JP2966600B2 - Nonlinear optical material - Google Patents

Nonlinear optical material

Info

Publication number
JP2966600B2
JP2966600B2 JP27004991A JP27004991A JP2966600B2 JP 2966600 B2 JP2966600 B2 JP 2966600B2 JP 27004991 A JP27004991 A JP 27004991A JP 27004991 A JP27004991 A JP 27004991A JP 2966600 B2 JP2966600 B2 JP 2966600B2
Authority
JP
Japan
Prior art keywords
knbo
crystal
plane
substrate
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27004991A
Other languages
Japanese (ja)
Other versions
JPH0580376A (en
Inventor
和思 森
忠夫 戸田
光晴 松本
英幸 野中
隆夫 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Denki Co Ltd
Original Assignee
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Denki Co Ltd filed Critical Sanyo Denki Co Ltd
Priority to JP27004991A priority Critical patent/JP2966600B2/en
Publication of JPH0580376A publication Critical patent/JPH0580376A/en
Application granted granted Critical
Publication of JP2966600B2 publication Critical patent/JP2966600B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は高密度光ディスク用光源
装置, 光演算装置等の情報処理装置等において波長変換
素子,光スイッチ,光変調器等として用いられる非線形
光学材料に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-linear optical material used as a wavelength conversion element, an optical switch, an optical modulator and the like in an information processing device such as a light source device for a high-density optical disk, an optical arithmetic device, and the like.

【0002】[0002]

【従来の技術】非線形光学効果は同じ非線形光学材料,
同じ光出力の光源を用いても、可及的に狭い領域に光を
閉込める程、換言すれば非線形媒質に入射された光の空
間的密度が大きい程、その効果は大きくなる。このため
非線形光学材料の構造は導波路構造とするのが、また光
導波路においては基板とこれに積層した光導波路との界
面での屈折率変化がステップ状であることが設計の容易
性, 特性の制御性の点から好ましく、この観点から導波
路としては不純物拡散法, イオン交換法等により作製す
るよりも、導波路材料自身の屈折率よりも小さい屈折率
を有する基板上に薄膜状に堆積させた導波路、或いはそ
の薄膜をエッチングして作製したチャンネル型導波路が
より望ましいといえる。
2. Description of the Related Art The nonlinear optical effect is the same nonlinear optical material,
Even when a light source having the same light output is used, the effect becomes larger as light is confined in a region as narrow as possible, in other words, as the spatial density of light incident on the nonlinear medium is larger. For this reason, the structure of the nonlinear optical material is a waveguide structure, and the optical waveguide has a step-like refractive index change at the interface between the substrate and the optical waveguide laminated on the substrate. From the viewpoint of the controllability of the waveguide, from this viewpoint, the waveguide is deposited in a thin film on a substrate having a refractive index smaller than the refractive index of the waveguide material itself, as compared with the case where the waveguide is manufactured by an impurity diffusion method, an ion exchange method, or the like. It can be said that a waveguide formed by etching or a channel type waveguide formed by etching a thin film thereof is more desirable.

【0003】このような条件を満たす従来の非線形光学
材料として、LiTaO3 基板上、或いはサファイア(α−
Al2 3 )基板上にLPE ( 液相エピタキシャル) 法にて
LiNbO3 薄膜結晶を堆積させたものがある(OQE88-4
3)。LiNbO3 は非線形光学効果の強さを表す非線形光学
定数が大きく、また化学的にも安定で、例えば波長変換
素子等に利用して優れた特性を備えている。
[0003] As a conventional nonlinear optical material satisfying such conditions, a LiTaO 3 substrate or sapphire (α-
Al 2 O 3 ) LPE (liquid phase epitaxy) method on substrate
LiNbO 3 thin film crystals are deposited (OQE88-4
3). LiNbO 3 has a large nonlinear optical constant indicating the strength of the nonlinear optical effect, is chemically stable, and has excellent characteristics when used, for example, as a wavelength conversion element.

【0004】[0004]

【発明が解決しようとする課題】ところがLiNbO3 薄膜
結晶は、光のエネルギーによってその強誘電性が破壊さ
れるレベル、所謂光損傷閾値が波長1.06μm のレーザ光
の場合で約30MW/cm2 程度で他の材料に比べて低いとい
う問題があった。これを解決する手段として基板にMgO
をドーピングすることにより光損傷閾値を高める方法が
提案されている。
However, the LiNbO 3 thin film crystal has a level at which its ferroelectricity is destroyed by light energy, that is, about 30 MW / cm 2 in the case of laser light having a so-called light damage threshold of 1.06 μm. There was a problem that it was lower than other materials. As a means to solve this, MgO
There has been proposed a method of increasing the photodamage threshold by doping GaN.

【0005】しかしこの方法はMgOの成分比率の調整が
厳しく、特にスパッタ法による結晶成長過程でこのよう
な成分比率を満たすのは容易でないという難点があっ
た。本発明はこのような従来の問題点を解決すべくなさ
れたものであり、ノンドープで、しかも光損傷閾値が高
く、且つLiNbO3 と同程度の非線形光学効果を有する導
波路構造の非線形光学材料を提供することを目的とする
ものである。
However, this method has a drawback in that it is difficult to adjust the MgO component ratio, and it is not easy to satisfy such a component ratio particularly in the crystal growth process by the sputtering method. The present invention has been made in order to solve such a conventional problem. Therefore, a non-doped non-linear optical material having a high optical damage threshold and having a non-linear optical effect comparable to that of LiNbO 3 has been developed. It is intended to provide.

【0006】[0006]

【課題を解決するための手段】本発明に係る非線形光学
材料にあっては、KNbO3 の屈折率よりも小さい屈折率
を有する基板上にKNbO3 薄膜結晶を堆積してなる非線
形光学材料において、前記KNbO3 薄膜結晶はスピネル
の{110 }面、水晶の{112 バー0 }面, {112 バー1
}面、KTP の{010 }面, {100 }面、又はMgOの{1
10}面のいずれかの面上に堆積してあることを特徴とす
る。
In the nonlinear optical material according to the present invention, in order to solve the problems], in the nonlinear optical material formed by depositing a KNbO 3 thin-film crystal on a substrate having a refractive index less than the refractive index of the KNbO 3, The KNbO 3 thin film crystal is composed of {110} plane of spinel, {112 bar 0} plane of quartz, and {112 bar 1}.
} Face, TP010 face of KTP, {100 face, or O1 of MgO
It is characterized in that it is deposited on any one of the 10 mm surfaces.

【0007】[0007]

【作用】本発明にあってはスピネル,水晶,KTP(KTiO
PO4 ),又はMgOのいずれかで形成した基板表面にKNb
3 薄膜結晶を積層形成したから、格子不整合が小さく
で済み、また光に対する耐力が大幅に高められて光損傷
閾値が大きくなり、更に非線形光学定数も大きくなって
波長変換効果の向上が図れる。
According to the present invention, spinel, quartz, KTP (KTiO
KNb is applied to the substrate surface formed of either PO 4 ) or MgO.
Since the O 3 thin film crystal is formed by lamination, the lattice mismatch can be reduced, the proof stress against light is greatly increased, the optical damage threshold is increased, and the nonlinear optical constant is also increased, so that the wavelength conversion effect can be improved. .

【0008】[0008]

【実施例】以下本発明をその実施例を示す図面に基づき
具体的に説明する。 (実施例1)図1は本発明に係る薄膜導波路構造の非線
形光学材料を示す模式図であり、図中1は基板、2はK
NbO3 薄膜結晶からなる導波路を示している。基板1は
KNbO3 の屈折率よりも小さい屈折率を有する材料、例
えばスピネル(MgO・Al2 3 )で形成されており、そ
の(110) 面上にKNbO3 の薄膜結晶からなる導波路2を
RFマグネトロンスパッタ法等にて堆積してある。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below with reference to the drawings showing the embodiments. (Embodiment 1) FIG. 1 is a schematic view showing a nonlinear optical material having a thin film waveguide structure according to the present invention.
3 shows a waveguide made of NbO 3 thin film crystal. The substrate 1 is formed of a material having a refractive index smaller than that of KNbO 3 , for example, spinel (MgO.Al 2 O 3 ), and has a waveguide 2 made of a thin crystal of KNbO 3 on its (110) plane. To
Deposited by RF magnetron sputtering method.

【0009】KNbO3 の薄膜結晶の堆積条件の一例を示
すと次のとおりである。スピネルは立方晶系に属し、格
子定数は常温で8.02Åであるが、先ずこの結晶を図2
(a) に示す如き(110) 面でカットして基板1を得る。図
2(a) はスピネルの単位格子及びその(110) 面を示す説
明図であり、図中3はスピネルの基本単位格子、4はス
ピネルの(110) 面(ハッチングを付して示す)である。
次にこの基板1をガス圧比Ar:O2 =1:1の雰囲気中
で約600 ℃に維持し、RFパワー密度約1w/cm2 で厚さ
1μm のKNbO3 単結晶の薄膜を堆積させる。
An example of the conditions for depositing the thin film crystal of KNbO 3 is as follows. Spinel belongs to the cubic system and has a lattice constant of 8.02Å at room temperature.
A substrate 1 is obtained by cutting at the (110) plane as shown in FIG. FIG. 2A is an explanatory view showing a spinel unit cell and its (110) plane. In the figure, 3 is a spinel basic unit cell, and 4 is a spinel (110) plane (shown by hatching). is there.
Next, the substrate 1 is maintained at about 600 ° C. in an atmosphere having a gas pressure ratio of Ar: O 2 = 1: 1, and a 1 μm-thick KNbO 3 single crystal thin film having an RF power density of about 1 w / cm 2 is deposited.

【0010】図2(b) はスピネルの酸素原子11と、スピ
ネルの(110) 面上に積層したKNbO3 薄膜結晶の酸素原
子12とを前者に後者を投影して示す説明図である。スピ
ネルの酸素原子11の配列は図2(d) に示す〔001 〕方向
に4.01Åの周期、また同じく〔11バー0 〕方向に2.84Å
の周期となっている。一方、KNbO3 の酸素原子12の配
列は図2(c) に示す如くb軸方向に3.97Åの周期、また
a軸方向に5.70Åの周期となっており、両者の格子不整
合は図2(b) に示す如くKNbO3 のb軸方向に1.0 %、
a軸方向に0.35%程度となり、相互の酸素原子の比較的
良好な整合が可能である。
FIG. 2 (b) is an explanatory view showing the oxygen atoms 11 of the spinel and the oxygen atoms 12 of the KNbO 3 thin film crystal laminated on the (110) plane of the spinel by projecting the latter onto the former. The arrangement of oxygen atoms 11 in the spinel has a period of 4.01 ° in the [001] direction and 2.84 ° in the [11 bar 0] direction as shown in FIG.
Cycle. On the other hand, the arrangement of the oxygen atoms 12 in KNbO 3 has a period of 3.97 ° in the b-axis direction and a period of 5.70 ° in the a-axis direction as shown in FIG. 2 (c). 1.0% in the b-axis direction of KNbO 3 as shown in FIG.
The ratio is about 0.35% in the a-axis direction, and relatively good matching of oxygen atoms can be achieved.

【0011】なお上述の実施例ではスピネルの(110) 面
にKNbO3 薄膜結晶を積層形成した構成を示したが、こ
れに限らずこれと等価な面{110 }上であればよい。ま
たスピネルとしては混晶比が1:1のMgO・Al2 3
示したが、混晶比が他の割合のスピネルを使用してもよ
いことは勿論である。このような実施例1についてその
光損傷閾値を調べた結果、波長1.06μm の光に対して35
0MW /cm2 程度となることが確認された。
In the above-described embodiment, the KNbO 3 thin-film crystal is laminated on the (110) plane of the spinel. However, the present invention is not limited to this. Although MgO.Al 2 O 3 having a mixed crystal ratio of 1: 1 was shown as the spinel, it is a matter of course that spinel having a mixed crystal ratio of another ratio may be used. As a result of examining the optical damage threshold value of Example 1 as described above, it was found that the light damage threshold for light having a wavelength of 1.06 μm was 35%.
It was confirmed that it was about 0 MW / cm 2 .

【0012】(実施例2)この実施例においては具体的
に図示していないが、基板として水晶を用い、水晶の(1
12バー0)面にLPE(液晶エピタキシャル)法を用いてKNb
3 薄膜結晶からなる導波路を積層形成した。KNbO3
薄膜結晶の堆積条件の一例を具体的数値と共に示すと以
下のとおりである。
(Embodiment 2) Although not specifically shown in this embodiment, a quartz crystal is used as a substrate, and (1)
KNb on the 12 bar 0) surface using LPE (Liquid Crystal Epitaxial) method
A waveguide made of O 3 thin film crystal was laminated. KNbO 3
An example of the conditions for depositing the thin film crystal together with specific numerical values is as follows.

【0013】先ず水晶を図3(a) に示す如き(112バー0)
面でカットして基板を得る。図3(a) は単位格子及びそ
の(112バー0)面を示す説明図であり、図中5は水晶の基
本単位格子、6は水晶の(112バー0)面(ハッチングを付
して示す)である。なお水晶の格子定数はa軸で4.91
Å,c軸で5.40Åであり、常温で三方晶であるが、等価
的に六方晶として表わすことが出来るから図3(a) にお
いては六方晶とみなして表わしてある。
First, a quartz crystal is placed as shown in FIG.
Cut the surface to obtain a substrate. FIG. 3 (a) is an explanatory view showing a unit cell and its (112 bar 0) plane. In the figure, 5 is a basic unit cell of crystal, and 6 is a (112 bar 0) plane of crystal (shown by hatching. ). The lattice constant of quartz is 4.91 on the a-axis.
It is 5.40 ° on the Å and c axes, and is trigonal at room temperature. However, since it can be equivalently expressed as hexagonal, it is regarded as hexagonal in FIG. 3 (a).

【0014】次にこの基板とK2 O−Nb2 5 −V2
5 系の材料を用いてLPE 法により成長温度約1000℃で膜
厚1μm 以上のKNbO3 薄膜結晶(単結晶)を積層形成
した。なお水晶の(112バー0)面に限らず、これを含むこ
れと等価な{112 バー0 }面, 又は(112バー1)面, 又は
これを含む等価な{112 バー1 }面にKNbO3 薄膜結晶
を堆積しても同様の効果が得られる。
Next, this substrate and K 2 O—Nb 2 O 5 —V 2 O
Film thickness 1μm or more KNbO 3 thin-film crystal (single crystal) was laminated at a growth temperature of about 1000 ° C. by LPE method using a 5-based material. Not only the (112 bar 0) plane of crystal but also the equivalent {112 bar 0} plane including this, or the (112 bar 1) plane, or the equivalent {112 bar 1} plane including this, KNbO 3 Similar effects can be obtained by depositing a thin film crystal.

【0015】図3(b) は水晶の酸素原子13と、水晶の(1
12バー0)面上に堆積したKNbO3 薄膜結晶の酸素原子12
とを前者に後者を投影して示す説明図である。水晶の酸
素原子13の配列は図3(d) に示す〔0001〕方向に5.40Å
周期、また同じく〔11バー00〕方向に4.25Åの周期とな
っている。なおKNbO3 の酸素原子12の配列は実施例1
において示したとおりである。従って格子不整合はKNb
3 のa軸方向に5.5 %,b軸方向に7.0 %となり、水
晶とKNbO3 のa軸及びb軸上の酸素原子を整合させる
ことが可能である。
FIG. 3 (b) shows oxygen atoms 13 of the crystal and (1) of the crystal.
Oxygen atom 12 of KNbO 3 thin film crystal deposited on the 12 bar 0) plane
FIG. 3 is an explanatory diagram showing the former by projecting the latter onto the former. The arrangement of the oxygen atoms 13 in the crystal is 5.40 ° in the [0001] direction shown in FIG.
The period is also 4.25 ° in the [11 bar 00] direction. Note that the arrangement of the oxygen atoms 12 of KNbO 3 is described in Example 1.
Is as shown in FIG. Therefore, the lattice mismatch is KNb
O 3 is 5.5% in the a-axis direction and 7.0% in the b-axis direction, and it is possible to match oxygen atoms on the a-axis and the b-axis of KNbO 3 with quartz.

【0016】なお前述した実施例1においてはスピネル
を基板1とし、その(110) 面4にKNbO3 薄膜結晶の導
波路2を、また実施例2においては水晶を基板とし、そ
の(112バー0)面6にKNbO3 薄膜結晶を夫々積層形成し
た構成を説明したが、基板の材料は特にこれらに限るも
のではなくKTP(KTiOPO4 )、MgO等を用いてもよい。
基板としてKTP を用いる場合にはその(010) 面、(100)
面又はこれらと等価な{010 }面, {100 }面上に、ま
たMgOを用いる場合はその(110) 面又はこれと等価な
{110 }面上に夫々KNbO3 薄膜結晶を積層形成すれば
よい。
In the first embodiment, the spinel is used as the substrate 1 and the waveguide 2 of the KNbO 3 thin film crystal is provided on the (110) face 4 thereof. ) KNbO 3 thin film crystals are formed on the surface 6 in a laminated manner. However, the material of the substrate is not particularly limited thereto, and KTP (KTiOPO 4 ), MgO, or the like may be used.
When KTP is used as a substrate, its (010) plane and (100) plane
The KNbO 3 thin film crystal is formed on the (010) plane or the equivalent {100} plane, or on the (110) plane or the equivalent {110} plane when MgO is used. Good.

【0017】次に基板として上記した如きスピネル(Mg
O・Al2 3 ),水晶(SiO2 ),KTP,MgOを用いた時
の格子不整合は表1に示すとおりである。
Next, as a substrate, spinel (Mg
Table 1 shows the lattice mismatch when O.Al 2 O 3 ), quartz (SiO 2 ), KTP, and MgO were used.

【0018】[0018]

【表1】 [Table 1]

【0019】また本発明に係る非線形光学材料と従来の
非線形光学材料との非線形光学定数(pm/V)は表2に
示すとおりである。
Table 2 shows the nonlinear optical constant (pm / V) of the nonlinear optical material according to the present invention and the conventional nonlinear optical material.

【0020】 [0020]

【0021】[0021]

【発明の効果】以上の如く本発明に係る非線形光学材料
にあっては、KNbO3 の屈折率よりも小さい屈折率を有
する基板上にKNbO3 薄膜結晶を積層形成してあるか
ら、KNbO3 薄膜結晶の強誘電性が損なわれるレベルた
る光損傷閾値が大きくなり、しかも非線形光学定数も大
きく、波長変換素子,光スイッチ,光変調器等に用いて
優れた特性が得られる等、本発明は優れた効果を奏する
ものである。
In the nonlinear optical material according to the present invention as described above, according to the present invention, since a KNbO 3 thin-film crystal on a substrate having a refractive index less than the refractive index of the KNbO 3 are then stacked, KNbO 3 thin film The present invention is excellent in that the optical damage threshold, which is a level at which the ferroelectricity of the crystal is impaired, is large, and the nonlinear optical constant is large, and excellent characteristics can be obtained when used in wavelength conversion elements, optical switches, optical modulators, and the like. It has the effect that it has.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る非線形光学材料の模式図である。FIG. 1 is a schematic view of a nonlinear optical material according to the present invention.

【図2】スピネルの単位格子及び酸素原子の整合態様を
示す説明図である。
FIG. 2 is an explanatory view showing a matching mode of a unit cell of a spinel and an oxygen atom.

【図3】水晶の単位格子及び酸素原子の整合態様を示す
説明図である。
FIG. 3 is an explanatory diagram showing a matching mode of a unit cell and an oxygen atom of quartz.

【符号の説明】[Explanation of symbols]

1 基板 2 KNbO3 薄膜結晶からなる導波路 3 スピネルの単位格子 4 スピネルの(110) 面 5 水晶の単位格子 6 水晶の(112バー0)面 11 スピネルの酸素原子 12 KNbO3 薄膜結晶の酸素原子 13 水晶の酸素原子DESCRIPTION OF SYMBOLS 1 Substrate 2 Waveguide made of KNbO 3 thin film crystal 3 Unit cell of spinel 4 (110) plane of spinel 5 Unit lattice of crystal 6 (112 bar 0) plane of crystal 11 Oxygen atom of spinel 12 Oxygen atom of KNbO 3 thin film crystal 13 Oxygen atoms in quartz

───────────────────────────────────────────────────── フロントページの続き (72)発明者 野中 英幸 大阪府守口市京阪本通2丁目18番地 三 洋電機株式会社内 (72)発明者 山口 隆夫 大阪府守口市京阪本通2丁目18番地 三 洋電機株式会社内 (56)参考文献 Appl.Phys.Lett.,V ol.58 No.18 pp.1964−1966 (6 May 1991) Crystal Propertie s and Preparation, Vol.32−34 pp.117−122 (1991) Jpn.J.Appl.Phys.S uppl.,No.24−2 pp.613 −615(1985) Ferroelectrics,Vo l.27 pp.89−92(1980) (58)調査した分野(Int.Cl.6,DB名) G02F 1/35 - 1/35 505 G02B 6/12 - 6/14 CA(STN) JICSTファイル(JOIS)──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Hideyuki Nonaka 2-18-18 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72) Takao Yamaguchi 2--18-18 Keihanhondori, Moriguchi-shi, Osaka (56) References Appl. Phys. Lett. , Vol. 58 No. 18 pp. 1964-1966 (6 May 1991) Crystal Properties and Preparation, Vol. 32-34 pp. 117-122 (1991) Jpn. J. Appl. Phys. S uppl. , No. 24-2 pp. 613-615 (1985) Ferroelectrics, Vol. 27 pp. 89-92 (1980) (58) Field surveyed (Int. Cl. 6 , DB name) G02F 1/35-1/35 505 G02B 6/ 12-6/14 CA (STN) JICST file (JOIS)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 KNbO3 の屈折率よりも小さい屈折率を
有する基板上にKNbO3 薄膜結晶からなる導波路を積層
してなる非線形光学材料において、前記導波路であるK
NbO3 薄膜結晶は基板であるスピネルの{110 }面、水
晶の{112 バー0 }面, {112 バー1 }面、KTP の{01
0 }面, {100 }面、又はMgOの{110 }面のいずれか
の面上に堆積してあることを特徴とする非線形光学材
料。
1. A nonlinear optical material formed by laminating a waveguide made of KNbO 3 thin-film crystal on a substrate having a refractive index less than the refractive index of the KNbO 3, which is the waveguide K
The NbO 3 thin film crystal is composed of the spinel {110} face of the substrate, the quartz {112 bar 0} face, the {112 bar 1} face, and the KTP {01} face.
A non-linear optical material, wherein the non-linear optical material is deposited on any one of a 0-plane, a {100} plane, and a {110} plane of MgO.
JP27004991A 1991-09-20 1991-09-20 Nonlinear optical material Expired - Fee Related JP2966600B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27004991A JP2966600B2 (en) 1991-09-20 1991-09-20 Nonlinear optical material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27004991A JP2966600B2 (en) 1991-09-20 1991-09-20 Nonlinear optical material

Publications (2)

Publication Number Publication Date
JPH0580376A JPH0580376A (en) 1993-04-02
JP2966600B2 true JP2966600B2 (en) 1999-10-25

Family

ID=17480816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27004991A Expired - Fee Related JP2966600B2 (en) 1991-09-20 1991-09-20 Nonlinear optical material

Country Status (1)

Country Link
JP (1) JP2966600B2 (en)

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Appl.Phys.Lett.,Vol.58 No.18 pp.1964−1966(6 May 1991)
Crystal Properties and Preparation,Vol.32−34 pp.117−122(1991)
Ferroelectrics,Vol.27 pp.89−92(1980)
Jpn.J.Appl.Phys.Suppl.,No.24−2 pp.613−615(1985)

Also Published As

Publication number Publication date
JPH0580376A (en) 1993-04-02

Similar Documents

Publication Publication Date Title
JP3462265B2 (en) Wavelength conversion element
JP3148896B2 (en) Lithium niobate single crystal thin film
CN102253451A (en) Preparation method of lithium niobate optical waveguide
US5654229A (en) Method for replicating periodic nonlinear coefficient patterning during and after growth of epitaxial ferroelectric oxide films
US5158823A (en) Second harmonic wave generating device
JP2949807B2 (en) Optical waveguide device and method of manufacturing the same
JP2966600B2 (en) Nonlinear optical material
JP2019105808A (en) Optical element and manufacturing method thereof
Tien et al. Research in optical films for the applications of integrated optics
US4953943A (en) Second harmonic wave generating device
JP4603020B2 (en) Manufacturing method of optical waveguide
US5227011A (en) Method for producing a second harmonic wave generating device
JP4665162B2 (en) Optical element and manufacturing method thereof
JPH05313033A (en) Optical waveguide, manufacture thereof and optical element
JP2899345B2 (en) Optical device
JP2760172B2 (en) Waveguide type nonlinear optical device
JP2962024B2 (en) Method for manufacturing optical waveguide and method for manufacturing optical wavelength conversion element
JP2945107B2 (en) Optical wavelength conversion element and method of manufacturing the same
JP2001264554A (en) Optical device
JPH05264840A (en) Optical waveguide
JP2838803B2 (en) Method for producing lithium niobate single crystal thin film
JP3203003B2 (en) Optical wavelength conversion element
JP3121361B2 (en) Ti-containing lithium niobate thin film and method for producing the same
JP3552135B2 (en) Waveguide and wavelength conversion element using the same
KR100295405B1 (en) Preparation method of titanium diffusion lithium tantalate for optical waveguide

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070813

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080813

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees