these devices is said to be milliseconds, which is too slow for many applications. On the other hand, in application to a large flat display, driving by a simple matrix method is the most influential in consideration of price, productivity, and the like. In the simple matrix system, an electrode configuration in which a scanning electrode group and a signal electrode group are configured in a matrix is employed. To drive the scanning electrode group, an address signal is sequentially and selectively applied to the scanning electrode group, and the signal electrode group is applied. Employs a time-division driving method in which a predetermined information signal is selectively applied in parallel in synchronization with an address signal.

しかしこのような駆動方式の素子に前述したTN型の液
晶を採用すると走査電極が選択され、信号電極が選択さ
れない領域、或いは走査電極が選択されず、信号電極が
選択される領域(所謂“半選択点”)にも有限に電界が
かかってしまう。選択点にかかる電圧と、半選択点にか
かる電圧の差が充分に大きく、液晶分子を電界に垂直に
配列させるのに要する電圧閾値がこの中間の電圧値に設
定されるならば、表示素子は正常に動作するわけである
が、走査線数(N)を増やして行った場合、画面全体
(1フレーム)を走査する間に一つの選択点に有効な電
界がかかっている時間(duty比)が1/Nの割合で減少し
てしまう。このために、くり返し走査を行った場合の選
択点と非選択点にかかる実効値としての電圧差は、走査
線数が増えれば増える程小さくなり、結果的には画像コ
ントラストの低下やクロストークが避け難い欠点となっ
ている。このような現象は、双安定性を有さない液晶
(電極面に対し、液晶分子が水平に配向しているのが安
定状態であり、電界が有効に印加されている間のみ垂直
に配向する)を時間的蓄積効果を利用して駆動する(即
ち、繰り返し走査する)ときに生ずる本質的には避け難
い問題点である。この点を改良するために、電圧平均化
法、2周波駆動法や、多重マトリクス法等が既に提案さ
れているが、いずれの方法でも不充分であり、表示素子
の大画面化や高密度化は、走査線数が充分に増やせない
ことによって頭打ちになっているのが現状である。
However, when the above-described TN type liquid crystal is adopted as an element of such a driving method, a scanning electrode is selected and a region where a signal electrode is not selected or a region where a scanning electrode is not selected and a signal electrode is selected (a so-called “half”). A finite electric field is also applied to the selected point “)”. If the difference between the voltage applied to the selected point and the voltage applied to the half-selected point is sufficiently large and the voltage threshold required for aligning the liquid crystal molecules perpendicularly to the electric field is set to this intermediate voltage value, the display element is Although it operates normally, when the number of scanning lines (N) is increased, the time during which an effective electric field is applied to one selected point while scanning the entire screen (one frame) (duty ratio) Decreases at a rate of 1 / N. For this reason, the voltage difference as an effective value between the selected point and the non-selected point when the repetitive scanning is performed becomes smaller as the number of scanning lines increases, and as a result, a decrease in image contrast and crosstalk occur. It is an inevitable drawback. Such a phenomenon is caused by a liquid crystal having no bistability (a stable state in which liquid crystal molecules are horizontally aligned with respect to an electrode surface, and are vertically aligned only when an electric field is effectively applied. ) Is essentially unavoidable when driving (i.e., repeatedly scanning) using the time accumulation effect. In order to improve this point, a voltage averaging method, a two-frequency driving method, a multiplex matrix method, and the like have already been proposed. However, any of these methods is insufficient, and a large screen or high density display device is required. At present, the number of scanning lines has reached a plateau due to a failure to sufficiently increase the number of scanning lines.

この様な従来型の液晶素子の欠点を改善するものとし
て、双安定性を有する液晶素子の使用がClark及びLager
wallにより提案されている(特開昭56−107216号公報、
米国特許第4367924号明細書等)。双安定性液晶として
は一般に、カイラルスメクティックC相(SmC)又は
H相(SmH)を有する強誘電性液晶が用いられる。こ
の強誘電性液晶は電界に対して第1の光学的安定状態と
第2の光学的安定状態からなる双安定状態を有し、従っ
て前述のTN型の液晶で用いられた光学変調素子とは異な
り、例えば一方の電界ベクトルに対して第1の光学的安
定状態に液晶が配向し、他方の電界ベクトルに対しては
第2の光学的安定状態に液晶が配向される。また、この
型の液晶は、加えられる電界に応答して、上記2つの安
定状態のいずれかを取り、且つ電界の印加のないときは
その状態を維持する性質(双安定性)を有する。
As an improvement over the disadvantages of the conventional liquid crystal device, the use of a bistable liquid crystal device has been proposed by Clark and Lager.
proposed by wall (JP-A-56-107216,
U.S. Patent No. 4367924). Generally, a ferroelectric liquid crystal having a chiral smectic C phase (SmC * ) or an H phase (SmH * ) is used as the bistable liquid crystal. This ferroelectric liquid crystal has a bistable state composed of a first optically stable state and a second optically stable state with respect to an electric field. Therefore, the optical modulation element used in the above-mentioned TN type liquid crystal is In contrast, for example, the liquid crystal is oriented in a first optically stable state with respect to one electric field vector, and the liquid crystal is oriented in a second optically stable state with respect to the other electric field vector. In addition, this type of liquid crystal has a property (bistability) that takes one of the above two stable states in response to an applied electric field and maintains the state when no electric field is applied.

以上のような双安定性を有する特徴に加えて、強誘電
液晶は高速応答性であるという優れた特徴を持つ。それ
は強誘電液晶の持つ自発分極と印加電場が直接作用して
配向状態の転移を誘起するためであり、誘電率異方性と
電場の作用による応答速度より3〜4オーダー速い。
In addition to the characteristic having bistability as described above, the ferroelectric liquid crystal has an excellent characteristic of high-speed response. This is because the spontaneous polarization of the ferroelectric liquid crystal and the applied electric field directly act to induce the transition of the alignment state, and are three to four orders of magnitude faster than the response speed due to the dielectric anisotropy and the action of the electric field.

このように強誘電液晶はきわめて優れた特性を潜在的
に有しており、このような性質を利用することにより、
上述した従来のTN型素子の問題点の多くに対して、かな
り本質的な改善が得られる。特に、高速光学光シャッタ
ーや、高密度,大画面ディスプレイへの応用が期待され
る。このため強誘電性を持つ液晶材料に関しては広く研
究がなされているが、現在までに開発された強誘電性液
晶材料は、低温作動特性,高速応答性等を含めて液晶素
子に用いる十分な特性を備えているとは云い難い。
As described above, ferroelectric liquid crystals have potentially excellent properties, and by utilizing such properties,
Significant improvements are obtained over many of the problems of the conventional TN devices described above. In particular, applications to high-speed optical shutters and high-density, large-screen displays are expected. For this reason, liquid crystal materials having ferroelectricity have been widely studied, but the ferroelectric liquid crystal materials developed up to now have sufficient characteristics to be used for liquid crystal devices, including low-temperature operation characteristics and high-speed response. It is hard to say that it has.

応答時間τと自発分極の大きさPsおよび粘度ηの間に
の関係が存在する。したがって応答速度を速くするに
は、 (ア)自発分極の大きさPsを大きくする (イ)粘度ηを小さくする (ウ)印加電圧Eを高くする 方法がある。しかし印加電圧は、IC等で駆動するため上
限があり、出来るだけ低い方が望ましい。よって、実際
には粘度ηを小さくするか、自発分極の大きさPsの値を
大きくする必要がある。
Between the response time τ and the magnitude of the spontaneous polarization Ps and the viscosity η Relationship exists. Therefore, in order to increase the response speed, there are (a) increasing the magnitude Ps of the spontaneous polarization, (a) decreasing the viscosity η, and (c) increasing the applied voltage E. However, the applied voltage has an upper limit because it is driven by an IC or the like, and it is desirable that the applied voltage be as low as possible. Therefore, it is actually necessary to reduce the viscosity η or increase the value of the magnitude Ps of the spontaneous polarization.

一般的に自発分極の大きい強誘電性カイラルスメクチ
ック液晶化合物においては、自発分極のもたらすセルの
内部電界も大きく、双安定状態をとり得る素子構成への
制約が多くなる傾向にある。又、いたずらに自発分極を
大きくしても、それにつれて粘度も大きくなる傾向にあ
り、結果的には応答速度があまり速くならないことが考
えられる。
In general, in a ferroelectric chiral smectic liquid crystal compound having a large spontaneous polarization, the internal electric field of the cell caused by the spontaneous polarization tends to be large, and there is a tendency that restrictions on a device configuration which can take a bistable state are increased. Further, even if the spontaneous polarization is increased unnecessarily, the viscosity tends to increase with the spontaneous polarization, and as a result, the response speed may not be so high.

また、実際のディスプレイとしての使用温度範囲が例
えば5〜40℃程度とした場合、応答速度の変化が一般に
20倍程もあり、駆動電圧及び周波数による調節の限界を
越えているのが現状である。
In addition, when the operating temperature range of the actual display is, for example, about 5 to 40 ° C., the response speed generally changes.
At present, it is about 20 times, exceeding the limit of adjustment by drive voltage and frequency.

以上述べたように、強誘電性液晶素子を実用化するた
めには、粘度が低く高速応答性を有し、かつ応答速度の
温度依存性の小さな強誘電性カイラルスメクチック液晶
組成物が要求される。
As described above, in order to put a ferroelectric liquid crystal device into practical use, a ferroelectric chiral smectic liquid crystal composition having a low viscosity and a high-speed response, and having a small temperature dependence of a response speed is required. .

[発明が解決しようとする問題点] 本発明の目的は、強誘電性液晶素子を実用できるよう
に、応答速度が速く、しかもその応答速度の温度依存性
が軽減されたカイラルスメクチック液晶組成物および該
液晶組成物を使用する液晶素子を提供することにある。
[Problems to be Solved by the Invention] An object of the present invention is to provide a chiral smectic liquid crystal composition having a high response speed and a reduced temperature dependence of the response speed so that a ferroelectric liquid crystal device can be put to practical use. An object of the present invention is to provide a liquid crystal device using the liquid crystal composition.

[問題を解決するための手段] 本発明は下記一般式(I) (ただし、R1,R2はC3〜C18の直鎖状もしくは分岐状のア
ルキル基である。
[Means for Solving the Problem] The present invention provides the following general formula (I) (However, R 1 and R 2 are a C 3 to C 18 linear or branched alkyl group.

X1,X2は単結合,−O−, のいずれかを示す。) で示される化合物の少なくとも一種を1〜300重量部
と、下記一般式(II) (ただし、R3,R4はC1〜C18の直鎖状又は分岐状のアルキ
ル基 X3,X4は単結合、 Z1−CH2O−,−OCH2−,単結合 ただし、 のうち少なくとも1つは である。) で示される化合物の少なくとも一種を1〜300重量部
と、下記一般式(III) (ただし、R5はアルコキシ基により置換されていても良
いC1〜C18の直鎖状又は分岐状のアルキル基 X5は単結合,−O−, Z2は単結合, mは1〜12) で示される化合物の少なくとも一種を1〜300重量部
と、他の液晶性化合物一種以上を少なくとも含有する強
誘電性液晶組成物を100重量部含有することを特徴とす
る強誘電性カイラルスメクチック液晶組成物ならびに該
液晶組成物を一対の電極基板間に配置してなる液晶素子
を提供するものである。
X 1 and X 2 are single bonds, —O—, Indicates one of 1) to 300 parts by weight of at least one compound represented by the following general formula (II) (However, R 3 and R 4 are a C 1 to C 18 linear or branched alkyl group X 3 and X 4 are a single bond, Z 1 -CH 2 O-, -OCH 2- , single bond However, At least one of It is. 1) to 300 parts by weight of at least one compound represented by the following general formula (III) (However, R 5 is a C 1 to C 18 linear or branched alkyl group X 5 which may be substituted by an alkoxy group, X 5 is a single bond, —O—, Z 2 is a single bond, m is 1 to 300 parts by weight of at least one of the compounds represented by 1) and 100 parts by weight of a ferroelectric liquid crystal composition containing at least one other liquid crystal compound. An object of the present invention is to provide a dielectric chiral smectic liquid crystal composition and a liquid crystal element in which the liquid crystal composition is disposed between a pair of electrode substrates.

前述の一般式(I)で示される化合物において好まし
い化合物例としては、下記する(I−a)〜(I−p)
式で表わされる化合物が挙げられる。
Preferred examples of the compound represented by the above general formula (I) include the following (Ia) to (Ip)
Compounds represented by the formula are mentioned.

又、さらに上述の(I−a)〜(I−p)式における
R1,R2の好ましい例としては(I−i),(I−ii),
(I−iv),(I−v)を挙げることができる。
Further, in the above equations (Ia) to (Ip),
Preferred examples of R 1 and R 2 include (I-i), (I-ii),
(I-iv) and (I-v).

(I−i) R1がn−アルキル基であり R2がn−アルキル基である (I−ii) R1がn−アルキル基 (光学活性もしくはラセミ体) (I−iv) (光学活性もしくはラセミ体) R2がn−アルキル基 (I−v) (光学活性もしくはラセミ体) (光学活性もしくはラセミ体) R6,R8は直鎖状もしくは分岐状のアルキル基を示す。(I-i) R 1 is an n- alkyl group R 2 is an n- alkyl group (I-ii) R 1 is n- alkyl group (Optically active or racemic) (I-iv) (Optically active or racemic) R 2 is an n-alkyl group (Iv) (Optically active or racemic) (Optically active or racemic) R 6 and R 8 each represent a linear or branched alkyl group.

p,sは0〜7である。 p and s are 0-7.

又、前述の一般式(II)で示される化合物のうち好ま
しい化合物例としては、下記する(II−a)〜(II−
q)式で示される化合物を挙げることができる。
Preferred examples of the compound represented by the general formula (II) include the following (II-a) to (II-
q) The compound represented by the formula can be mentioned.

又、さらに上述の(II−a)〜(II−q)式における
X3,X4の好ましい例として(II−i),(II−v),(I
I−vii)を挙げることができる。
Further, in the above formulas (II-a) to (II-q),
Preferred examples of X 3 and X 4 are (II-i), (II-v) and (I-
I-vii).

又、さらに上述の(II−a)〜(II−q)式における
R3,R4の好ましい例としては直鎖状のアルキル基であ
る。
Further, in the above formulas (II-a) to (II-q),
Preferred examples of R 3 and R 4 are linear alkyl groups.

又、前述の一般式(III)で示される化合物のうち好
ましい化合物例としては、下記する(III−a),(III
−b)式で示される化合物を挙げることができる。
Preferred examples of the compound represented by the above general formula (III) include the following (III-a) and (III
-B) a compound represented by the formula:

前記一般式(I)で表わされる液晶性化合物の具体的
な構造式の例を以下に示す。
Examples of specific structural formulas of the liquid crystalline compound represented by the general formula (I) are shown below.

前記一般式(I)で示される化合物は、例えば、特開
昭61−93170,特開昭61−24576,特開昭61−129170,特開
昭61−200972,特開昭61−200973,特開昭61−215372,特
開昭61−291574,東独特許95892(1973年)などに記載の
合成方法により得られる。例えば下記に示すような合成
経路で得ることができる。
The compounds represented by the general formula (I) are described, for example, in JP-A-61-93170, JP-A-61-24576, JP-A-61-129170, JP-A-61-200972, JP-A-61-200973, It can be obtained by a synthesis method described in, for example, Japanese Patent Laid-Open No. For example, it can be obtained by the following synthetic route.

前記一般式(II)で示される化合物の具体的な構造式
の例を以下に示す。
Examples of specific structural formulas of the compound represented by the general formula (II) are shown below.

前記一般式(II)で示される化合物の代表的な合成例
を以下に示す。
Representative synthetic examples of the compound represented by the general formula (II) are shown below.

合成例(化合物No.2−69の合成) (I) トランス−4−n−プロピルシクロヘキサンカ
ルボン酸クロライド10g(53.6mmol)をエタノール30ml
にとかし、これに少量のトリエチルアミンを加え室温で
10時間攪拌した。反応混合物を氷水100mlに注入し、6N
塩酸水溶液を加え酸性側とした後、イソプロピルエーテ
ルにより抽出した。有機層を洗液が中性となるまで水洗
を繰り返した後、硫酸マグネシウムにより乾燥した。溶
媒留去後、シリカゲルカラムクロマトグラフィーにより
精製し、トランス−4−n−プロピルシクロヘキサンカ
ルボン酸エチルエステル9.9gを得た。
Synthesis Example (Synthesis of Compound No. 2-69) (I) Trans-4-n-propylcyclohexanecarboxylic acid chloride 10 g (53.6 mmol) in ethanol 30 ml
And add a small amount of triethylamine to it at room temperature.
Stir for 10 hours. Pour the reaction mixture into 100 ml of ice water and add 6N
An aqueous solution of hydrochloric acid was added to make the solution acidic, followed by extraction with isopropyl ether. The organic layer was repeatedly washed with water until the washing liquid became neutral, and then dried over magnesium sulfate. After evaporating the solvent, the residue was purified by silica gel column chromatography to obtain 9.9 g of trans-4-n-propylcyclohexanecarboxylic acid ethyl ester.

(II) 水素化アルミニウムリチウム0.73g(19.1mmo
l)を乾燥エーテル30mlに添加し、1時間加熱還流し
た。氷水浴中で10℃程度まで冷却した後、乾燥エーテル
30mlに溶かしたトランス−4−n−プロピルシクロヘキ
サンカルボン酸エチルエステル5g(25.5mmol)を徐々に
滴下した。滴下終了後、室温で1時間攪拌し、さらに1
時間加熱還流させた。これを酢酸エチル,6N塩酸水溶液
で処理した後、氷水200mlに注入した。
(II) 0.73 g of lithium aluminum hydride (19.1 mmo
l) was added to 30 ml of dry ether and heated to reflux for 1 hour. After cooling to about 10 ° C in an ice water bath, dry ether
5 g (25.5 mmol) of trans-4-n-propylcyclohexanecarboxylic acid ethyl ester dissolved in 30 ml was gradually added dropwise. After the addition, the mixture was stirred at room temperature for 1 hour,
Heated to reflux for hours. This was treated with ethyl acetate and a 6N aqueous hydrochloric acid solution, and then poured into 200 ml of ice water.

イソプロピルエーテルにより抽出した後、有機相を
水,水酸化ナトリウム水溶液,水で順次洗浄し、硫酸マ
グネシウムにより乾燥した。溶媒留去後、シリカゲルカ
ラムクロマトグラフィーにより精製し、トランス−4−
n−プロピルシクロヘキシルメタノール3.5gを得た。
After extraction with isopropyl ether, the organic phase was washed successively with water, an aqueous sodium hydroxide solution and water, and dried over magnesium sulfate. After evaporating the solvent, the residue was purified by silica gel column chromatography, and trans-4-
3.5 g of n-propylcyclohexylmethanol was obtained.

(III) トランス−4−n−プロピルシクロヘキシル
メタノール3.4g(22.4mmol)をピリジン20mlに溶かし
た。これにピリジン20mlに溶かしたp−トルエンスルホ
ン酸クロライド5.3gを氷水浴中で5℃以下に冷却しなが
ら滴下した。室温で10時間攪拌した後、氷水200mlに注
入した。6N塩酸水溶液により酸性側とした後、イソプロ
ピルエーテルで抽出した。有機相を洗液が中性となるま
で水洗を繰り返した後、硫酸マグネシウムにより乾燥し
た。これを溶媒留去して、トランス−4−n−プロピル
シクロヘキシルメチル−p−トルエンスルホネートを得
た。
(III) 3.4 g (22.4 mmol) of trans-4-n-propylcyclohexylmethanol was dissolved in 20 ml of pyridine. To this, 5.3 g of p-toluenesulfonic acid chloride dissolved in 20 ml of pyridine was added dropwise while cooling to 5 ° C. or lower in an ice water bath. After stirring at room temperature for 10 hours, the mixture was poured into 200 ml of ice water. After acidification with 6N aqueous hydrochloric acid, extraction with isopropyl ether was performed. The organic phase was repeatedly washed with water until the washing became neutral, and then dried over magnesium sulfate. The solvent was distilled off to obtain trans-4-n-propylcyclohexylmethyl-p-toluenesulfonate.

(IV) ジメチルホルムアミド40mlに5−デシル−2−
(4′−ヒドロキシフェニル)ピリミジン6.3g(20.2mm
ol)を溶かした。これに85%水酸化カリウム1.5gを加
え、100℃で1時間攪拌した。これにトランス−4−n
−プロピルシクロヘキシルメチル−p−トルエンスルホ
ネート6.9gを加え、さらに100℃で4時間攪拌した。反
応終了後、これを氷水200mlに注入し、ベンゼンで抽出
した。有機相を水洗した後、硫酸マグネシウムにより乾
燥した。溶媒留去後、シリカゲルカラムクロマトグラフ
ィーにより精製し、これをさらにエタノール/酢酸エチ
ル混合溶媒から再結晶して、前記例示化合物No.2−69を
得た。
(IV) 5-decyl-2-in 40 ml of dimethylformamide
6.3 g of (4'-hydroxyphenyl) pyrimidine (20.2 mm
ol). 1.5 g of 85% potassium hydroxide was added thereto and stirred at 100 ° C. for 1 hour. The transformer-4-n
6.9 g of -propylcyclohexylmethyl-p-toluenesulfonate was added, and the mixture was further stirred at 100 ° C for 4 hours. After the completion of the reaction, this was poured into 200 ml of ice water and extracted with benzene. The organic phase was washed with water and dried over magnesium sulfate. After evaporating the solvent, the residue was purified by silica gel column chromatography, and further recrystallized from a mixed solvent of ethanol / ethyl acetate to obtain Exemplified Compound No. 2-69.

IR(cm-1) 2920,2840,1608,1584,1428,1258,1164,800 前記一般式(III)で示される化合物の具体的な構造
式の例を以下に示す。
IR (cm -1 ) 2920,2840,1608,1584,1428,1258,1164,800 Examples of specific structural formulas of the compound represented by the general formula (III) are shown below.

一般式(III)で示される化合物は下記に示すような
合成経路A,B,Cで得ることができる。
The compound represented by the general formula (III) can be obtained by the following synthetic routes A, B and C.

一般式(III)で示される化合物の代表的な合成例を
以下に示す。
A typical synthesis example of the compound represented by the general formula (III) is shown below.

合成例1.(化合物No.3−17の合成) p−2−フルオロオクチルオキシフェノール1.00g
(4.16mM)をピリジン10ml、トルエン5mlに溶解させ、
トランス−4−n−ペンチルシクロヘキサンカルボン酸
クロライド1.30g(6.00mM)をトルエン5mlに溶解した溶
液を、5℃以下、20〜40分間で滴下した。滴下後、室温
で一晩攪拌し、白色沈殿を得た。
Synthesis Example 1. (Synthesis of Compound No. 3-17) 1.00 g of p-2-fluorooctyloxyphenol
(4.16 mM) was dissolved in 10 ml of pyridine and 5 ml of toluene,
A solution prepared by dissolving 1.30 g (6.00 mM) of trans-4-n-pentylcyclohexanecarboxylic acid chloride in 5 ml of toluene was added dropwise at 5 ° C. or lower for 20 to 40 minutes. After the dropwise addition, the mixture was stirred at room temperature overnight to obtain a white precipitate.

反応終了後、反応物をベンゼンで抽出し、さらにこの
ベンゼン層を蒸留水で洗ったのち、ベンゼン層を硫酸マ
グネシウムで乾燥し、ベンゼンを留去した。さらにシリ
カゲルカラムクロマトグラフィーを用いて精製し、さら
にエタノール/メタノールで再結晶して、トランス−4
−n−ペンチルシクロヘキサンカルボン酸−p−2−フ
ルオロオクチルオキシフェニルエステル1.20g(2.85m
M)を得た。(収率68.6%) NMRデータ(ppm) 0.83〜2.83ppm(34H,m) 4.00〜4.50ppm(2H,q) 7.11ppm (4H,s) IRデータ(cm-1) 3456,2928,2852,1742,1508,1470,1248,1200,1166,113
2,854。
After completion of the reaction, the reaction product was extracted with benzene, and the benzene layer was further washed with distilled water. The benzene layer was dried over magnesium sulfate, and benzene was distilled off. The product was further purified by silica gel column chromatography, and further recrystallized from ethanol / methanol to obtain trans-4.
1.20 g of n-pentylcyclohexanecarboxylic acid-p-2-fluorooctyloxyphenyl ester (2.85 m
M). (Yield 68.6%) NMR data (ppm) 0.83 to 2.83 ppm (34H, m) 4.00 to 4.50 ppm (2H, q) 7.11 ppm (4H, s) IR data (cm -1 ) 3456,2928,2852,1742 , 1508,1470,1248,1200,1166,113
2,854.

合成例2.(化合物No.3−29の合成) 十分に窒素置換された容器に、(−)−2−フルオロ
ヘプタノール0.40g(3.0mmol)と乾燥ピリジン1.00g(1
3mmol)を入れ氷冷下で30分間攪拌した。その溶液にp
−トルエンスルホン酸クロリド0.69g(3.6mmol)を加
え、そのまま5時間攪拌を続けた。反応終了後、1NHC 1
10mlを加え、塩化メチレン10mlで2回抽出を行った後、
その抽出液を蒸留水10mlで1回洗浄した。得られた塩化
メチレン溶液に無水硫酸ナトリウムを適宜加えて乾燥し
たのち、溶媒を留去し(+)−2−フルオロヘプチルp
−トルエンスルホン酸エステル0.59g(2.0mmol)を得
た。
Synthesis Example 2 (Synthesis of Compound No. 3-29) 0.40 g (3.0 mmol) of (−)-2-fluoroheptanol and 1.00 g of dry pyridine (1
3 mmol) and stirred for 30 minutes under ice cooling. P in the solution
0.69 g (3.6 mmol) of toluenesulfonic acid chloride was added, and stirring was continued for 5 hours. After the reaction, 1 NHC 1
After adding 10 ml and extracting twice with 10 ml of methylene chloride,
The extract was washed once with 10 ml of distilled water. The obtained methylene chloride solution is dried by appropriately adding anhydrous sodium sulfate, and then the solvent is distilled off to obtain (+)-2-fluoroheptyl p.
0.59 g (2.0 mmol) of toluenesulfonic acid ester were obtained.

収率は66%である。生成物の比旋光度およびIRデータ
は下記の通りである。
The yield is 66%. The specific rotation and IR data of the product are as follows.

比旋光度▲[α]26.4 D▼+2.59゜(c=1,CHCl3)。Specific rotation ▲ [α] 26.4 D ▼ + 2.59 ゜ (c = 1, CHCl 3 ).

比旋光度▲[α]23.6 435▼+9.58゜(c=1,CHCl3)。Specific rotation ▲ [α] 23.6 435 + +9.58 ゜ (c = 1, CHCl 3 ).

IR(cm-1): 2900,2850,1800,1450,1350,1170,1090,980,810,660,5
50。
IR (cm -1 ): 2900,2850,1800,1450,1350,1170,1090,980,810,660,5
50.

上記のようにして得られた(+)−2−フルオロヘプ
チルp−トルエンスルホン酸エステル0.43g(1.5mmol)
と5−オクチル−2−(4−ヒドロキシフェニル)ピリ
ミジン0.28g(1.0mmol)に1−ブタノール0.2mlを加え
よく攪拌した。その溶液に、あらかじめ1−ブタノール
1.0mlに水酸化ナトリウム0.048g(1.2mmol)を溶解させ
て調製しておいたアルカリ溶液を速やかに注ぎ5時間
半、加熱還流した。反応終了後蒸留水10mlを加え、ベン
ゼン10mlおよび5mlでそれぞれ1回づつ抽出を行なった
後、その抽出液に無水硫酸ナトリウムを適宜加えて乾燥
した。乾燥後、溶媒を留去し、シリカゲルカラム(クロ
ロホルム)により目的物である(+)−5−オクチル−
2−[4−(2−フルオロヘプチルオキシ)フェニル]
ピリミジン0.17g(0.43mmol)を得た。
0.43 g (1.5 mmol) of (+)-2-fluoroheptyl p-toluenesulfonic acid ester obtained as described above.
0.2 ml of 1-butanol was added to 0.28 g (1.0 mmol) of 5-octyl-2- (4-hydroxyphenyl) pyrimidine and stirred well. Add 1-butanol to the solution beforehand.
An alkaline solution prepared by dissolving 0.048 g (1.2 mmol) of sodium hydroxide in 1.0 ml was quickly poured, and the mixture was heated under reflux for 5 半 hours. After completion of the reaction, 10 ml of distilled water was added, extraction was performed once each with 10 ml and 5 ml of benzene, and anhydrous sodium sulfate was appropriately added to the extract, followed by drying. After drying, the solvent was distilled off, and the desired product (+)-5-octyl- was purified using a silica gel column (chloroform).
2- [4- (2-fluoroheptyloxy) phenyl]
0.17 g (0.43 mmol) of pyrimidine was obtained.

収率は43%であり、以下のような比旋光度およびIRデ
ータが得られた。
The yield was 43%, and the following specific rotation and IR data were obtained.

比旋光度▲[α]25.6 D▼+0.44゜(c=1,CHCl3)。Specific rotation ▲ [α] 25.6 D ▼ + 0.44 ゜ (c = 1, CHCl 3 ).

比旋光度▲[α]22.4 435▼+4.19゜(c=1,CHCl3)。Specific rotation ▲ [α] 22.4 435 ▼ + 4.19 ゜ (c = 1, CHCl 3 ).

IR(cm-1): 2900,2850,1600,1580,1420,1250,1160,800,720,650,5
50。
IR (cm -1 ): 2900,2850,1600,1580,1420,1250,1160,800,720,650,5
50.

本発明の液晶組成物、前記一般式(I)で示される化
合物の少なくとも1種と、前記一般式(II)で示される
化合物の少なくとも1種と、及び一般式(III)で示さ
れる化合物の少なくとも1種と、さらに他の液晶性化合
物1種以上を少なくとも含有する強誘電性液晶組成物と
を、特定の割合で混合することにより得ることができ
る。又、本発明による液晶組成物は強誘電性カイラルス
メクチック液晶組成物である。
The liquid crystal composition of the present invention comprises at least one compound represented by the general formula (I), at least one compound represented by the general formula (II), and a compound represented by the general formula (III). It can be obtained by mixing at least one type and a ferroelectric liquid crystal composition containing at least one or more other liquid crystal compounds at a specific ratio. The liquid crystal composition according to the present invention is a ferroelectric chiral smectic liquid crystal composition.

本発明で用いる他の液晶性化合物の具体的例を下記に
あげる。
Specific examples of other liquid crystal compounds used in the present invention are shown below.

本発明の一般式(I)で示される液晶性化合物、一般
式(II)で示される液晶性化合物、および一般式(II
I)で示される液晶性化合物それぞれと、他の液晶性化
合物一種以上を少なくとも含有する強誘電性液晶組成物
(強誘電性液晶材料と略す)との配合割合は、強誘電性
液晶材料100重量部当り、本発明一般式(I),一般式
(II),及び一般式(III)で示される液晶性化合物そ
れぞれ1〜300重量部、より好ましくは、2〜100重量部
とすることが好ましい。
The liquid crystal compound represented by the general formula (I), the liquid crystal compound represented by the general formula (II), and the liquid crystal compound represented by the general formula (II)
The compounding ratio of each of the liquid crystal compounds represented by I) and the ferroelectric liquid crystal composition containing at least one or more other liquid crystal compounds (abbreviated as ferroelectric liquid crystal material) is 100% by weight of the ferroelectric liquid crystal material. The amount of the liquid crystal compound represented by formulas (I), (II) and (III) of the present invention is preferably 1 to 300 parts by weight, more preferably 2 to 100 parts by weight. .

また、本発明の一般式(I),一般式(II)及び一般
式(III)で示される液晶性化合物全てを2種以上用い
る場合も強誘電性液晶材料との配合割合は、前述した強
誘電性液晶材料100重量部当り、本発明一般式(I),
一般式(II)及び一般式(III)で示される液晶性化合
物の全ての2種以上の混合物を、1〜300重量部より好
ましくは、2〜100重量部とすることがのぞましい。
When two or more of the liquid crystal compounds represented by the general formulas (I), (II) and (III) of the present invention are used, the compounding ratio with the ferroelectric liquid crystal material is the same as that described above. For 100 parts by weight of the dielectric liquid crystal material, the general formula (I) of the present invention,
It is desirable that the mixture of all two or more of the liquid crystal compounds represented by the general formulas (II) and (III) be 1 to 300 parts by weight, more preferably 2 to 100 parts by weight.

第1図は強誘電性液晶素子の構成の説明のために、本
発明の強誘電性液晶層を有する液晶素子の1例の断面概
略図である。
FIG. 1 is a schematic cross-sectional view of one example of a liquid crystal device having a ferroelectric liquid crystal layer according to the present invention for explaining the configuration of a ferroelectric liquid crystal device.

第1図において符号1は強誘電性液晶層,2はガラス基
板,3は透明電極,4は絶縁性配向制御層,5はスペーサー,6
はリード線,7は電源,8は偏光板,9は光源を示している。
In FIG. 1, reference numeral 1 denotes a ferroelectric liquid crystal layer, 2 denotes a glass substrate, 3 denotes a transparent electrode, 4 denotes an insulating alignment control layer, 5 denotes a spacer, 6
Indicates a lead wire, 7 indicates a power supply, 8 indicates a polarizing plate, and 9 indicates a light source.

2枚のガラス基板2には、それぞれIn2O3,SnO2あるい
はITO(Indium−Tin Oxide)等の薄膜から成る透明電極
が被覆されている。その上にポリイミドの様な高分子の
薄膜をガーゼやアセテート植毛布等でラビングして、液
晶をラビング方向に並べる絶縁性配向制御層が形成され
ている。また絶縁物質として例えばシリコン窒化物,水
素を含有するシリコン炭化物,シリコン酸化物,硼素窒
化物,水素を含有する硼素窒化物,セリウム酸化物,ア
ルミニウム酸化物,ジルコニウム酸化物,チタン酸化物
やフッ化マグネシウムなどの無機物質絶縁層を形成し、
その上にポリビニルアルコール,ポイミド,ポリアミド
イミド,ポリエステルイミド,ポリパラキシレン,ポリ
エステル,ポリカーボネート,ポリビニルアセタール,
ポリ塩化ビニル,ポリ酢酸ビニル,ポリアミド,ポリス
チレン,セルロース樹脂,メラミン樹脂,ユリヤ樹脂,
アクリル樹脂やフォトレジスト樹脂などの有機絶縁物質
を配向制御層として、2層で絶縁性配向制御層が形成さ
れていてもよく、また無機物質絶縁性配向制御層あるい
は有機物質絶縁性配向制御層単層であっても良い。この
絶縁性配向制御層が無機系ならば蒸着法などで形成で
き、有機系ならば有機絶縁物質を溶解させた溶液、また
はその前駆体溶液(溶剤に0.1〜20重量%,好ましくは
0.2〜10重量%)を用いて、スピンナー塗布法,浸漬塗
布法,スクリーン印刷法,スプレー塗布法,ロール塗布
法等で塗布し、所定の硬化条件下(例えば加熱下)で硬
化させ形成させることができる。
The two glass substrates 2 are each coated with a transparent electrode made of a thin film such as In 2 O 3 , SnO 2 or ITO (Indium-Tin Oxide). On top of that, a thin film of a polymer such as polyimide is rubbed with a gauze, an acetate flocking cloth or the like to form an insulating alignment control layer for arranging liquid crystals in the rubbing direction. Examples of the insulating material include silicon nitride, silicon carbide containing hydrogen, silicon oxide, boron nitride, boron nitride containing hydrogen, cerium oxide, aluminum oxide, zirconium oxide, titanium oxide, and fluoride. Form an inorganic insulating layer such as magnesium,
Polyvinyl alcohol, poimide, polyamide imide, polyester imide, polyparaxylene, polyester, polycarbonate, polyvinyl acetal,
Polyvinyl chloride, polyvinyl acetate, polyamide, polystyrene, cellulose resin, melamine resin, urea resin,
An organic insulating substance such as an acrylic resin or a photoresist resin may be used as an orientation control layer, and an insulating orientation control layer may be formed as two layers. Alternatively, an inorganic insulating orientation control layer or an organic substance insulating orientation control layer may be used. It may be a layer. If this insulating orientation control layer is inorganic, it can be formed by a vapor deposition method or the like. If it is organic, a solution in which an organic insulating material is dissolved or a precursor solution thereof (0.1 to 20% by weight in a solvent, preferably
(0.2 to 10% by weight) by spinner coating method, dip coating method, screen printing method, spray coating method, roll coating method, etc., and cured under predetermined curing conditions (for example, under heating) to form Can be.

絶縁性配向制御層の層厚は通常30Å〜1μm、好まし
くは30Å〜3000Å、さらに好ましくは50Å〜1000Åが適
している。
The thickness of the insulating orientation control layer is usually 30 to 1 μm, preferably 30 to 3000, and more preferably 50 to 1000.

この2枚のガラス基板2はスペーサー5によって任意
の間隔に保たれている。例えば所定の直径を持つシリカ
ビーズ、アルミナビーズをスペーサーとしてガラス基板
2枚で挟持し、周囲をシール材、例えばエポキシ系接着
材を用いて密封する方法がある。その他スペーサーとし
て高分子フィルムやガラスファイバーを使用しても良
い。この2枚のガラス基板の間に強誘電性液晶が封入さ
れている。
The two glass substrates 2 are kept at an arbitrary interval by a spacer 5. For example, there is a method in which silica beads or alumina beads having a predetermined diameter are sandwiched between two glass substrates as spacers, and the periphery is sealed with a sealing material, for example, an epoxy-based adhesive. Alternatively, a polymer film or glass fiber may be used as the spacer. A ferroelectric liquid crystal is sealed between the two glass substrates.

強誘電性液晶が封入された強誘電性液晶層は、一般に
は0.5〜20μm、好ましくは1〜5μmである。
The thickness of the ferroelectric liquid crystal layer in which the ferroelectric liquid crystal is sealed is generally 0.5 to 20 μm, preferably 1 to 5 μm.

又、この強誘電性液晶は、室温を含む広い温度域(特
に低温側)でSmC相(カイラルスメクチック相)を有
し、高速応答性を有することが望ましい。さらに応答速
度の温度依存性が小さいこと、及び駆動電圧マージンが
広いことが望まれる。
The ferroelectric liquid crystal preferably has an SmC * phase (chiral smectic phase) in a wide temperature range including room temperature (particularly at a low temperature side), and desirably has a high-speed response. Further, it is desired that the temperature dependence of the response speed is small and that the drive voltage margin is wide.

又、特に素子とした場合に、良好な均一配向性を示し
モノドメイン状態を得るには、その強誘電性液晶は、等
相方からCh相(コレステリック相)−SmA相(スメクチ
ック相)−SmC相(カイラルスメクチックC相)とい
う相転移系列を有していることが望ましい。
Further, in order to obtain a good uniform orientation and obtain a monodomain state, particularly in the case of a device, the ferroelectric liquid crystal must have a phase of Ch (cholesteric) -SmA (smectic) -SmC * It is desirable to have a phase transition series called a phase (chiral smectic C phase).

透明電極3からはリード線によって外部電源7に接続
されている。
The transparent electrode 3 is connected to an external power supply 7 by a lead wire.

またガラス基板2の外側には偏光板8が貼り合わせて
ある。
A polarizing plate 8 is attached to the outside of the glass substrate 2.

第1図は透過型なので光源9を備えている。 Since FIG. 1 is a transmission type, a light source 9 is provided.

第2図は強誘電性液晶素子の動作説明のために、セル
の例を模式的に描いたものである。21aと21bはそれぞれ
In2O3,SnO2あるいはITO(Indium−Tin Oxide)等の薄膜
からなる透明電極で被覆された基板(ガラス板)であ
り、その間に液晶分子層22がガラス面に垂直になるよう
配向したSmC層又はSmH層の液晶が封入されている。
太線で示した線23が液晶分子を表わしており、この液晶
分子23はその分子に直交した方向に双極子モーメント
(P)24を有している。基板21aと21b上の電極間に一
定の閾値以上の電圧を印加すると、液晶分子23のらせん
構造がほどけ、双極子モーメント(P)24がすべて電
界方向に向くよう、液晶分子23は配向方向を変えること
ができる。液晶分子23は細長い形状を有しており、その
長軸方向と短軸方向で屈折率異方性を示し、従って例え
ばガラス面の上下に互いにクロスニコルの偏光子を置け
ば、電圧印加極性によって光学特性が変わる液晶光学変
調素子となることは、容易に理解される。
FIG. 2 schematically illustrates an example of a cell for explaining the operation of the ferroelectric liquid crystal element. 21a and 21b are respectively
A substrate (glass plate) coated with a transparent electrode made of a thin film such as In 2 O 3 , SnO 2 or ITO (Indium-Tin Oxide), between which the liquid crystal molecule layer 22 was oriented so as to be perpendicular to the glass surface Liquid crystal of SmC * layer or SmH * layer is sealed.
A bold line 23 represents a liquid crystal molecule, and the liquid crystal molecule 23 has a dipole moment ( P⊥ ) 24 in a direction orthogonal to the molecule. When a voltage higher than a certain threshold is applied between the electrodes on the substrates 21a and 21b, the helical structure of the liquid crystal molecules 23 is released, and the liquid crystal molecules 23 are oriented so that all dipole moments (P ) 24 are directed in the direction of the electric field. Can be changed. The liquid crystal molecules 23 have an elongated shape and exhibit refractive index anisotropy in the major axis direction and the minor axis direction. Therefore, for example, if crossed Nicol polarizers are placed above and below the glass surface, depending on the polarity of the applied voltage, It can be easily understood that the liquid crystal optical modulator has a changed optical characteristic.

本発明の光学変調素子で好ましく用いられる液晶セル
は、その厚さを充分に薄く(例えば10μ以下)すること
ができる。このように液晶層が薄くなるにしたがい、第
3図に示すように電界を印加していない状態でも液晶分
子のらせん構造がほどけ、その双極子モーメントPaまた
はPbは上向き(34a)又は下向き(34b)のどちらかの状
態をとる。このようなセルに、第3図に示す如く一定の
閾値以上の極性の異る電界Ea又はEbを電圧印加手段31a
と31bにより付与すると、双極子モーメントは電界Ea又
はEbの電界ベクトルに対応して上向き34a又は下向き34b
と向きを変え、それに応じて液晶分子は、第1の安定状
態33aかあるいは第2の安定状態33bの何れか1方に配向
する。
The thickness of the liquid crystal cell preferably used in the optical modulation element of the present invention can be made sufficiently thin (for example, 10 μm or less). As shown in FIG. 3, as the liquid crystal layer becomes thinner, the helical structure of the liquid crystal molecules is released even when no electric field is applied, and the dipole moment Pa or Pb thereof is directed upward (34a) or downward (34b). ). As shown in FIG. 3, an electric field Ea or Eb having a different polarity over a certain threshold is applied to such a cell as shown in FIG.
And 31b, the dipole moment is upward 34a or downward 34b corresponding to the electric field vector of the electric field Ea or Eb.
Accordingly, the liquid crystal molecules are aligned in one of the first stable state 33a and the second stable state 33b.

このような強誘電性を光学変調素子として用いること
の利点は先にも述べたが2つある。
As described above, there are two advantages of using such ferroelectricity as the optical modulation element.

その第1は、応答速度が極めて速いことであり、第2
は液晶分子の配向が双安定性を有することである。第2
の点を例えば第3図によって更に説明すると、電界Eaを
印加すると液晶分子は第1の安定状態33aに配向する
が、この状態は電界を切っても安定である。又、逆向き
の電界Ebを印加すると、液晶分子は第2の安定状態33b
に配向してその分子の向きを変えるが、やはり電界を切
ってもこの状態に留っている。又与える電界Eaあるいは
Ebが一定の閾値を越えない限り、それぞれ前の配向状態
にやはり維持されている。
The first is that the response speed is extremely fast.
Means that the orientation of liquid crystal molecules has bistability. Second
If the electric field Ea is applied, the liquid crystal molecules are oriented to the first stable state 33a. This state is stable even when the electric field is turned off. When an electric field Eb in the opposite direction is applied, the liquid crystal molecules are brought into the second stable state 33b.
Although the orientation of the molecule is changed, the orientation of the molecule is changed, but the state remains even when the electric field is cut off. And the applied electric field Ea or
As long as Eb does not exceed a certain threshold, each is still maintained in the previous alignment state.

以下実施例により本発明について更に詳細に説明する
が、本発明はこれらの実施例に限定されるものではな
い。
Hereinafter, the present invention will be described in more detail by way of examples, but the present invention is not limited to these examples.

実施例1 下記例示化合物を下記の重量部で混合し、液晶組成物
1−Aを作成した。
Example 1 The following exemplified compounds were mixed in the following parts by weight to prepare a liquid crystal composition 1-A.

更に、この液晶組成物1−Aに対して、以下に示す例
示化合物を、各々以下に示す重量部で混合し、液晶組成
物1−Bを作成した。
Further, the liquid crystal composition 1-A was mixed with the exemplified compounds shown below in parts by weight shown below to prepare a liquid crystal composition 1-B.

次に、この液晶組成物1−Bを以下の手順で作成した
セルを用いて、素子特性等を観察した。
Next, device characteristics and the like were observed using a cell prepared from the liquid crystal composition 1-B according to the following procedure.

2枚の1.1mm厚のガラス板を用意して、それぞれのガ
ラス板上にITO膜を形成し、電圧印加電極を作成し、さ
らにこの上にSiO2を蒸着させ絶縁層とした。
Two glass plates having a thickness of 1.1 mm were prepared, an ITO film was formed on each of the glass plates, a voltage application electrode was formed, and SiO 2 was further deposited thereon to form an insulating layer.

この基板上にポリイミド樹脂前駆体[東レ(株)SP−
710]1.0%ジメチルアセトアミド溶液を回転数2500rpm.
のスピンナーで15秒間塗布した。成膜後、60分間、300
℃加熱縮合焼成処理を施した。この時の塗膜の膜厚は約
200Åであった。
A polyimide resin precursor [Toray Co., Ltd. SP-
710] 1.0% dimethylacetamide solution at 2500 rpm.
For 15 seconds. After film formation, 300 minutes for 60 minutes
A heat condensation calcination treatment was performed at ℃. The film thickness at this time is about
It was 200Å.

この焼成後の被膜には、アセテート植毛布によるラビ
ング処理がなされ、その後イソプロピルアルコール液で
洗浄し、平均粒径1.5μmのシリカビーズを一方のガラ
ス板上に散布した後、それぞれのラビング処理軸が互い
に平行になる様にし、接着シール剤[リクソンボンド
(チッソ(株)]を用いてガラス板を貼り合わせ、60分
間,100℃にて加熱乾燥し、セルを作成した。このセルの
セル厚をベレック位相板によって測定したところ約1.5
μmであった。
The baked film is subjected to a rubbing treatment with an acetate flocking cloth, then washed with an isopropyl alcohol solution, and silica beads having an average particle size of 1.5 μm are sprayed on one of the glass plates. A glass plate was adhered using an adhesive sealant [Rixon Bond (Chisso Corporation)], and dried by heating at 100 ° C. for 60 minutes to form a cell. Approximately 1.5 as measured by Berek phase plate
μm.

このセルに上述の液晶組成物1−Bを等方性液体状態
で注入し、等方相から20℃/hで25℃まで徐冷することに
より、強誘電性液晶素子を作成した。この強誘電性液晶
素子を用いて、ピーク・トゥ・ピーク電圧Vpp=25Vの電
圧印加により、直交ニコル下での光学的な応答(透過光
量変化0〜90%)を検知して応答速度(以後、光学応答
速度という)を測定した。その結果を次に示す。
The liquid crystal composition 1-B described above was injected into this cell in an isotropic liquid state, and the cell was gradually cooled from the isotropic phase to 25 ° C. at a rate of 20 ° C./h, thereby producing a ferroelectric liquid crystal element. Using this ferroelectric liquid crystal element, by applying a peak-to-peak voltage V pp = 25 V, an optical response (a change in transmitted light amount of 0 to 90%) under crossed Nicols is detected, and the response speed ( Hereinafter, the optical response speed) was measured. The results are shown below.

光学応答速度 10℃ 25℃ 40℃ 741μsec 263μsec 109μsec また25℃における、この駆動時のコントラストは、13
であり、明瞭なスイッチング動作が観察され、電圧印加
を止めた際の双安定性も良好であった。
Optical response speed 10 ° C 25 ° C 40 ° C 741μsec 263μsec 109μsec At 25 ° C, the contrast during driving is 13
A clear switching operation was observed, and the bistability when the voltage application was stopped was also good.

比較例1 実施例1で使用した液晶組成物1−Bに代えて、例示
化合物No.1−8,1−136を混合せずに1−Aに対して、例
示化合物No.2−10,2−70,3−55のみを実施例1と同じ重
量部で混合した液晶組成物1−C,および例示化合物No.2
−10,2−70を混合せずに1−Aに対して、例示化合物N
o.1−8,1−136,3−55のみを実施例1と同じ重量部で混
合した液晶組成物1−D,さらに例示化合物No.3−55を混
合せずに1−Aに対して、例示化合物No.1−8,1−136,2
−10,2−70のみを実施例1と同じ重量部で混合した液晶
組成物1−Eを作成した。
Comparative Example 1 In place of the liquid crystal composition 1-B used in Example 1, Exemplified Compound No. 2-10, Exemplified Compound No. 2-10, Liquid crystal composition 1-C in which only 2-70 and 3-55 were mixed in the same parts by weight as in Example 1, and Exemplified Compound No. 2
Exemplified Compound N to 1-A without mixing -10,2-70
o. Liquid crystal composition 1-D in which only 1-8, 1-136, and 3-55 were mixed in the same parts by weight as in Example 1, and 1-A without mixing with Exemplified Compound No. 3-55 Thus, Exemplified Compound No. 1-8, 1-136,2
A liquid crystal composition 1-E was prepared by mixing only -10 and 2-70 in the same parts by weight as in Example 1.

これらの液晶組成物1−C,1−D,1−E及び1−Aを用
いた以外は全く実施例1と同様の方法でそれぞれ強誘電
性液晶素子を作成し、実施例1と同様の方法で光学応答
速度を測定した。その結果を次に示す。
Except for using these liquid crystal compositions 1-C, 1-D, 1-E and 1-A, ferroelectric liquid crystal elements were prepared in exactly the same manner as in Example 1, respectively. The optical response speed was measured by the method. The results are shown below.

光学応答速度 10℃ 25℃ 40℃ 1−A 1260μsec 374μsec 137μsec 1−C 871μsec 282μsec 113μsec 1−D 852μsec 265μsec 104μsec 1−E 1070μsec 321μsec 129μsec 実施例1と比較例1より明らかな様に、本発明による
液晶組成物を含有する強誘電性液晶素子の方が、低温に
おける作動特性,高速応答性が改善され、また、応答速
度の温度依存性も軽減されている。
Optical response speed 10 ° C. 25 ° C. 40 ° C. 1-A 1260 μsec 374 μsec 137 μsec 1-C 871 μsec 282 μsec 113 μsec 1-D 852 μsec 265 μsec 104 μsec 1-E 1070 μsec 321 μsec 129 μsec As is clear from Example 1 and Comparative Example 1, the liquid crystal according to the present invention is clear. The ferroelectric liquid crystal device containing the composition has improved operating characteristics at low temperatures and high-speed response, and has reduced temperature dependence of the response speed.

実施例2 下記例示化合物を下記の重量部で混合し、液晶組成物
5−Aを作成した。
Example 2 The following exemplified compounds were mixed in the following parts by weight to prepare a liquid crystal composition 5-A.

更に、この液晶組成物5−Aに対して、以下に示す例
示化合物を、各々以下に示す重量部で混合し、液晶組成
物5−Bを作成した。
Further, the liquid crystal composition 5-A was mixed with the exemplified compounds shown below in parts by weight shown below to prepare a liquid crystal composition 5-B.

この液晶組成物を用いた以外は、全く実施例1と同様
の方法で強誘電性液晶素子を作成し、実施例1と同様の
方法で光学応答速度を測定し、スイッチング状態等を観
察した。
Except that this liquid crystal composition was used, a ferroelectric liquid crystal device was prepared in the same manner as in Example 1, and the optical response speed was measured in the same manner as in Example 1, and the switching state and the like were observed.

この液晶素子内の均一配向性は良好であり、モノドメ
イン状態が得られた。測定結果を次に示す。
The uniform alignment in the liquid crystal element was good, and a monodomain state was obtained. The measurement results are shown below.

光学応答速度 10℃ 25℃ 40℃ 515μsec 203μsec 87μsec また25℃における、この駆動時のコントラストは、13
であり、明瞭なスイッチング動作が観察され、電圧印加
を止めた際の双安定性も良好であった。
Optical response speed 10 ℃ 25 ℃ 40 ℃ 515μsec 203μsec 87μsec At 25 ℃, the contrast at the time of this drive is 13
A clear switching operation was observed, and the bistability when the voltage application was stopped was also good.

比較例2 実施例2で使用した液晶組成物5−Bに代えて、例示
化合物No.1−8,1−136を混合せずに5−Aに対して、例
示化合物No.2−10,2−70,3−56のみを実施例2と同じ重
量部で混合した液晶組成物5−C,および例示化合物No.2
−10,2−70を混合せずに5−Aに対して、例示化合物N
o.1−8,1−136,3−56のみを実施例2と同じ重量部で混
合した液晶組成物5−D,さらに例示化合物No.3−56を混
合せずに5−Aに対して、例示化合物No.1−8,1−136,2
−10,2−70のみを実施例2と同じ重量部で混合した液晶
組成物5−Eを作成した。
Comparative Example 2 Instead of the liquid crystal composition 5-B used in Example 2, Exemplified Compound No. 2-10, Exemplified Compound No. 2-10 and 5-A without mixing Exemplified Compound No. 1-136 were used. Liquid crystal composition 5-C in which only 2-70 and 3-56 were mixed in the same parts by weight as in Example 2, and Exemplified Compound No. 2
Exemplified Compound N to 5-A without mixing -10,2-70
o. Liquid crystal composition 5-D in which only 1-8, 1-136, 3-56 were mixed in the same parts by weight as in Example 2, and 5-A without mixing with Exemplified Compound No. 3-56 Thus, Exemplified Compound No. 1-8, 1-136,2
A liquid crystal composition 5-E in which only −10 and 2-70 were mixed in the same parts by weight as in Example 2 was prepared.

これらの液晶組成物5−C,5−D,5−E及び5−Aを用
いた以外は全く実施例1と同様の方法でそれぞれ強誘電
性液晶素子を作成し、実施例1と同様の方法で光学応答
速度を測定した。その結果を次に示す。
Ferroelectric liquid crystal devices were prepared in exactly the same manner as in Example 1 except that these liquid crystal compositions 5-C, 5-D, 5-E and 5-A were used. The optical response speed was measured by the method. The results are shown below.

光学応答速度 10℃ 25℃ 40℃ 5−A 762μsec 264μsec 98μsec 5−C 606μsec 217μsec 91μsec 5−D 581μsec 210μsec 84μsec 5−E 693μsec 233μsec 94μsec 実施例2と比較例2より明らかな様に、本発明による
液晶組成物を含有する強誘電性液晶素子の方が、低温に
おける作動特性,高速応答性が改善され、また、応答速
度の温度依存性も軽減されている。
Optical response speed 10 ° C. 25 ° C. 40 ° C. 5-A 762 μsec 264 μsec 98 μsec 5-C 606 μsec 217 μsec 91 μsec 5-D 581 μsec 210 μsec 84 μsec 5-E 693 μsec 233 μsec 94 μsec As is clear from Example 2 and Comparative Example 2, the liquid crystal according to the present invention is clear. The ferroelectric liquid crystal device containing the composition has improved operating characteristics at low temperatures and high-speed response, and has reduced temperature dependence of the response speed.

実施例3 実施例2で使用した液晶組成物5−Aに対して、以下
に示す例示化合物を以下に示す重量部で混合して液晶組
成物6−Bを得た。
Example 3 The liquid crystal composition 5-A used in Example 2 was mixed with the following exemplified compounds in the following parts by weight to obtain a liquid crystal composition 6-B.

この液晶組成物を用いた以外は、全く実施例1と同様
の方法で強誘電性液晶素子を作成し、実施例1と同様の
方法で光学応答速度を測定し、スイッチング状態等を観
察した。
Except that this liquid crystal composition was used, a ferroelectric liquid crystal device was prepared in the same manner as in Example 1, and the optical response speed was measured in the same manner as in Example 1, and the switching state and the like were observed.

この液晶素子内の均一配向性は良好であり、モノドメ
イン状態が得られた。測定結果を次に示す。
The uniform alignment in the liquid crystal element was good, and a monodomain state was obtained. The measurement results are shown below.

光学応答速度 10℃ 25℃ 40℃ 488μsec 182μsec 81μsec また25℃における、この駆動時のコントラストは、13
であり、明瞭なスイッチング動作が観察され、電圧印加
を止めた際の双安定性も良好であった。
Optical response speed 10 ° C 25 ° C 40 ° C 488μsec 182μsec 81μsec At 25 ° C, the contrast during this drive is 13
A clear switching operation was observed, and the bistability when the voltage application was stopped was also good.

比較例3 実施例3で使用した液晶組成物6−Bに代えて、例示
化合物No.1−96,1−139を混合せずに5−Aに対して、
例示化合物No.2−65,2−145,3−40のみを実施例3と同
じ重量部で混合した液晶組成物6−C,および例示化合物
No.2−65,2−145を混合せずに5−Aに対して、例示化
合物No.1−96,1−136,3−40のみを実施例3と同じ重量
部で混合した液晶組成物6−D,さらに例示化合物No.3−
40を混合せずに5−Aに対して、例示化合物No.1−96,1
−139,2−65,2−145のみを実施例3と同じ重量部で混合
した液晶組成物6−Eを作成した。
Comparative Example 3 Instead of the liquid crystal composition 6-B used in Example 3, Exemplified Compound Nos. 1-96 and 1-139 were mixed with 5-A without mixing.
Liquid crystal composition 6-C in which only Exemplified Compound Nos. 2-65, 2-145, and 3-40 are mixed in the same parts by weight as in Example 3, and Exemplified Compound
Liquid crystal composition in which only Exemplified Compound Nos. 1-96, 1-136, and 3-40 were mixed in the same parts by weight as in Example 3 with respect to 5-A without mixing Nos. 2-65 and 2-145. Compound 6-D, and further exemplified compound No. 3-
Exemplified compound No. 1-96,1 to 5-A without mixing 40
A liquid crystal composition 6-E was prepared by mixing only −139, 2-65 and 2-145 in the same parts by weight as in Example 3.

これらの液晶組成物6−C,6−D,6−E及び5−Aを用
いた以外は全く実施例1と同様の方法でそれぞれ強誘電
性液晶素子を作成し、実施例1と同様の方法で光学応答
速度を測定した。その結果を次に示す。
A ferroelectric liquid crystal device was prepared in the same manner as in Example 1 except that these liquid crystal compositions 6-C, 6-D, 6-E and 5-A were used. The optical response speed was measured by the method. The results are shown below.

光学応答速度 10℃ 25℃ 40℃ 5−A 762μsec 246μsec 98μsec 6−C 567μsec 208μsec 84μsec 6−D 543μsec 200μsec 80μsec 6−E 672μsec 226μsec 96μsec 実施例3と比較例3より明らかな様に、本発明による
液晶組成物を含有する強誘電性液晶素子の方が、低温に
おける作動特性,高速応答性が改善され、また、応答速
度の温度依存性も軽減されている。
Optical response speed 10 ° C. 25 ° C. 40 ° C. 5-A 762 μsec 246 μsec 98 μsec 6-C 567 μsec 208 μsec 84 μsec 6-D 543 μsec 200 μsec 80 μsec 6-E 672 μsec 226 μsec 96 μsec As is clear from Example 3 and Comparative Example 3, the liquid crystal according to the present invention is clear. The ferroelectric liquid crystal device containing the composition has improved operating characteristics at low temperatures and high-speed response, and has reduced temperature dependence of the response speed.

実施例4 下記例示化合物を下記の重量部で混合し、液晶組成8
−Aを作成した。
Example 4 The following exemplified compounds were mixed in the following parts by weight to obtain a liquid crystal composition 8
-A was created.

更に、この液晶組成物8−Aに対して、以下に示す例
示化合物を、各々以下に示す重量部で混合し、液晶組成
物8−Bを作成した。
Further, the following exemplary compounds were mixed with the liquid crystal composition 8-A in the following parts by weight, respectively, to prepare a liquid crystal composition 8-B.

この液晶組成物を用いた以外は、全く実施例1と同様
の方法で強誘電性液晶素子を作成し、実施例1と同様の
方法で光学応答速度を測定し、スイッチング状態等を観
察した。
Except that this liquid crystal composition was used, a ferroelectric liquid crystal device was prepared in the same manner as in Example 1, and the optical response speed was measured in the same manner as in Example 1, and the switching state and the like were observed.

この液晶素子内の均一配向性は良好であり、モノドメ
イン状態が得られた。測定結果を次に示す。
The uniform alignment in the liquid crystal element was good, and a monodomain state was obtained. The measurement results are shown below.

光学応答速度 10℃ 25℃ 40℃ 821μsec 287μsec 118μsec また25℃における、この駆動時のコントラストは、13
であり、明瞭なスイッチング動作が観察され、電圧印加
を止めた際の双安定性も良好であった。
Optical response speed 10 ℃ 25 ℃ 40 ℃ 821μsec 287μsec 118μsec At 25 ℃, the contrast at this drive is 13
A clear switching operation was observed, and the bistability when the voltage application was stopped was also good.

比較例4 実施例4で使用した液晶組成物8−Bに代えて、例示
化合物No.1−8,1−136を混合せずに8−Aに対して、例
示化合物No.2−10,2−70,3−56のみを実施例4と同じ重
量部で混合した液晶組成物8−C,および例示化合物No.2
−10,2−70を混合せずに8−Aに対して、例示化合物N
o.1−8,1−136,3−56のみを実施例4と同じ重量部で混
合した液晶組成物8−D,さらに例示化合物No.3−56を混
合せずに8−Aに対して、例示化合物No.1−8,1−136,2
−10,2−70のみを実施例4と同じ重量部で混合した液晶
組成物8−Eを作成した。
Comparative Example 4 Instead of the liquid crystal composition 8-B used in Example 4, Exemplified Compound No. 2-10, Exemplified Compound No. 2-10 and 8-A without mixing Exemplified Compound No. 1-136 were used. Liquid crystal composition 8-C in which only 2-70 and 3-56 were mixed in the same parts by weight as in Example 4, and Exemplified Compound No. 2
Without mixing -10,2-70 with 8-A, Exemplified Compound N
o. A liquid crystal composition 8-D in which only 1-8, 1-136, and 3-56 were mixed in the same parts by weight as in Example 4, and 8-A without mixing Exemplified Compound No. 3-56 with respect to 8-A Thus, Exemplified Compound No. 1-8, 1-136,2
A liquid crystal composition 8-E was prepared by mixing only -10 and 2-70 in the same parts by weight as in Example 4.

これらの液晶組成物8−C,8−D,8−E及び8−Aを用
いた以外は全く実施例1と同様の方法でそれぞれ強誘電
性液晶素子を作成し、実施例1と同様の方法で光学応答
速度を測定した。その結果を次に示す。
A ferroelectric liquid crystal device was prepared in the same manner as in Example 1 except that these liquid crystal compositions 8-C, 8-D, 8-E and 8-A were used. The optical response speed was measured by the method. The results are shown below.

光学応答速度 10℃ 25℃ 40℃ 8−A 1360μsec 430μsec 147μsec 8−C 922μsec 305μsec 115μsec 8−D 901μsec 291μsec 109μsec 8−E 1156μsec 353μsec 133μsec 実施例4と比較例4より明らかな様に、本発明による
液晶組成物を含有する強誘電性液晶素子の方が、低温に
おける作動特性,高速応答性が改善され、また、応答速
度の温度依存性も軽減されている。
Optical response speed 10 ° C. 25 ° C. 40 ° C. 8-A 1360 μsec 430 μsec 147 μsec 8-C 922 μsec 305 μsec 115 μsec 8-D 901 μsec 291 μsec 109 μsec 8-E 1156 μsec 353 μsec 133 μsec As is apparent from Example 4 and Comparative Example 4, the liquid crystal according to the present invention is clear. The ferroelectric liquid crystal device containing the composition has improved operating characteristics at low temperatures and high-speed response, and has reduced temperature dependence of the response speed.

実施例5 実施例4で使用した液晶組成物8−Aに対して、以下
に示す例示化合物を以下に示す重量部で混合して液晶組
成物10−Bを得た。
Example 5 The liquid crystal composition 8-A used in Example 4 was mixed with the following exemplified compounds in the following parts by weight to obtain a liquid crystal composition 10-B.

この液晶組成物を用いた以外は、全く実施例1と同様
の方法で強誘電性液晶素子を作成し、実施例1と同様の
方法で光学応答速度を測定し、スイッチング状態等を観
察した。
Except that this liquid crystal composition was used, a ferroelectric liquid crystal device was prepared in the same manner as in Example 1, and the optical response speed was measured in the same manner as in Example 1, and the switching state and the like were observed.

この液晶素子内の均一配向性は良好であり、モノドメ
イン状態が得られた。測定結果を次に示す。
The uniform alignment in the liquid crystal element was good, and a monodomain state was obtained. The measurement results are shown below.

光学応答速度 10℃ 25℃ 40℃ 1360μsec 430μsec 147μsec また25℃における、この駆動時のコントラストは、13
であり、明瞭なスイッチング動作が観察され、電圧印加
を止めた際の双安定性も良好であった。
Optical response speed 10 ℃ 25 ℃ 40 ℃ 1360μsec 430μsec 147μsec At 25 ℃, the contrast at this drive is 13
A clear switching operation was observed, and the bistability when the voltage application was stopped was also good.

比較例5 実施例5で使用した液晶組成物10−Bに代えて、例示
化合物No.1−96,1−139を混合せずに8−Aに対して、
例示化合物No.2−65,2−145,3−40のみを実施例5と同
じ重量部で混合した液晶組成物10−C,および例示化合物
No.2−65,2−145を混合せずに8−Aに対して、例示化
合物No.1−96,1−139,3−40のみを実施例5と同じ重量
部で混合した液晶組成物10−D,さらに例示化合物No.3−
40を混合せずに8−Aに対して、例示化合物No.1−96,1
−139,2−65,2−145のみを実施例5と同じ重量部で混合
した液晶組成物10−Eを作成した。
Comparative Example 5 Instead of the liquid crystal composition 10-B used in Example 5, 8-A was mixed without mixing the exemplified compounds No. 1-96 and 1-139.
Liquid crystal composition 10-C in which Exemplified Compound Nos. 2-65, 2-145, and 3-40 alone were mixed in the same parts by weight as in Example 5, and Exemplified Compound
Liquid crystal composition in which only Exemplified Compound Nos. 1-96, 1-139, and 3-40 were mixed in the same parts by weight as in Example 5 with respect to 8-A without mixing Nos. 2-65 and 2-145. Compound 10-D, and further exemplified compound No. 3-
Exemplified compound No. 1-96,1 with respect to 8-A without mixing 40
A liquid crystal composition 10-E was prepared by mixing only -139, 2-65 and 2-145 in the same parts by weight as in Example 5.

これらの液晶組成物10−C,10−D,10−E及び10−Aを
用いた以外は全く実施例1と同様の方法でそれぞれ強誘
電性液晶素子を作成し、実施例1と同様の方法で光学応
答速度を測定した。その結果を次に示す。
Ferroelectric liquid crystal elements were prepared in the same manner as in Example 1 except that these liquid crystal compositions 10-C, 10-D, 10-E and 10-A were used. The optical response speed was measured by the method. The results are shown below.

光学応答速度 10℃ 25℃ 40℃ 8−A 1360μsec 430μsec 147μsec 10−C 723μsec 290μsec 124μsec 10−D 709μsec 260μsec 112μsec 10−E 1060μsec 375μsec 140μsec 実施例5と比較例5より明らかな様に、本発明による
液晶組成物を含有する強誘電性液晶素子の方が、低温に
おける作動特性,高速応答性が改善され、また、応答速
度の温度依存性も軽減されている。
Optical response speed 10 ° C. 25 ° C. 40 ° C. 8-A 1360 μsec 430 μsec 147 μsec 10-C 723 μsec 290 μsec 124 μsec 10-D 709 μsec 260 μsec 112 μsec 10-E 1060 μsec 375 μsec 140 μsec As is clear from Example 5 and Comparative Example 5, the liquid crystal according to the present invention is clear. The ferroelectric liquid crystal device containing the composition has improved operating characteristics at low temperatures and high-speed response, and has reduced temperature dependence of the response speed.

実施例6 実施例1及び比較例1で用いた液晶組成物をSiO2を用
いずに、ポリイミド樹脂だけで配向制御層を作成した以
外は全く実施例1と同様の方法で強誘電性液晶素子を作
成し、実施例1と同様の方法で光学応答速度を測定し
た。その結果を次に示す。
Example 6 A ferroelectric liquid crystal device was prepared in exactly the same manner as in Example 1 except that the liquid crystal compositions used in Example 1 and Comparative Example 1 were not formed of SiO 2 and an alignment control layer was formed only of a polyimide resin. Was prepared, and the optical response speed was measured in the same manner as in Example 1. The results are shown below.

光学応答速度 10℃ 25℃ 40℃ 1−B 720μsec 253μsec 98μsec 1−A 1240μsec 365μsec 132μsec 1−C 855μsec 270μsec 105μsec 1−D 845μsec 258μsec 102μsec 1−E 1020μsec 315μsec 122μsec 実施例6より明らかな様に、素子構成を変えた場合で
も本発明に従う強誘電性液晶素子を含有する素子は、他
の液晶組成物を含む素子に実施例1と同様に低温作動特
性が改善され、さらに、応答速度の温度依存性も軽減さ
れたものとなっている。
Optical response speed 10 ℃ 25 ℃ 40 ℃ 1-B 720μsec 253μsec 98μsec 1-A 1240μsec 365μsec 132μsec 1-C 855μsec 270μsec 105μsec 1-D 845μsec 258μsec 102μsec 1-E 1020μsec 315μsec 122μsec In the case where the device is changed, the device containing the ferroelectric liquid crystal device according to the present invention has improved low-temperature operation characteristics in the same manner as in Example 1, as compared with devices containing other liquid crystal compositions, and also has a temperature dependence of the response speed. It has been reduced.

[発明の効果] 本発明の強誘電性液晶組成物を含有する素子は、スイ
ッチング特性が良好で、低温作動特性の改善された液晶
素子、及び応答速度の温度依存性の軽減された液晶素子
とすることができる。
[Effect of the Invention] The device containing the ferroelectric liquid crystal composition of the present invention has a good switching characteristic, a liquid crystal device with improved low-temperature operation characteristics, and a liquid crystal device with reduced temperature dependence of response speed. can do.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、強誘電性液晶を用いた液晶素子の一例の断面
概略図。 第2図,及び第3図は強誘電性液晶素子の動作説明のた
めに、素子セルの一例を模式的に表わす斜視図。 第1図において、 1……強誘電性液晶層、2……ガラス基板、 3……透明電極、4……絶縁性配向制御層、 5……スペーサー、6……リード線、 7……電源、8……偏光板、 9……光源、I0……入射光、 I……透過光 第2図において、 21a……基板、21b……基板、 22……強誘電性液晶層、23……液晶分子、 24……双極子モーメント(P) 第3図において、 31a……電圧印加手段、31b……電圧印加手段、 33a……第1の安定状態、 33b……第2の安定状態、 34a……上向きの双極子モーメント、 34b……下向きの双極子モーメント、 Ea……上向きの電界、Eb……下向きの電界。
FIG. 1 is a schematic cross-sectional view of an example of a liquid crystal element using a ferroelectric liquid crystal. 2 and 3 are perspective views schematically showing an example of an element cell for explaining the operation of a ferroelectric liquid crystal element. In FIG. 1, 1 ... ferroelectric liquid crystal layer, 2 ... glass substrate, 3 ... transparent electrode, 4 ... insulating alignment control layer, 5 ... spacer, 6 ... lead wire, 7 ... power supply , 8 ... polarizing plate, 9 ... light source, I 0 ... incident light, I ... transmitted light In Fig. 2, 21a ... substrate, 21b ... substrate, 22 ... ferroelectric liquid crystal layer, 23 ... .. Liquid crystal molecules, 24... Dipole moment (P ) In FIG. 3, 31a... Voltage applying means, 31b... Voltage applying means, 33a... First stable state, 33b. 34a ... upward dipole moment, 34b ... downward dipole moment, Ea ... upward electric field, Eb ... downward electric field.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 門叶 剛司 東京都大田区下丸子3丁目30番2号 キ ヤノン株式会社内 (72)発明者 朝岡 正信 東京都大田区下丸子3丁目30番2号 キ ヤノン株式会社内 (72)発明者 滝口 隆雄 東京都大田区下丸子3丁目30番2号 キ ヤノン株式会社内 (56)参考文献 特開 昭63−137986(JP,A) 特開 昭63−37186(JP,A) 特開 昭61−291679(JP,A) 特表 昭62−502901(JP,A) 特表 昭62−502620(JP,A) 特表 昭62−502624(JP,A) 欧州公開267585(EP,A1) (58)調査した分野(Int.Cl.6,DB名) C06K 19/00 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Takeshi Kadoka 3-30-2 Shimomaruko, Ota-ku, Tokyo Inside Canon Inc. (72) Inventor Masanobu Asaoka 3- 30-2 Shimomaruko, Ota-ku, Tokyo Inside Canon Inc. (72) Inventor Takao Takiguchi 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon Inc. (56) References JP-A-63-137986 (JP, A) JP-A-63-37186 ( JP, A) JP-A-61-291679 (JP, A) JP-T-62-502901 (JP, A) JP-T-62-502620 (JP, A) JP-T-62-502624 (JP, A) European publication 267585 (EP, A1) (58) Fields investigated (Int. Cl. 6 , DB name) C06K 19/00

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】下記一般式(I) (ただし、R1,R2はC3〜C18の直鎖状もしくは分岐状のア
ルキル基である。X1,X2は単結合、−O−, のいずれかを示す。) で示される化合物の少なくとも一種を1〜300重量部
と、下記一般式(II) (ただし、R3,R4はC1〜C18の直鎖状又は分岐状のアルキ
ル基 X3,X4は単結合、 Z1−CH2O−,−OCH2−,単結合 ただし、 のうち少なくとも1つは である。) で示される化合物の少なくとも一種を1〜300重量部
と、下記一般式(III) (ただし、R5はアルコキシ基により置換されていても良
いC1〜C18の直鎖状又は分岐状のアルキル基 X5は単結合,−O−, Z2は単結合, mは1〜12) で示される化合物の少なくとも一種を1〜300重量部
と、 他の液晶性化合物一種以上を少なくとも含有する強誘電
性液晶組成物を100重量部含有することを特徴とする強
誘電性カイラルメクチック液晶組成物。
1. A compound represented by the following general formula (I) (However, R 1 and R 2 are a C 3 to C 18 linear or branched alkyl group. X 1 and X 2 are a single bond, —O—, Indicates one of 1) to 300 parts by weight of at least one compound represented by the following general formula (II) (However, R 3 and R 4 are a C 1 to C 18 linear or branched alkyl group X 3 and X 4 are a single bond, Z 1 -CH 2 O-, -OCH 2- , single bond However, At least one of It is. 1) to 300 parts by weight of at least one compound represented by the following general formula (III) (However, R 5 is a C 1 to C 18 linear or branched alkyl group X 5 which may be substituted by an alkoxy group, X 5 is a single bond, —O—, Z 2 is a single bond, m is 1 to 300 parts by weight of at least one of the compounds represented by 1) and 100 parts by weight of a ferroelectric liquid crystal composition containing at least one or more other liquid crystal compounds. Dielectric chiral mectic liquid crystal composition.
【請求項2】下記一般式(I) (ただし、R1,R2はC3〜C18の直鎖状もしくは分岐状のア
ルキル基である。X1,X2は単結合、−O−, のいずれかを示す。) で示される化合物の少なくとも一種を1〜300重量部
と、下記一般式(II) (ただし、R3,R4はC1〜C18の直鎖状又は分岐状のアルキ
ル基 X3,X4は単結合、 Z1−CH2O−,−OCH2−,単結合 ただし、 のうち少なくとも1つは である。) で示される化合物の少なくとも一種を1〜300重量部
と、下記一般式(III) (ただし、R5はアルコキシ基により置換されていても良
いC1〜C18の直鎖状又は分岐状のアルキル基 X5は単結合,−O−, Z2は単結合, mは1〜12) で示される化合物の少なくとも一種を1〜300重量部
と、 他の液晶性化合物を一種以上を少なくとも含有する強誘
電性液晶組成物を100重量部含有する強誘電性カイラル
スメクチック液晶組成物を一対の電極基板間に配置して
なることを特徴とする液晶素子。
2. The following general formula (I) (However, R 1 and R 2 are a C 3 to C 18 linear or branched alkyl group. X 1 and X 2 are a single bond, —O—, Indicates one of 1) to 300 parts by weight of at least one compound represented by the following general formula (II) (However, R 3 and R 4 are a C 1 to C 18 linear or branched alkyl group X 3 and X 4 are a single bond, Z 1 -CH 2 O-, -OCH 2- , single bond However, At least one of It is. 1) to 300 parts by weight of at least one compound represented by the following general formula (III) (However, R 5 is a C 1 to C 18 linear or branched alkyl group X 5 which may be substituted by an alkoxy group, X 5 is a single bond, —O—, Z 2 is a single bond, m represents 1 to 300 parts by weight of at least one compound represented by the formula (1), and 100 parts by weight of a ferroelectric liquid crystal composition containing at least one or more other liquid crystal compounds. A liquid crystal element comprising a liquid crystal composition disposed between a pair of electrode substrates.
JP63188109A 1988-06-24 1988-07-29 Liquid crystal composition and liquid crystal device containing the same Expired - Lifetime JP2976109B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP63188109A JP2976109B2 (en) 1988-07-29 1988-07-29 Liquid crystal composition and liquid crystal device containing the same
AT89111494T ATE118029T1 (en) 1988-06-24 1989-06-23 FERROELECTRIC CHIRAL SMECTIC LIQUID CRYSTAL COMPOSITION AND DEVICE COMPRISING SUCH COMPOSITION.
EP89111494A EP0347944B1 (en) 1988-06-24 1989-06-23 Ferroelectric chiral smectic liquid crystal composition and liquid crystal device using same
DE68920919T DE68920919T2 (en) 1988-06-24 1989-06-23 Ferroelectric chiral smectic liquid crystal composition and device having this composition.
ES89111494T ES2068851T3 (en) 1988-06-24 1989-06-23 COMPOSITION OF LIQUID CRYSTAL LIQUID CRYSTAL ESMECTICO AND LIQUID CRYSTAL DEVICE THAT USES IT.
US08/329,619 US5501818A (en) 1988-06-24 1994-10-26 Ferroelectric chiral smectic liquid crystal composition and liquid crystal device using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63188109A JP2976109B2 (en) 1988-07-29 1988-07-29 Liquid crystal composition and liquid crystal device containing the same

Publications (2)

Publication Number Publication Date
JPH0238485A JPH0238485A (en) 1990-02-07
JP2976109B2 true JP2976109B2 (en) 1999-11-10

Family

ID=16217859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63188109A Expired - Lifetime JP2976109B2 (en) 1988-06-24 1988-07-29 Liquid crystal composition and liquid crystal device containing the same

Country Status (1)

Country Link
JP (1) JP2976109B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63137986A (en) * 1986-11-28 1988-06-09 Canon Inc Ferroelectric liquid crystal device

Also Published As

Publication number Publication date
JPH0238485A (en) 1990-02-07

Similar Documents

Publication Publication Date Title
JP2801279B2 (en) Compound, liquid crystal composition containing the same, and liquid crystal device using the same
JP2801269B2 (en) Compound, liquid crystal composition containing the same, and liquid crystal device using the same
JP2691946B2 (en) Liquid crystal compound, liquid crystal composition containing the same, and liquid crystal device using the same
JP2763339B2 (en) Liquid crystal composition and liquid crystal device using the same
JP2899064B2 (en) Liquid crystal compound, liquid crystal composition containing the same, and liquid crystal device using the same
JPH04253789A (en) Optically active compound, liquid crystal composition containing it, method for using it, and liquid crystal element and display apparatus using it
JP2832028B2 (en) Compound, liquid crystal composition containing the same, and liquid crystal device using the same
JP3095927B2 (en) Optically active compound, liquid crystal composition containing the same, method of using the same, liquid crystal element and display device using the same
JP2819332B2 (en) Liquid crystal compound and liquid crystal composition containing the same
JP3176073B2 (en) Liquid crystal element
JP3308626B2 (en) Liquid crystal compound, liquid crystal composition containing the same, liquid crystal element having the same, display method using them, and display device
JPH04217973A (en) Liquid crystal compound, liquid crystal composition containing the compound and liquid crystal element and display device produced by using the same
JPH0776542A (en) Liquid crystal compound, liquid crystal composition containing the compound, liquid crystal element containing the composition and displaying method and display device using the element
JP3060313B2 (en) Liquid crystal compound, liquid crystal composition containing the same, and liquid crystal device using the same
JPH0629424B2 (en) Ferroelectric chiral smectic liquid crystal composition and liquid crystal device containing the same
JP2749822B2 (en) Liquid crystal composition and liquid crystal device containing the same
JP2976109B2 (en) Liquid crystal composition and liquid crystal device containing the same
JP3048166B2 (en) Ferroelectric liquid crystal composition
JPH05239069A (en) Liquid crystal compound, liquid crystal composition containing the same, liquid crystal element having the same, displaying method and display unit using the same
JP3093507B2 (en) Liquid crystal compound, liquid crystal composition containing the same, liquid crystal element having the same, display method and display device using them
JP2759459B2 (en) Liquid crystal composition and liquid crystal device containing the same
JP2756262B2 (en) Liquid crystal composition and liquid crystal device containing the same
JP2774510B2 (en) Liquid crystal composition and liquid crystal device containing the same
JP2510681B2 (en) Liquid crystal composition and liquid crystal device containing the same
JP2872372B2 (en) Liquid crystal compound, liquid crystal composition containing the same, and liquid crystal device using the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070910

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080910

Year of fee payment: 9

EXPY Cancellation because of completion of term