JP2965242B2 - Mass flow meter converter - Google Patents

Mass flow meter converter

Info

Publication number
JP2965242B2
JP2965242B2 JP10890195A JP10890195A JP2965242B2 JP 2965242 B2 JP2965242 B2 JP 2965242B2 JP 10890195 A JP10890195 A JP 10890195A JP 10890195 A JP10890195 A JP 10890195A JP 2965242 B2 JP2965242 B2 JP 2965242B2
Authority
JP
Japan
Prior art keywords
frequency
time difference
reciprocal
natural frequency
flow tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10890195A
Other languages
Japanese (ja)
Other versions
JPH08304139A (en
Inventor
大一 北見
敏広 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OOBARU KK
Original Assignee
OOBARU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OOBARU KK filed Critical OOBARU KK
Priority to JP10890195A priority Critical patent/JP2965242B2/en
Priority to US08/455,420 priority patent/US5602346A/en
Publication of JPH08304139A publication Critical patent/JPH08304139A/en
Application granted granted Critical
Publication of JP2965242B2 publication Critical patent/JP2965242B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、質量流量計変換器に関
し、より詳細には、フローチューブを一定振幅の固有振
動で駆動したとき、フローチューブに作用するコリオリ
の力から質量流量を求め、固有振動数から流体の密度を
求めるコリオリ流量計のドリフトを補正する質量演算器
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a mass flow meter converter, and more particularly, to a method for determining a mass flow rate from a Coriolis force acting on a flow tube when the flow tube is driven by a natural vibration having a constant amplitude. The present invention relates to a mass calculator for correcting a drift of a Coriolis flowmeter for obtaining a fluid density from a natural frequency.

【0002】[0002]

【従来の技術】流体工業においては、流量計測は不可欠
であり、流量計測には目的に応じた各種流量計が使用さ
れる。従来、流量計としては、主に、容積流量計,オリ
フィス,渦流量計,電磁流量計等が用いられているが、
これらは体積流量計であり、求められた体積流量から質
量流量を求める場合は、密度,温度を補正する演算を施
す必要がある。このような方式では、密度,温度の検出
誤差を伴うものであり、例えば、高価な流体を扱うファ
インケミカル用としては、近年、直接質量をコリオリ流
量計が多く用いられるようになった。
2. Description of the Related Art In the fluid industry, flow measurement is indispensable, and various kinds of flow meters according to the purpose are used for flow measurement. Conventionally, volumetric flowmeters, orifices, vortex flowmeters, electromagnetic flowmeters, and the like have been mainly used as flowmeters.
These are volume flow meters, and when calculating the mass flow rate from the obtained volume flow rate, it is necessary to perform an operation for correcting the density and the temperature. Such a method involves detection errors of density and temperature. For example, for fine chemicals that handle expensive fluids, a direct mass Coriolis flowmeter has recently been used in many cases.

【0003】周知のように、コリオリ流量計は、被測流
体が流れるフローチューブを両端で支持し、支持された
測定管の中央部を支持線に直角な方向に交番駆動したと
き、フローチューブに質量流量に比例する位相差が生ず
ることを利用した質量流量計である。具体的には、フロ
ーチューブの両端支持部と中央部との間の対称位置に質
量流量に比例したコリオリの力による位相差信号を検出
し、位相差信号に比例した質量流量を求めるが、駆動周
波数を一定とすると、位相差信号は測定管の前記対称位
置におけるフローチューブが基準線を通過したときの時
間差信号として検出することができる。
[0003] As is well known, a Coriolis flowmeter supports a flow tube through which a fluid to be measured flows at both ends, and when the central portion of the supported measurement tube is driven alternately in a direction perpendicular to the support line, the flow tube is connected to the flow tube. This is a mass flow meter utilizing the fact that a phase difference proportional to the mass flow rate occurs. Specifically, the phase difference signal due to the Coriolis force proportional to the mass flow rate is detected at a symmetrical position between the support portion and the center portion of the flow tube at both ends, and the mass flow rate proportional to the phase difference signal is obtained. Assuming that the frequency is constant, the phase difference signal can be detected as a time difference signal when the flow tube at the symmetric position of the measurement tube has passed the reference line.

【0004】フローチューブを共振周波数で交番駆動さ
せ、フローチューブの寸法,材質,被測流体の密度に応
じた一定の駆動周波数が得られ、小さい駆動エネルギで
駆動することが可能となり、駆動周波数に応じた被測流
体の密度を求めることができることから、最近では測定
管を固有振動数で駆動するのが一般的となっている。
[0004] The flow tube is driven alternately at a resonance frequency to obtain a constant drive frequency in accordance with the size, material, and density of the fluid to be measured. Since the density of the fluid to be measured can be determined according to the density, recently, it is common to drive the measuring tube at a natural frequency.

【0005】図3は、従来の質量流量計変換器の構成を
説明するためのブロック図であり、図中、1はドライブ
回路、2は駆動コイル、3,4は検出コイル、5は位相
検出回路、6は全波整流回路、8はCPU(中央演算処
理装置)である。
FIG. 3 is a block diagram for explaining the configuration of a conventional mass flowmeter converter. In FIG. 3, 1 is a drive circuit, 2 is a drive coil, 3, 4 is a detection coil, and 5 is a phase detection. The circuit, 6 is a full-wave rectifier circuit, and 8 is a CPU (Central Processing Unit).

【0006】図3において、駆動部は、被測流体が流れ
る両端支持されたフローチューブ(図示せず)の中央部
に位置して支持体(図示せず)との間に取り付けられ、
例えば、駆動コイル2と、該駆動コイル2から磁気を受
けるコア(図示せず)等からなり、検出コイル3,4
は、フローチューブの支持部と駆動部との間の対称位置
で支持体との間に設けられ、例えば、検出コイル3,4
と磁石(図示せず)から構成される。
In FIG. 3, the drive unit is located at the center of a flow tube (not shown) supported at both ends, through which a fluid to be measured flows, and attached between the flow tube and a support (not shown).
For example, the detection coils 3 and 4 include a drive coil 2 and a core (not shown) that receives magnetism from the drive coil 2.
Are provided between the support of the flow tube and the support at a symmetrical position between the support and the driving unit.
And a magnet (not shown).

【0007】駆動コイル2は、ドライブ回路1の出力端
に接続され駆動されるが、ドライブ回路1の入力端に
は、検出コイル3で検出された正弦波信号を全波整流回
路6により整流した直流信号が接続され、検出コイル
3,全波整流回路6,ドライブ回路1,駆動コイル2か
らなる正帰還回路により、フローチューブ2の固有振動
数の正弦波発振回路が構成されている。このとき、検出
コイル3から出力されるP点での検出信号は、全波整流
回路6により直流電圧に変換され、ドライブ回路1にお
いて基準電圧と比較され、P点の正弦波信号ピーク電圧
が常に一定となるように制御されている。
The drive coil 2 is connected to and driven by the output terminal of the drive circuit 1. The input terminal of the drive circuit 1 rectifies a sine wave signal detected by the detection coil 3 by a full-wave rectifier circuit 6. A DC signal is connected, and a positive feedback circuit including a detection coil 3, a full-wave rectifier circuit 6, a drive circuit 1, and a drive coil 2 forms a sine wave oscillation circuit having a natural frequency of the flow tube 2. At this time, the detection signal at point P output from the detection coil 3 is converted to a DC voltage by the full-wave rectifier circuit 6 and compared with the reference voltage in the drive circuit 1 so that the peak voltage of the sine wave signal at point P is always It is controlled to be constant.

【0008】この結果、検出コイル4の検出電圧は、検
出コイル3の正弦波信号に対して、コリオリの力に比例
した位相差をもった一定振幅正弦波信号となり、位相差
は位相検出回路5により検出される。図4は、コリオリ
質量流量計の時間差測定の一例を説明するための図であ
る。図4(a)は、フローチューブの検出位置における
フローチューブの変位信号を示す図であり、検出された
正弦波信号を増幅整形して得られた台形波信号で、横軸
に時間、縦軸に電圧をとっている。図において台形AB
CD…および台形A1111…は時間軸X−Xに対し
電圧ピーク値の絶対値が等しく正負(±E)の電圧をも
った位相の異なるフローチューブの変位信号を示したも
ので、各々の変位信号は時間軸上連続した同形の台形波
形であり位相差時間をあらわす基準時間は、例えば、一
つの台形波形ABCDの斜辺CDのピーク値C(+E)
あるいはD(−E)と、時間軸をクロスする位置Oとの
時間Tである。
As a result, the detection voltage of the detection coil 4 becomes a constant amplitude sine wave signal having a phase difference proportional to the Coriolis force with respect to the sine wave signal of the detection coil 3. Is detected by FIG. 4 is a diagram for explaining an example of the time difference measurement of the Coriolis mass flow meter. FIG. 4A is a diagram showing a displacement signal of the flow tube at the detection position of the flow tube, which is a trapezoidal wave signal obtained by amplifying and shaping the detected sine wave signal. Voltage. In the figure, trapezoid AB
CD and trapezoids A 1 B 1 C 1 D 1 ... Indicate displacement signals of flow tubes having different positive and negative (± E) voltages with the same absolute value of the voltage peak value with respect to the time axis XX. Each of the displacement signals is a continuous trapezoidal waveform having the same shape on the time axis, and the reference time representing the phase difference time is, for example, a peak value C (+ E) of the hypotenuse CD of one trapezoidal waveform ABCD.
Alternatively, it is the time T between D (−E) and the position O crossing the time axis.

【0009】位相の異なる前記台形ABCDおよびA1
111の変位信号において、例えば、辺CDおよび
11において位相差信号を説明する。四辺形CC11
1は平行四辺形で、平行辺CDとC11の時間差ΔT
は位相差信号であり、辺CC1DD1は時間軸OO1と等
しい長さを持っており、点C1およびD1から時間軸への
投影点を各々O23とすると辺O2Oは時間(T−Δ
T),辺OO3は時間(T+ΔT)を示す。
The trapezoids ABCD and A 1 having different phases.
In the displacement signal of B 1 C 1 D 1 , for example, a phase difference signal at the side CD and C 1 D 1 will be described. Quadrilateral CC 1 D 1
D 1 is a parallelogram, and the time difference ΔT between the parallel side CD and C 1 D 1
Is a phase difference signal, the side CC 1 DD 1 has a length equal to the time axis OO 1, and the projection points from the points C 1 and D 1 to the time axis are respectively O 2 O 3 and the side O 2 O is the time (T-Δ
T) and the side OO 3 indicate time (T + ΔT).

【0010】時間(T−ΔT)は図4(c)、時間(T
+ΔT)は、図4(d)に示すパルスで示され、時間差
ΔTは、CPU8において、図4(b)に示す台形波一
周期の時間幅Mの時間パルスの2倍の時間2Mの間にお
ける各々のパルス幅の加算値を減算して平均を求めてい
る。例えば、 {4(T+ΔT)−4(T−ΔT)}/8=ΔT …(1) により求められる。
The time (T-ΔT) is shown in FIG.
+ ΔT) is indicated by the pulse shown in FIG. 4D, and the time difference ΔT is determined by the CPU 8 during the time 2M which is twice as long as the time pulse having the time width M of one cycle of the trapezoidal wave shown in FIG. An average is obtained by subtracting the added value of each pulse width. For example, {4 (T + ΔT) −4 (T−ΔT)} / 8 = ΔT (1)

【0011】(1)式により求める時間差△Tは、誤差
が含まれていない理想条件での値である。例えば、図5
に示すように流量計測を開始するとき、流量零の状態で
は△T=0でなければならないが、例えば、検出コイル
3,4の検出ゲインが正確に一致しないなどのため、△
T≠0であり、そのために計測する前に零点調整する必
要がある。しかし、零点調整が行われても時間経過にお
ける状態量の変化により零点が移動し、誤差要因とな
る。
The time difference ΔT obtained by the equation (1) is a value under ideal conditions that does not include an error. For example, FIG.
When the flow rate measurement is started as shown in (1), ΔT must be zero in the state of zero flow rate. However, since the detection gains of the detection coils 3 and 4 do not exactly match, for example,
Since T ≠ 0, it is necessary to adjust the zero before measurement. However, even if the zero point adjustment is performed, the zero point moves due to a change in the state quantity over time, which causes an error.

【0012】[0012]

【発明が解決しようとする課題】コリオリ流量計は、一
般の体積流量計と同様に、被測流体の種類,流量範囲,
温度,圧力条件等、各々異なる条件のもとでの流量計測
をしなければならない。フローチューブを共振駆動する
か固有振動数で駆動する方式のコリオリ流量計では、例
えば、被測流体の密度の相異によって振動周波数が異な
り、また、流量範囲により選ばれ、規格されたフローチ
ューブの口径,長さ等、幾何学形状の種類によっても振
動周波数が異なる。理想的なコリオリ流量計では、流体
密度が一定であり、これに伴って定められるフローチュ
ーブの固有振動数が一定であれば、計測される時間差△
Tが定まり、時間差△Tに比例した質量流量も一定に検
出できる。しかし、実際には、固有振動数が一定であっ
ても、時間差△Tは質量流量に比例せず、ドリフトが生
ずる。
The Coriolis flow meter is, like a general volume flow meter, the type of the fluid to be measured, the flow rate range,
The flow rate must be measured under different conditions such as temperature and pressure conditions. In a Coriolis flowmeter of the type in which the flow tube is driven by resonance or driven by a natural frequency, for example, the vibration frequency differs depending on the density of the fluid to be measured, and the flow tube is selected and standardized according to the flow rate range. The vibration frequency also differs depending on the type of geometrical shape, such as diameter and length. In an ideal Coriolis flow meter, if the fluid density is constant and the natural frequency of the flow tube determined accordingly is constant, the measured time difference △
T is determined, and the mass flow rate proportional to the time difference ΔT can be detected constantly. However, in practice, even if the natural frequency is constant, the time difference ΔT is not proportional to the mass flow rate, and drift occurs.

【0013】本発明は、ドリフトの大きさが振動周波数
に依存する値をもっていることから、ドリフト量と振動
周波数の関係に基づいて計測された時間差△Tに対し、
ドリフト量を補正し、理想に近い質量流量を求めること
を目的とする。
According to the present invention, since the magnitude of the drift has a value dependent on the vibration frequency, the time difference ΔT measured based on the relationship between the drift amount and the vibration frequency is calculated as follows.
It is an object of the present invention to correct a drift amount and obtain a mass flow rate close to an ideal.

【0014】[0014]

【課題を解決するための手段】本発明は、上記課題を解
決するために、被測定流体が流れるフローチューブを少
なくとも2点で支持し、該支持点まわりに一定振幅の固
有振動数で駆動したとき、該フローチューブに作用する
コリオリの力を位相差として検出し、位相差に比例した
時間差を計測して質量流量を求めるコリオリ流量計にお
いて、前記時間差を求める時間差計測手段と、前記固有
振動数を検出する周波数計測手段と、前記周波数計測手
段により検出された固有振動数の逆数を演算する逆数演
算手段とからなり、前記時間差計測手段により求められ
た時間差と前記逆数演算手段により演算された固有振動
数の逆数との差により零点ドリフト量を補正することを
特徴とする。
According to the present invention, in order to solve the above-mentioned problems, a flow tube through which a fluid to be measured flows is supported at at least two points, and driven around the supporting point at a natural frequency having a constant amplitude. When the Coriolis force acting on the flow tube is detected as a phase difference, and a time difference proportional to the phase difference is measured to obtain a mass flow rate, the time difference measuring means for obtaining the time difference, and the natural frequency and frequency measuring means for detecting the frequency measurement hand
Reciprocal calculating means for calculating the reciprocal of the natural frequency detected by the step, which is obtained by the time difference measuring means.
Time difference and natural vibration calculated by the reciprocal calculating means
It is characterized in that the zero-point drift amount is corrected based on the difference from the reciprocal of the number .

【0015】[0015]

【作用】フローチューブが一定振幅の固有振動で駆動さ
れるコリオリ流量計では、固有振動数が被測流体の密
度、およびフローチューブの幾何学形状によって変化
し、振動周波数に応じたドリフトが生ずる。ドリフト量
は振動周波数の逆数の関数であることが確められたの
で、このドリフト量を打消すため、振動周波数を検出し
てドリフト量と、振動周波数の関係からドリフト量を求
めて補正する。
In a Coriolis flowmeter in which a flow tube is driven by natural vibration having a constant amplitude, the natural frequency changes depending on the density of the fluid to be measured and the geometry of the flow tube, and a drift occurs according to the vibration frequency. Since it has been confirmed that the drift amount is a function of the reciprocal of the vibration frequency, in order to cancel the drift amount, the vibration frequency is detected and the drift amount is obtained and corrected from the relationship between the drift amount and the vibration frequency.

【0016】[0016]

【実施例】フローチューブの固有振動数が変化すること
により、コリオリの力に比例した時間差△Tにドリフト
が生ずるという現象に対して、本出願人は、時間差△T
のドリフト量Zfと固有振動数fとの関係を調べた。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present applicant has proposed a method for solving the phenomenon that a time difference ΔT proportional to the Coriolis force causes a drift due to a change in the natural frequency of a flow tube.
The relationship between the drift amount Zf and the natural frequency f was examined.

【0017】図1は、固有振動数と時間差△Tのドリフ
ト量との関係を説明するための実験結果を示した図であ
り、横軸が固有振動数f、縦軸がドラフト量(時間)Z
fである。
FIG. 1 is a diagram showing experimental results for explaining the relationship between the natural frequency and the drift amount of the time difference ΔT, wherein the horizontal axis represents the natural frequency f and the vertical axis represents the draft amount (time). Z
f .

【0018】図1に示す曲線は、固有振動数fが低周波
から高周波に向けて変化するとドリフト量Zfは漸時低
下し、その関係は、
The curve shown in FIG. 1, the natural frequency f is changed toward the high frequency from the low frequency drift amount Z f decreases lozenges, that relationship is

【0019】[0019]

【数1】 (Equation 1)

【0020】であらわされることが確められた。It has been confirmed that

【0021】この関係が発生する原因は、図3に示した
ドライブ回路1の入力信号の大きさが変化しても検出コ
イル3の正弦波信号のピーク値が一定に制御され、更
に、位相検出回路5では、一定振幅の正弦波検出信号を
増幅整形して得られた、図4に示した台形波信号ABC
Dは、時間軸X−Xに対して一定電圧(±E)の高さを
もっているから、固有振動数が変化すると、斜辺AB,
CDの傾斜角が変化するが、斜辺AB,CDは、正しい
直線ではなく、近似直線であることによるものと推察で
きる。
The reason why this relationship occurs is that the peak value of the sine wave signal of the detection coil 3 is controlled to be constant even if the magnitude of the input signal of the drive circuit 1 shown in FIG. In the circuit 5, a trapezoidal wave signal ABC shown in FIG.
Since D has a constant voltage (± E) with respect to the time axis XX, when the natural frequency changes, the hypotenuse AB,
Although the inclination angle of the CD changes, it can be inferred that the hypotenuses AB and CD are not straight lines but approximate lines.

【0022】従って、たとえば図1に示したTherefore, for example, as shown in FIG.

【0023】[0023]

【数2】 (Equation 2)

【0024】曲線の定数K値は一定であり、この関係か
らドリフト量を補正することが可能となる。
The constant K value of the curve is constant, and the drift amount can be corrected from this relationship.

【0025】図2は、本発明による質量流量計変換器の
回路ブロックを説明するための図で、図中、1はドライ
ブ回路、2は駆動コイル、3,4は検出コイル、5は位
相検出回路、6は全波整流回路、7は周波数計、8はC
PU(中央演算処理装置)、9は周波数の逆数演算部で
(以後、逆数演算部と記す)である。
FIG. 2 is a diagram for explaining a circuit block of the mass flowmeter converter according to the present invention. In the figure, 1 is a drive circuit, 2 is a drive coil, 3, 4 is a detection coil, and 5 is a phase detection. Circuit, 6 is a full-wave rectifier circuit, 7 is a frequency meter, 8 is C
A PU (Central Processing Unit) 9 is a reciprocal operation unit for frequency (hereinafter, referred to as a reciprocal operation unit).

【0026】図2において、ドライブ回路1,駆動コイ
ル2,検出コイル3,4,位相検出回路5は、図3の場
合と同様の作用をするので、説明を省く。周波数計7
は、フローチューブの固有振動数を計測する手段である
が、実際には、前記固有振動数と同じ周波数を出力する
検出コイル3からの検出信号の周波数を計測するもの
で、検出コイル3の検出信号を整形し、得られた半周
期、又は1周期に対応した矩形波の零クロス時間をCP
U8のクロック数として検知して呼び戻し、固有振動数
fを求めて逆数演算部9により
In FIG. 2, the drive circuit 1, the drive coil 2, the detection coils 3, 4 and the phase detection circuit 5 operate in the same way as in FIG. Frequency meter 7
Is a means for measuring the natural frequency of the flow tube, but actually measures the frequency of the detection signal from the detection coil 3 that outputs the same frequency as the natural frequency. The signal is shaped, and the obtained zero-cross time of the rectangular wave corresponding to the half cycle or one cycle is defined as CP
It is detected as the clock number of U8 and called back, the natural frequency f is obtained, and the reciprocal operation unit 9

【0027】[0027]

【数3】 (Equation 3)

【0028】を求め、CPU8に例えば簡略するために
n=1として記憶する。これが(2)に示すドリフト量
fとなる。
Is stored in the CPU 8 as n = 1 for simplicity, for example. This is the drift amount Z f shown in (2).

【0029】したがって、補正後の時間差Txは、 Tx=Ta−Zf …(3) (但し、Ta:位相検出データ)(検出時間差) 更に、零点調整時のオフセットデータ値をToffとする
と、(3)式に加え、更にToffを補正することが精度
向上に寄与するので、CPU8にToffを記憶しておく
ことにより、 Tx=Ta−Toff−Zf …(4) とすることができる。
Therefore, the corrected time difference Tx is: Tx = Ta−Z f (3) (where, Ta: phase detection data) (detection time difference) Further, if the offset data value at the time of zero point adjustment is T off , In addition to the equation (3), further correction of T off contributes to the improvement of accuracy. Therefore, by storing T off in the CPU 8, the following equation is obtained: Tx = Ta−T off −Z f (4) Can be.

【0030】また、(2)式は、一般式で表現すると、Expression (2) can be expressed by a general expression as follows:

【0031】[0031]

【数4】 (Equation 4)

【0032】(但し、Za,Zb,ZcはZfの係数)
とあらわすこともでき、(5)式に従って、ドリフト量
fを補正することもできる。もちろん、(5)式は別
の表現される逆数算式であってもよい。このような考え
方により(4)式に従ってドリフト量が補正された時間
差Txに基づいて、ドリフト影響のない正確な質量流量
を求めることができる。
[0032] (however, the coefficient of Za, Zb, Zc is Z f)
Can also be expressed as, (5) in accordance with equation can be corrected for drift amount Z f. Of course, equation (5) may be another expressed reciprocal equation. Based on such a concept, an accurate mass flow rate without drift influence can be obtained based on the time difference Tx in which the drift amount is corrected according to the equation (4).

【0033】[0033]

【発明の効果】以上の説明から明らかなように、本発明
によれば、以下の効果がある。請求項1に対応する効
果:フローチューブを固有振動数で駆動する方式のコリ
オリ流量計においては、流量範囲により定められたフロ
ーチューブの寸法,諸元や被測流体の密度により固有振
動数が変化し、固有振動、すなわち駆動周波数に応じた
時間差信号のドリフト量が生じ、誤差となるが、ドリフ
ト量は駆動周波数の逆数の関数であることが知られたの
で、駆動周波数を検知することにより、ドリフト量の補
正が可能となり、正確な質量流量を求めることができ
る。
As is apparent from the above description, the present invention has the following effects. According to the Coriolis flowmeter of the type in which the flow tube is driven at the natural frequency, the natural frequency changes according to the dimensions of the flow tube determined by the flow rate range, the specifications, and the density of the fluid to be measured. Then, a natural vibration, that is, a drift amount of the time difference signal according to the driving frequency occurs, which results in an error, but since the drift amount is known to be a function of the reciprocal of the driving frequency, by detecting the driving frequency, The drift amount can be corrected, and an accurate mass flow rate can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 固有振動数と時間差△Tのドリフト量との関
係を説明するための実験結果を示した図である。
FIG. 1 is a diagram showing an experimental result for explaining a relationship between a natural frequency and a drift amount of a time difference ΔT.

【図2】 本発明による質量流量変換器の回路ブロック
を説明するための図である。
FIG. 2 is a diagram for explaining a circuit block of the mass flow converter according to the present invention.

【図3】 従来の質量流量計変換器の構成を説明するた
めのブロック図である。
FIG. 3 is a block diagram for explaining a configuration of a conventional mass flow meter converter.

【図4】 コリオリ質量流量計の時間差測定の一例を説
明するための図である。
FIG. 4 is a diagram for explaining an example of time difference measurement of a Coriolis mass flow meter.

【図5】 従来のコリオリ流量計の零点オフセットを説
明するための図である。
FIG. 5 is a diagram for explaining a zero point offset of a conventional Coriolis flowmeter.

【符号の説明】[Explanation of symbols]

1…ドライブ回路、2…駆動コイル、3,4…検出コイ
ル、5…位相検出回路、6…全波整流回路、7…周波数
計、8…CPU(中央演算処理装置)、9…周波数の逆
数演算部。
DESCRIPTION OF SYMBOLS 1 ... Drive circuit, 2 ... Drive coil, 3,4 ... Detection coil, 5 ... Phase detection circuit, 6 ... Full-wave rectification circuit, 7 ... Frequency meter, 8 ... CPU (Central processing unit), 9 ... Reciprocal of frequency Arithmetic unit.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 被測定流体が流れるフローチューブを少
なくとも2点で支持し、該支持点まわりに一定振幅の固
有振動数で駆動したとき、該フローチューブに作用する
コリオリの力を位相差として検出し、位相差に比例した
時間差を計測して質量流量を求めるコリオリ流量計にお
いて、前記時間差を求める時間差計測手段と、前記固有
振動数を検出する周波数計測手段と、前記周波数計測手
段により検出された固有振動数の逆数を演算する逆数演
算手段とからなり、前記時間差計測手段により求められ
た時間差と前記逆数演算手段により演算された固有振動
数の逆数との差により零点ドリフト量を補正することを
特徴とする質量流量計変換器。
1. A flow tube through which a fluid to be measured flows is supported at at least two points, and when driven at a natural frequency of a constant amplitude around the support point, a Coriolis force acting on the flow tube is detected as a phase difference. and, in the Coriolis flowmeter to determine the mass flow rate by measuring the time difference proportional to the phase difference, and time difference measuring means for determining the time difference, and frequency measuring means for detecting the natural frequency, the frequency measurement hand
Reciprocal calculating means for calculating the reciprocal of the natural frequency detected by the step, which is obtained by the time difference measuring means.
Time difference and natural vibration calculated by the reciprocal calculating means
A mass flowmeter converter for correcting a zero-point drift amount by a difference from a reciprocal of the number .
JP10890195A 1994-06-06 1995-05-02 Mass flow meter converter Expired - Fee Related JP2965242B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP10890195A JP2965242B2 (en) 1995-05-02 1995-05-02 Mass flow meter converter
US08/455,420 US5602346A (en) 1994-06-06 1995-05-31 Mass flowmeter converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10890195A JP2965242B2 (en) 1995-05-02 1995-05-02 Mass flow meter converter

Publications (2)

Publication Number Publication Date
JPH08304139A JPH08304139A (en) 1996-11-22
JP2965242B2 true JP2965242B2 (en) 1999-10-18

Family

ID=14496507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10890195A Expired - Fee Related JP2965242B2 (en) 1994-06-06 1995-05-02 Mass flow meter converter

Country Status (1)

Country Link
JP (1) JP2965242B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MXPA06002093A (en) * 2003-08-29 2006-05-25 Micro Motion Inc A method and apparatus for correcting output information of flow measurement apparatus.
JP2011043515A (en) * 2010-10-25 2011-03-03 Micro Motion Inc Method and device for correcting output information from flow rate measuring device

Also Published As

Publication number Publication date
JPH08304139A (en) 1996-11-22

Similar Documents

Publication Publication Date Title
JP2914395B2 (en) Vibrating tube densimeter
EP1421346B1 (en) A majority component proportion determination of a fluid using a coriolis flowmeter
US6651513B2 (en) Vibration meter and method of measuring a viscosity of a fluid
US6556931B1 (en) Apparatus and method for compensating mass flow rate of a material when the density of the material causes an unacceptable error in flow rate
US7946184B2 (en) Electromagnetic flowmeter having temperature measurement value for correcting electrical conductivity value
US20130055827A1 (en) Method for Operating a Coriolis Mass Flow Rate Meter and Coriolis Mass Flow Rate Meter
EP3129754B1 (en) Apparatus and method for detecting asymmetric flow in vibrating flowmeters
US11226221B2 (en) Apparatus for applying a variable zero algorithm in a vibrating flowmeter and related method
RU2241209C2 (en) Type identification for controlling excitation of coriolis flow meter
JP2001518610A (en) Combination of pick-off and vibratory drive used in Coriolis flowmeter and method of using this combination
JP5300371B2 (en) Coriolis type mass flow measuring device and measuring method having at least three sensor measuring units
JPH01138419A (en) Apparatus and method for measuring mass flow rate of material
JP4621140B2 (en) Method for detecting corrosion, erosion or product accumulation in vibration element densitometer and Coriolis flow meter, and calibration verification method
JP2965242B2 (en) Mass flow meter converter
JP6303025B2 (en) Improved vibratory flow meter and associated method
US6412355B1 (en) Coriolis-type flow meter and method for measuring the mass flow rate of a gaseous or vaporous fluid
CN111417841A (en) Method for determining the viscosity of a medium by means of a coriolis mass flowmeter and coriolis mass flowmeter for carrying out the method
JPS63233328A (en) Mass flowmeter
JPH0783721A (en) Vibration type measuring apparatus
JP2001116602A (en) Coriolis mass flowmeter
JPH0421128B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080813

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090813

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090813

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100813

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110813

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120813

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees