JP2975804B2 - Sound velocity measuring device - Google Patents

Sound velocity measuring device

Info

Publication number
JP2975804B2
JP2975804B2 JP5108911A JP10891193A JP2975804B2 JP 2975804 B2 JP2975804 B2 JP 2975804B2 JP 5108911 A JP5108911 A JP 5108911A JP 10891193 A JP10891193 A JP 10891193A JP 2975804 B2 JP2975804 B2 JP 2975804B2
Authority
JP
Japan
Prior art keywords
container
liquid
side surfaces
sound
electronic circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5108911A
Other languages
Japanese (ja)
Other versions
JPH06300617A (en
Inventor
邦雄 村上
肇 西井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaijo Corp
Original Assignee
Kaijo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaijo Corp filed Critical Kaijo Corp
Priority to JP5108911A priority Critical patent/JP2975804B2/en
Publication of JPH06300617A publication Critical patent/JPH06300617A/en
Application granted granted Critical
Publication of JP2975804B2 publication Critical patent/JP2975804B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、各種の超音波計測の基
礎データとして必要な各種の流体中の音速の測定に利用
される音速測定装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sound velocity measuring device used for measuring sound velocity in various fluids required as basic data for various ultrasonic measurements.

【0002】[0002]

【従来の技術】超音波流量計などの超音波を利用した各
種の計測装置の多くは、静止状態にある液体や気体など
の流体中の音速が既知であることが条件になっている。
また、超音波流量計一つを例にとっても、その応用分野
は上水/下水処理システム、石油化学プラント、醸造プ
ロセス、燃料ガス移送システムなど極めて多岐にわたっ
ている。このため、極めて多岐にわたる流体について静
止状態の音速を基礎データとして予め把握しておく必要
がある。更に、音速が温度に依存するため、各応用分野
ごとに予想される温度範囲にわたって温度依存性を知る
必要もある。
2. Description of the Related Art Many measuring devices using ultrasonic waves, such as ultrasonic flow meters, require that the speed of sound in a fluid such as a liquid or gas in a stationary state be known.
Even with one ultrasonic flow meter as an example, its application fields are extremely diverse, such as clean water / sewage treatment systems, petrochemical plants, brewing processes, and fuel gas transfer systems. For this reason, it is necessary to grasp the sound speed in a stationary state as basic data in advance for a very wide variety of fluids. Further, since the speed of sound depends on the temperature, it is necessary to know the temperature dependency over the expected temperature range for each application field.

【0003】限られた主要な流体については、その音速
が、超音波ハンドブックや理科年表などの各種のデータ
ブックに掲載されているが、ほとんどの流体についての
データ、特に温度依存性も含めたデータについはほとん
ど未知の状態にある。このため、従来は、超音波測定シ
ステムの設計に先立って、この測定システムのユーザか
ら流体のサンプルを送ってもらい、図3に示すような測
定装置を組み立てて実測している。
[0003] The sound velocities of limited main fluids are described in various data books such as an ultrasonic handbook and a scientific chronological table, but data on most fluids, especially including temperature dependence, are also included. The data is almost unknown. Therefore, conventionally, prior to designing the ultrasonic measurement system, a user of the measurement system sends a fluid sample and assembles a measurement device as shown in FIG.

【0004】すなわち、金属板1にステンレス製の円筒
2を固定し、この円筒内に液体を満たし、円筒の対向す
る側面にアダプター5,6を介在させながら超音波の送
信器3と受信器4とを取付け、送信器3と受信器4との
間を伝播する超音波の伝播時間を周知のシングアラウン
ド法などを利用して測定し、この測定した伝播時間で伝
播経路長を除算することにより音速が算定される。
[0004] That is, a stainless steel cylinder 2 is fixed to a metal plate 1, a liquid is filled in the cylinder, and ultrasonic transmitters 3 and receivers 4 are placed on opposite sides of the cylinder with adapters 5 and 6 interposed therebetween. And the propagation time of the ultrasonic wave propagating between the transmitter 3 and the receiver 4 is measured by using a well-known sing-around method, and the propagation path length is divided by the measured propagation time. The speed of sound is calculated.

【0005】[0005]

【発明が解決しようとする課題】上記従来の音速の測定
方法では、以下のような種々の問題がある。まず、アダ
プター5,6内やパイプ2の側壁面内の伝播時間が、こ
れらを差し引くことによって算定される流体中の正味の
伝播時間に対してかなりの割合となるため、差し引くべ
き伝播時間の算定値の不正確さが測定精度の低下に大き
く影響する。
The above-described conventional method of measuring the speed of sound has the following various problems. First, since the propagation time in the adapters 5 and 6 and the side wall surface of the pipe 2 is a significant proportion of the net propagation time in the fluid calculated by subtracting them, the propagation time to be subtracted is calculated. The inaccuracy of the value has a significant effect on the decrease in measurement accuracy.

【0006】また、円筒の容器を用いているので、伝播
する超音波の波頭の形状が複雑になり、受信信号の波形
が乱れて測定精度が低下する。さらに、金属の円筒2と
金属板1の熱容量が大きいため、高温のデータを得るた
めに液温を上げようとしても目標温度に安定するまで時
間がかかると共に、直立した円筒の側面から対流によっ
て発散される熱量が大きいため温度制御が困難になる。
また、液温の変化に伴い金属円筒2が膨張・収縮して伝
播経路が変化し、測定精度が低下する。さらに、測定装
置が大型で重量もかさむため、これを流量/流量測定シ
ステムなどの依頼主の元に携帯してその場で測定を行う
ことが困難になる。
In addition, since a cylindrical container is used, the shape of the wave front of the propagating ultrasonic wave becomes complicated, and the waveform of the received signal is disturbed, thereby lowering the measurement accuracy. Furthermore, since the heat capacity of the metal cylinder 2 and the metal plate 1 is large, it takes time until the liquid temperature is stabilized to obtain the high temperature data until it stabilizes at the target temperature, and diverges from the side of the upright cylinder by convection. Temperature control becomes difficult due to the large amount of heat to be applied.
Also, the metal cylinder 2 expands and contracts with a change in the liquid temperature, so that the propagation path changes, and the measurement accuracy decreases. Further, since the measuring apparatus is large and heavy, it is difficult to carry the measuring apparatus to a client such as a flow rate / flow rate measuring system and perform the measurement on the spot.

【0007】[0007]

【課題を解決するための手段】上記従来技術の課題を解
決する本発明の液中音速測定装置は、測定対象の液体を
保持する容器と、この容器の互いに対向する側面間に保
持されて両側面の間隔を定める熱膨張係数の小さな金属
の棒状体と、容器の互いに対向する側面の外部に互いに
対向しながら装着される電気/音響変換素子対とを備え
ている。本発明の好適な一例によれば、容器の互いに対
向する側面はほぼ平坦かつほぼ平行に保たれる。本発明
の更に好適な一例によれば上記容器はプラスチックの薄
肉容器から成る。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems in the prior art, a sound velocity measuring apparatus in liquid according to the present invention comprises a container for holding a liquid to be measured, and both sides held between opposing side surfaces of the container. It comprises a metal rod having a small coefficient of thermal expansion that determines the distance between the surfaces, and a pair of electric / acoustic transducers that are attached to the outside of the opposite sides of the container while facing each other. According to a preferred embodiment of the present invention, the opposing sides of the container are kept substantially flat and substantially parallel. According to a further preferred embodiment of the invention, the container comprises a thin-walled plastic container.

【0008】[0008]

【作用】容器の互いに対向する側面の外部に互いに対向
しながら装着される送信器と受信器間を伝播する超音波
の伝播時間から液中の音速が測定される。この超音波の
伝播経路長さは、熱膨張係数の小さな金属の棒状体の長
さによって広い温度範囲にわたって一定に保たれる。容
器の互いに対向する側面がほぼ平坦かつほぼ平行に保た
れることにより、超音波の伝播経路は直線状になると共
に、波頭の形状が単純なものになる。以下、本発明を更
に詳細に実施例と共に説明する。
The speed of sound in the liquid is measured from the propagation time of the ultrasonic wave propagating between the transmitter and the receiver mounted on the outside of the side surface of the container facing each other and facing each other. The length of the ultrasonic wave propagation path is kept constant over a wide temperature range by the length of the metal rod having a small coefficient of thermal expansion. By keeping the opposing sides of the container substantially flat and substantially parallel, the propagation path of the ultrasonic wave is straight and the shape of the wave front is simple. Hereinafter, the present invention will be described in more detail with examples.

【0009】[0009]

【実施例】図1は、本発明の一実施例の液中音速測定装
置の側面図、図2は図1中のBーB’断面図である。1
1は箱型で薄肉のプラスチック製の容器であり、この容
器の互いに対向する側面11a,11b間に、4本の円
形断面形状の金属棒13a,13b,13c,13dが
ネジ14a,14b,14c,14d・・・を用いて保
持されている。金属棒13a〜13dのそれぞれは、熱
膨張係数の小さなインバー合金、スーパーインバー合
金、ステンレスインバー合金、FeーNi系エリンバー
合金などを素材としている。金属棒13a〜13dの表
面には、酸やアルカリなどの液体に対する耐食性を付与
するために、4弗化エチレンなどの樹脂によるコーティ
ングが施されている。
1 is a side view of an apparatus for measuring the speed of sound in liquid according to an embodiment of the present invention, and FIG. 2 is a sectional view taken along the line BB 'in FIG. 1
Reference numeral 1 denotes a box-shaped thin-walled plastic container, and four metal rods 13a, 13b, 13c, and 13d having a circular cross section are provided between screws 14a, 14b, and 14c between opposed side surfaces 11a and 11b of the container. , 14d... Each of the metal rods 13a to 13d is made of an invar alloy, a super invar alloy, a stainless invar alloy, an Fe-Ni-based Elinvar alloy, or the like having a small coefficient of thermal expansion. The surfaces of the metal rods 13a to 13d are coated with a resin such as ethylene tetrafluoride in order to impart corrosion resistance to liquids such as acids and alkalis.

【0010】容器11の対向する側面11a,11bの
それぞれの平坦で互いに平行な外部表面上に、円板形状
の超音波送信器21と超音波受信器22とが薄い接着剤
層を介して固定されている。送信器21と受信器22の
間隔は対向する側面11aと11bの間隔で定まるが、
この側面11aと11bの間隔は、容器11の素材であ
るプラスチックに比べて剛性がはるかに高くかつ温度変
化の小さな4本の金属棒13a〜13dの長さによって
一定値に保たれる。
A disk-shaped ultrasonic transmitter 21 and an ultrasonic receiver 22 are fixed on a flat and parallel external surface of each of the opposed side surfaces 11a and 11b of the container 11 via a thin adhesive layer. Have been. The interval between the transmitter 21 and the receiver 22 is determined by the interval between the opposing side surfaces 11a and 11b.
The distance between the side surfaces 11a and 11b is maintained at a constant value by the length of the four metal rods 13a to 13d, which have much higher rigidity and a small temperature change as compared with the plastic material of the container 11.

【0011】送信器21と受信器22とが固定される側
面と直交する一方の側面の外側に、操作・表示パネル2
0が固定されている。この操作・表示パネル20は、周
知のシングアラウンド法によって送信器21と受信器2
2間を伝播する音波の伝播時間に関する信号を発生する
電子回路と、この電子回路が発生した信号を液中の音速
に変換し液晶表示装置などに出力する変換・出力部とを
内蔵している。容器11の上部には、薄肉プラスチック
製の蓋板12が着脱自在に冠着される。この蓋板12に
は、加熱器への給電線、温度計、攪拌器を通過させるボ
ス15a,15b,15cが植設されている。
An operation / display panel 2 is provided outside one side surface orthogonal to the side surface on which the transmitter 21 and the receiver 22 are fixed.
0 is fixed. The operation / display panel 20 includes a transmitter 21 and a receiver 2 by a well-known sing-around method.
It incorporates an electronic circuit that generates a signal related to the propagation time of a sound wave propagating between the two, and a conversion / output unit that converts the signal generated by the electronic circuit into a sound speed in liquid and outputs it to a liquid crystal display device or the like. . A lid plate 12 made of a thin plastic is detachably mounted on the upper part of the container 11. Bosses 15a, 15b, and 15c through which a power supply line to the heater, a thermometer, and a stirrer pass are implanted in the cover plate 12.

【0012】この液中音速測定装置を動作させるには、
蓋板12を容器11から取り外し、測定対象の液体をそ
の液面が送信器21と受信器22の取付け高さ以上の適
宜な高さになるまで容器11内に注ぎ、蓋板12を取り
付ける。操作・表示パネル20上のキースイッチを操作
して測定動作を開始させる。操作・表示パネル20内の
電子回路から送信器21に超音波帯の交流電圧が供給さ
れ、送信器21で発生した超音波が液中を伝播して受信
器22に受信され、電子回路に供給される。この電子回
路は、周知のシングアラウンド法に基づき超音波の伝播
時間を示すカウント値を測定する。操作・表示パネル2
0内の変換・出力部は、この電子回路で測定されたカウ
ント値を液中の音速に変換し、液晶パネルなどで構成さ
れる表示面24にディジタル表示する。
In order to operate the subsonic sound velocity measuring device,
The lid plate 12 is removed from the container 11, and the liquid to be measured is poured into the container 11 until the liquid level is at an appropriate height equal to or higher than the mounting height of the transmitter 21 and the receiver 22, and the lid plate 12 is attached. A key switch on the operation / display panel 20 is operated to start a measurement operation. An AC voltage in the ultrasonic band is supplied to the transmitter 21 from an electronic circuit in the operation / display panel 20, and the ultrasonic wave generated by the transmitter 21 propagates in the liquid, is received by the receiver 22, and is supplied to the electronic circuit. Is done. This electronic circuit measures a count value indicating a propagation time of an ultrasonic wave based on a known sing-around method. Operation / display panel 2
The conversion / output unit within 0 converts the count value measured by the electronic circuit into a sound speed in the liquid, and digitally displays it on a display surface 24 composed of a liquid crystal panel or the like.

【0013】音速の温度依存性のデータを得るために、
投げ込み式の電熱器を容器11内に投入し、ボス15a
〜15cの一つを通して給電を行う。また、他のボスを
通して攪拌器を液中に挿入し、液温が均一になるように
攪拌を行う。さらに、他のボスを通して温度計を液中に
挿入し、液体の温度を測定する。容器11が小型、軽量
で熱容量が小さいため、短時間で所望の温度に到達す
る。また、容器11が断熱性の良好なプラスチックで構
成されているため、対流などによって発散する熱量が少
なく、温度制御も容易である。なお、電熱器を投げ込み
式とする代わりに容器11の底部に固定する構成とする
こともできる。また、電熱器に加えて、ペルチエ冷却素
子を容器内部に併設することにより、液温を低温側に制
御することもできる。
In order to obtain data on the temperature dependence of sound speed,
A throw-in type electric heater is put into the container 11, and the boss 15a
15c. In addition, a stirrer is inserted into the liquid through another boss, and stirring is performed so that the liquid temperature becomes uniform. Further, a thermometer is inserted into the liquid through another boss to measure the temperature of the liquid. Since the container 11 is small, lightweight and has a small heat capacity, it reaches a desired temperature in a short time. Further, since the container 11 is made of plastic having good heat insulating properties, the amount of heat radiated by convection or the like is small, and the temperature control is easy. It should be noted that the electric heater may be fixed to the bottom of the container 11 instead of being a throw-in type. Further, by providing a Peltier cooling element in the container in addition to the electric heater, the liquid temperature can be controlled to a lower temperature side.

【0014】以上、容器の対向する側面のそれぞれに送
信器と受信器を取付け、両者の間を伝播する超音波の伝
播時間から液中の音速を測定する構成を例示した。しか
しながら、一方の側面に送受共用の送受信器を取付け、
この送受信器から放射され他方の側面で反射された反射
波をこの送受信器で受信し、側面間を往復する超音波の
伝播時間から液中の音速を測定する構成としてもよい。
この場合、超音波を反射させる他方の側面の内側に反射
波を収束するための曲面体を付加したり、容器内や蓋板
の内面などに不要な反射を防止するための吸音材で覆う
構成とすれば一層好適である。このように、往復式の構
成を採用すれば、容器の一層の小型・軽量化と、素子数
の低減に伴う製造費用の低廉化を実現できる。
As described above, an example has been described in which a transmitter and a receiver are attached to each of the opposed side surfaces of the container, and the speed of sound in the liquid is measured from the propagation time of the ultrasonic wave propagating between the transmitter and the receiver. However, a transmitter / receiver for both transmission and reception is installed on one side,
A configuration may be adopted in which a reflected wave radiated from the transceiver and reflected on the other side is received by the transceiver, and the speed of sound in the liquid is measured from the propagation time of the ultrasonic wave reciprocating between the sides.
In this case, a curved surface body for converging the reflected wave is added inside the other side surface for reflecting the ultrasonic wave, or the inside of the container or the cover plate is covered with a sound absorbing material for preventing unnecessary reflection. If so, it is more preferable. As described above, if the reciprocating structure is employed, the size and weight of the container can be further reduced, and the manufacturing cost can be reduced due to the reduction in the number of elements.

【0015】また、測定対象の流体が液体の場合を例に
とって本発明を説明したが、容器11と蓋板12との間
やボスの部分の気密性を高めると共に容器11や蓋板1
2に気体の充填口と排気口とを付加することにより、こ
の音速測定装置を気中音速の測定装置に拡張可能であ
る。
Although the present invention has been described by taking the case where the fluid to be measured is a liquid as an example, the airtightness between the container 11 and the cover plate 12 and the boss portion is improved, and the container 11 and the cover plate 1 are improved.
By adding a gas filling port and an exhaust port to 2, the sound velocity measuring device can be extended to an aerial sound velocity measuring device.

【0016】また、操作・表示パネル20を容器11の
側面に固定する構成を例示したが、この操作・表示パネ
ルを蓋板上に固定する構成とすることもできる。また携
帯の便宜を一層向上させるために、両端のそれぞれが側
面11a,11bの上部に回転自在に支承される把手を
取り付ける構成としてもよい。あるいは、操作・表示部
分を容器と別個に設置する構成としてもよい。
Although the operation / display panel 20 is fixed to the side surface of the container 11, the operation / display panel may be fixed on the cover plate. Further, in order to further improve the convenience of carrying, a handle may be attached in which both ends are rotatably supported on the upper portions of the side surfaces 11a and 11b. Alternatively, the operation / display portion may be provided separately from the container.

【0017】[0017]

【発明の効果】以上詳細に説明したように、本発明の音
速測定装置は、超音波の伝播経路長が金属棒の長さによ
って固定されているため、測定精度に直接影響する伝播
経路長を正確に算定することができる。
As described above in detail, in the sound velocity measuring device of the present invention, since the propagation path length of the ultrasonic wave is fixed by the length of the metal rod, the propagation path length which directly affects the measurement accuracy is determined. It can be calculated accurately.

【0018】また、薄肉容器の側面内の伝播時間が、こ
れらを差し引くことによって算定される流体中の伝播時
間に対して極めて小さな割合となるため、差し引くべき
伝播遅延時間の算定値が多少不正確であっても測定精度
に及ぼす影響は小さなものに留まる。
In addition, since the propagation time in the side of the thin-walled container is very small relative to the propagation time in the fluid calculated by subtracting them, the calculated value of the propagation delay time to be subtracted is somewhat inaccurate. Even so, the effect on the measurement accuracy is small.

【0019】さらに、ほぼ平行に対向する平坦な側面に
送信器と受信器を固定しているため、液中を伝播する超
音波の波頭の形状が単純になり、受信信号の波形が整い
測定精度が向上する。
Furthermore, since the transmitter and the receiver are fixed on the flat sides facing each other substantially in parallel, the shape of the wave front of the ultrasonic wave propagating in the liquid is simplified, the waveform of the received signal is adjusted, and the measurement accuracy is improved. Is improved.

【0020】容器の幅は高々10cm 程度と極めて小型
である。また、密度の大きな金属棒は体積が小さく、体
積の大きな容器と蓋板はいずれも薄肉のプラスチックを
素材としているので、全体として極めて軽量になる。従
って、この液中音速測定装置を流量/流速測定システム
などの依頼主のもとに携帯し、サンプルの流体を容器1
1内に注ぎ、音速を測定するのが容易である。
The width of the container is extremely small, at most about 10 cm. In addition, a metal rod having a large density has a small volume, and a container and a cover plate having a large volume are both made of a thin plastic material. Therefore, the in-liquid sound velocity measuring device is carried by a client such as a flow / velocity measuring system, and the sample fluid is transferred to the container 1.
It is easy to pour into and measure the speed of sound.

【0021】容器が小型、軽量で熱容量が小さいため、
短時間で所望の温度に到達できると共に、容器が断熱性
の良好なプラスチックで構成されているため、直立側面
から対流などによって発散する熱量が少なく、温度制御
も容易である。このように容器を薄肉の柔構造として
も、対向する側面どうしが大きな剛性の金属棒によって
拘束されているため、注入された液体の重みによって容
器の側面が撓み、送信器と受信器の間隔が変化したり、
相互の平行度が悪化したりすることにより測定精度が低
下することもない。
Since the container is small, lightweight and has a small heat capacity,
Since the desired temperature can be reached in a short time and the container is made of plastic having good heat insulating properties, the amount of heat radiated from the upright side surface by convection or the like is small, and the temperature can be easily controlled. In this way, even if the container has a thin flexible structure, the opposing side surfaces are restrained by a large rigid metal rod, so that the side of the container is bent by the weight of the injected liquid, and the distance between the transmitter and the receiver is reduced. Change,
The measurement accuracy does not decrease due to the deterioration of the parallelism between them.

【0022】さらに、液中の超音波の伝播経路長を一定
に保つ金属棒が熱膨張係数の小さなインバー合金などを
素材としているため、液温が変化しても伝播経路が広い
温度範囲にわたって一定に保たれ、測定精度が低下した
り、複雑な補正を行う必要がなくなる。
Further, since the metal rod for keeping the propagation path length of the ultrasonic wave in the liquid constant is made of Invar alloy or the like having a small coefficient of thermal expansion, the propagation path is constant over a wide temperature range even if the liquid temperature changes. , The measurement accuracy is reduced, and there is no need to perform complicated correction.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例の液中音速測定装置の構成を
示す側面図である。
FIG. 1 is a side view showing a configuration of an in-liquid sound velocity measuring apparatus according to an embodiment of the present invention.

【図2】図1のBーB’断面図である。FIG. 2 is a sectional view taken along line B-B 'of FIG.

【図3】従来の液中音速測定装置の構成を示す斜視図で
ある。
FIG. 3 is a perspective view showing a configuration of a conventional sound velocity measuring device in liquid.

【符号の説明】[Explanation of symbols]

11 箱型の薄肉プラスチック容器 12 蓋板 13a〜13d 金属棒 14a〜14d ネジ 15a〜15d ボス 20 操作・表示パネル 21 超音波の送信器 22 超音波の受信器 24 測定結果の音速値を表示する表示面 11 Box-shaped thin plastic container 12 Cover plate 13a to 13d Metal rod 14a to 14d Screw 15a to 15d Boss 20 Operation / display panel 21 Ultrasonic transmitter 22 Ultrasonic receiver 24 Display to display sound velocity value of measurement result surface

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】測定対象の液体を保持する容器と、 この容器の互いに対向する側面間に保持され、両側面の
間隔を定める熱膨張係数の小さな金属の棒状体と、 前記容器の前記互いに対向する側面の外部に互いに対向
しながら装着される送信器及び受信器と、 前記送信器及び受信器間を伝播する音波の伝播遅延時間
に関する信号を発生する電子回路と、 この電子回路が発生した信号を前記液体中を伝播する音
速に変換し出力する変換・出力部とを備えたことを特徴
とする液中音速測定装置。
1. A container for holding a liquid to be measured, a metal rod held between opposing side surfaces of the container and having a small coefficient of thermal expansion defining an interval between both side surfaces; A transmitter and a receiver mounted on the outside of the side face facing each other, and an electronic circuit for generating a signal relating to a propagation delay time of a sound wave propagating between the transmitter and the receiver; and a signal generated by the electronic circuit. And a conversion / output unit for converting and outputting the sound velocity to the sound velocity propagating in the liquid.
【請求項2】 請求項1において、 前記容器の前記互いに対向する側面は、ほぼ平坦でかつ
互いにほぼ平行に保たれることを特徴とする液中音速測
定装置。
2. The in-liquid sound velocity measuring apparatus according to claim 1, wherein the mutually facing side surfaces of the container are kept substantially flat and substantially parallel to each other.
【請求項3】 請求項1又は2において、 前記熱膨張係数の小さな金属は、インバー合金、スーパ
ーインバー合金、ステンレスインバー合金、FeーNi
系エリンバー合金のうちの一つを素材とし、前記容器は
プラスチックの薄肉容器であることを特徴とする液中音
速測定装置。
3. The metal according to claim 1, wherein the metal having a small coefficient of thermal expansion is an invar alloy, a super invar alloy, a stainless invar alloy, or Fe—Ni.
An apparatus for measuring the speed of sound in liquid, wherein one of the base Elinvar alloys is used as a material, and the container is a thin-walled container made of plastic.
【請求項4】請求項1乃至3のいずれか一つにおいて、 前記容器の上部は、温度計、加熱器電源、攪拌器を通過
させるボスが植設された蓋板によって着脱自在に覆われ
ることを特徴とする液中音速測定装置。
4. The one of claims 1 to 3, the upper portion of said container, a thermometer, heater power, the boss passing the agitator is detachably covered by a cover plate planted A sound velocity measuring device in liquid characterized by the above-mentioned.
【請求項5】請求項1乃至4のいずれか一つにおいて、 前記電子回路と、前記変換・出力部は、前記容器の側面
又は前記蓋板に装着されたことを特徴とする液中音速測
定装置。
5. The one of claims 1 to 4, said electronic circuit, said conversion and output section in a liquid sound speed measurement, characterized in that mounted on the side surface or the cover plate of the container apparatus.
【請求項6】測定対象の液体を保持する容器と、 この容器の互いに対向する側面間に保持され、両側面の
間隔を定める熱膨張係数の小さな金属の棒状体と、 前記容器の前記互いに対向する側面の一方の外部に装着
される送受信器と、 前記送受信器から放射され前記対向する側面の他方で反
射されてこの送受信器に受信される超音波の伝播遅延時
間に関する信号を発生する電子回路と、 この電子回路が発生した信号を前記液体中を伝播する音
速に変換し出力する変換・出力部とを備えたことを特徴
とする液中音速測定装置。
6. A container for holding a liquid to be measured, a metal rod held between the opposing sides of the container and having a small coefficient of thermal expansion for defining a distance between the two side surfaces; A transceiver mounted externally on one of the side surfaces to be radiated, and an electronic circuit for generating a signal related to the propagation delay time of the ultrasonic wave radiated from the transceiver and reflected by the other of the opposite side surfaces and received by the transceiver. And a conversion / output unit that converts a signal generated by the electronic circuit into a sound speed propagating in the liquid and outputs the converted sound speed.
【請求項7】測定対象の気体を密封状態で保持する容器
と、 この容器の互いに対向する側面間に保持され両側面の間
隔を定める熱膨張係数の小さな金属の棒状体と、 前記容器の前記互いに対向する側面の外部に互いに対向
しながら装着される送信器及び受信器と、 前記送信器及び受信器間を伝播する音波の伝播遅延時間
に関する信号を発生する電子回路と、 この電子回路が発生した信号を前記液体中を伝播する音
速に変換し出力する変換・出力部とを備えたことを特徴
とする気中音速測定装置。
7. A container for holding a gas to be measured in a sealed state, a metal rod having a small thermal expansion coefficient held between opposing side surfaces of the container and defining an interval between both side surfaces; A transmitter and a receiver that are mounted facing each other outside the side surfaces facing each other, an electronic circuit that generates a signal relating to a propagation delay time of a sound wave propagating between the transmitter and the receiver, and an electronic circuit that generates the electronic circuit. And a conversion / output unit for converting the converted signal into a sound speed propagating in the liquid and outputting the converted signal.
JP5108911A 1993-04-12 1993-04-12 Sound velocity measuring device Expired - Lifetime JP2975804B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5108911A JP2975804B2 (en) 1993-04-12 1993-04-12 Sound velocity measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5108911A JP2975804B2 (en) 1993-04-12 1993-04-12 Sound velocity measuring device

Publications (2)

Publication Number Publication Date
JPH06300617A JPH06300617A (en) 1994-10-28
JP2975804B2 true JP2975804B2 (en) 1999-11-10

Family

ID=14496768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5108911A Expired - Lifetime JP2975804B2 (en) 1993-04-12 1993-04-12 Sound velocity measuring device

Country Status (1)

Country Link
JP (1) JP2975804B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008096277A (en) * 2006-10-12 2008-04-24 Ono Sokki Co Ltd Laser measuring apparatus
CN102749134B (en) * 2012-06-15 2013-11-27 北京航空航天大学 Method for measuring sound velocity by using water-filled impedance tube
JP7004130B2 (en) * 2016-09-20 2022-01-21 日新電機株式会社 Grease deterioration diagnostic device
JP7035631B2 (en) * 2018-03-05 2022-03-15 セイコーエプソン株式会社 Sound velocity measuring device and electronic equipment

Also Published As

Publication number Publication date
JPH06300617A (en) 1994-10-28

Similar Documents

Publication Publication Date Title
CN1725019B (en) Clamp type doppler ultrasonic flow rate distribution instrument
US7716995B2 (en) Coriolis flow meter and method for determining flow characteristics
US4524610A (en) In-line vibratory viscometer-densitometer
US7774150B2 (en) Meter electronics and methods for determining one or more of a stiffness coefficient or a mass coefficient
US5067344A (en) Vibratory viscometer transducer with isolation support for inline viscosity sensor
Chivers et al. Effective area to be used in diffraction corrections
Tsai et al. High accuracy ultrasonic air temperature measurement using multi-frequency continuous wave
US5157962A (en) Vibratory viscometer transducer with isolation support for inline viscosity sensor
JP2975804B2 (en) Sound velocity measuring device
Joshi Ultrasonic flow meter using mode coupling transducers
US5099691A (en) Method for measuring length, and apparatus for implementing the method
Greenberg et al. High precision measurements of the temperature dependence of the sound velocity in selected liquid metals
RU2396518C2 (en) Method and device for acoustic measurement of gas flow rate
Swamy et al. Ultrasonic power measurements in the milliwatt region by the radiation force float method
van Deventer et al. Thermostatic and dynamic performance of an ultrasonic density probe
US5184512A (en) Measuring the length of a column of fluid in a tube
Yun et al. Ultrasonic Absorption Measurements in Single Crystals of Naphthalene and p‐Dichlorobenzene
Mert et al. A new method to measure viscosity and intrinsic sound velocity of liquids using impedance tube principles at sonic frequencies
KR20070114837A (en) Coriolis flow meter and method for determining flow characteristics
Krylovich Ways of increasing the accuracy of thermophysical measurements. 1. Increasing the accuracy of conventional methods
RU223381U1 (en) Module for estimating seawater salinity based on a sound speed meter
JP2007178244A (en) Ultrasonic flowmeter and wedge therefor
RU2324150C2 (en) Test unit and diagnosis method for coriolis flow meter
RU1793363C (en) Device for determining concentration of dissolved substance
JPH07318397A (en) Ultrasonic liquid gage