JP2961179B2 - Manufacturing method of hydrogen storage alloy - Google Patents

Manufacturing method of hydrogen storage alloy

Info

Publication number
JP2961179B2
JP2961179B2 JP4330028A JP33002892A JP2961179B2 JP 2961179 B2 JP2961179 B2 JP 2961179B2 JP 4330028 A JP4330028 A JP 4330028A JP 33002892 A JP33002892 A JP 33002892A JP 2961179 B2 JP2961179 B2 JP 2961179B2
Authority
JP
Japan
Prior art keywords
alloy
hydrogen storage
storage alloy
capacity
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4330028A
Other languages
Japanese (ja)
Other versions
JPH06145851A (en
Inventor
良治 三島
俊子 関根
哲男 境
博 石川
弘 宮村
斎 上原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Mitsubishi Chemical Corp filed Critical Agency of Industrial Science and Technology
Priority to JP4330028A priority Critical patent/JP2961179B2/en
Publication of JPH06145851A publication Critical patent/JPH06145851A/en
Application granted granted Critical
Publication of JP2961179B2 publication Critical patent/JP2961179B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、水素の貯蔵、アルカリ
電池用の負極等に用いられる水素吸蔵合金およびその製
造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrogen storage alloy used for storage of hydrogen, a negative electrode for an alkaline battery, and a method for producing the same.

【0002】[0002]

【従来の技術】Ni−Cd二次電池に変わる電池とし
て、高容量、高寿命化を目指し、又Cdによる公害の危
険性のない水素吸蔵合金を用いたNi−水素吸蔵合金電
池が実用化されるに到った。この様な水素吸蔵合金とし
て、LaNi5 系合金(特開昭51−13934号公
報)が適していることが判明しているが、LaNi系合
金は、容量はCd電池に対して増大するが、長寿命化と
いう点では必ずしも安定したものが得られていない。そ
れ故、最近では、Laに替わるコストの安いMm(ミッ
シュメタル)を使用したMm−Ni系の水素吸蔵合金電
極が開発され、Ni−Cd電池に替わる高容量電池とし
て注目を集めている。
2. Description of the Related Art As a battery replacing a Ni-Cd secondary battery, a Ni-hydrogen storage alloy battery using a hydrogen storage alloy which aims at high capacity and long life and has no danger of pollution by Cd has been put into practical use. It has reached. As such a hydrogen storage alloy, a LaNi 5 alloy (JP-A-51-13934) has been found to be suitable. However, the capacity of the LaNi alloy is larger than that of a Cd battery. In terms of prolonging the life, a stable product has not always been obtained. Therefore, recently, an Mm-Ni-based hydrogen storage alloy electrode using Mm (mish metal), which is inexpensive and replaces La, has been developed, and has attracted attention as a high-capacity battery replacing the Ni-Cd battery.

【0003】例えば、特開昭62−20245号公報に
は、組成式MmNix (Coa ・Mnb ・Alc y
おいて、4.3<x+y<5.5であって、Mm中のL
aの含有量が25〜70重量%である水素吸蔵合金が開
示されている。
[0003] For example, JP-A-62-20245, in the composition formula MmNi x (Co a · Mn b · Al c) y, a 4.3 <x + y <5.5, in Mm L
A hydrogen storage alloy having a content of 25 to 70% by weight is disclosed.

【0004】[0004]

【発明が解決しようとする課題】しかし、これら従来の
水素吸蔵合金でも、未だ容量および寿命が十分ではな
く、更に高容量化、長寿命化が要求されている。本発明
者等は、かかる課題を解決すべく鋭意検討した結果、ミ
ッシュメタルの合金にかわって、主として後記組成式
(I)で表される合金からなり、特殊な処理によって結
晶の短軸方向の長さが10μm以下である微細結晶粒構
造が形成されるまで微細結晶化された水素吸蔵合金が、
従来の合金より格段に高容量、且つ長寿命であることを
見出し、本発明に到達した。即ち本発明の目的は、高容
量且つ長寿命の水素吸蔵合金を提供することに存する。
However, even with these conventional hydrogen storage alloys, the capacity and the life are still not sufficient, and further higher capacity and longer life are required. The present inventors have conducted intensive studies to solve such problems, and as a result, instead of the misch metal alloy, the alloy mainly consists of an alloy represented by the following composition formula (I). A hydrogen storage alloy finely crystallized until a fine grain structure having a length of 10 μm or less is formed,
The present inventors have found that the capacity is much higher and the life is longer than conventional alloys, and have reached the present invention. That is, an object of the present invention is to provide a hydrogen storage alloy having a high capacity and a long life.

【0005】[0005]

【課題を解決するための手段】しかして、かかる本発明
の目的は、下記組成式(I)で表される合金を主成分と
し残部は実質的に不純物からなる合金の溶湯を、周速1
0m/sec以上で回転する耐熱性ロール上に、流射す
ることにより薄帯化しつつ急冷凝固させ、ついで300
〜500℃で低温焼鈍して結晶の短軸方向の長さが10
μm以下である微細結晶粒組織を形成させることを特徴
とする水素吸蔵合金の製造方法により容易に達成され
る。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for producing a molten alloy comprising an alloy represented by the following composition formula (I) as a main component and the balance substantially consisting of impurities at a peripheral speed of 1: 1.
On a heat-resistant roll rotating at 0 m / sec or more, it is rapidly solidified while being thinned by spraying.
Low temperature annealing at ~ 500 ° C and the length of the crystal in the short axis direction is 10
It is easily achieved by a method for producing a hydrogen storage alloy, which is characterized by forming a fine grain structure of not more than μm.

【0006】[0006]

【化2】 Laa-y Nib-x x y z … (I) (式中、AはAl,Zn,Cu,Co,Cr,Fe,I
n,Mo,Mn,Pb及びBiからなる群から選ばれる
1種以上の元素を表し、1.0≦a≦1.3、3.3≦
b≦4.9、0.1<x<2.0であり、BはLa以外
の希土、あるいはZr,Tiを表わし、XはB,V,G
a,Sn,Ag,Mg,Sb,Srからなる群から選ば
れる1種以上の元素を表わし、0≦y≦0.2、0.0
1≦z≦0.05である)
## STR2 ## La ay Ni bx A x B y X z ... (I) ( In the formula, A Al, Zn, Cu, Co, Cr, Fe, I
represents one or more elements selected from the group consisting of n, Mo, Mn, Pb and Bi, and 1.0 ≦ a ≦ 1.3, 3.3 ≦
b ≦ 4.9, 0.1 <x <2.0, B represents a rare earth other than La, or Zr, Ti, and X represents B, V, G
a, Sn, Ag, Mg, Sb, Sr, represents one or more elements selected from the group consisting of 0 ≦ y ≦ 0.2, 0.0
1 ≦ z ≦ 0.05)

【0007】本発明においては、従来、水素吸蔵合金用
によく用いられてきたミッシュメタルの合金にかわっ
て、La以外の希土が20%以下である、前記組成式
(I)又は(II)で表される合金を用いることをひとつ
の特徴とする。
In the present invention, the composition formula (I) or (II) wherein the rare earth other than La is 20% or less, instead of the misch metal alloy which has been often used for hydrogen storage alloys. One feature is that an alloy represented by

【0008】かかる合金は、基本合金であるLaNi5
の結晶において、添加元素としてのA(Aは式(I)中
と同義、以下同様)は、Niと置換して含有されている
とみなすことができる。上記のAとして列挙した元素
は、Niと電子配列が近似し、原子半径がNiよりも大
きい。従ってNiと容易に置換し、且つ水素解離圧を下
げる効果がある。また、急冷凝固の際に、結晶を、より
微細化する効果があり、結晶が微細化することにより、
一層水素吸蔵能が向上する。
[0008] Such an alloy is LaNi 5 which is a basic alloy.
In the crystal of A, A as an additive element (A has the same meaning as in the formula (I), and the same applies hereinafter) can be regarded as being contained in place of Ni. The elements listed as A have an electronic arrangement similar to that of Ni, and have an atomic radius larger than that of Ni. Therefore, it has the effect of easily replacing with Ni and lowering the hydrogen dissociation pressure. In addition, at the time of rapid solidification, there is an effect of making the crystal finer, and by making the crystal finer,
The hydrogen storage capacity is further improved.

【0009】次に式(I)中のBはLaと置換し、Aと
相まって平衡解離圧を適当ならしむると共に寿命の改善
等の効果がある。添加元素Aの組成比は、0.1<x<
2.0であるが、xが2以上となると、LaNi5 にみ
られるCaCu5 型六方晶構造が崩れ、添加元素により
特有な金属間化合物による第2相が生じるためである。
この様な第2相は、一般には水素吸蔵能は少ない。
Next, B in the formula (I) is replaced with La, and in combination with A, the equilibrium dissociation pressure can be appropriately adjusted and the life can be improved. The composition ratio of the additive element A is 0.1 <x <
It is 2.0, but when x is 2 or more, the CaCu 5 type hexagonal structure seen in LaNi 5 collapses, and a second phase due to an intermetallic compound peculiar to the added element is generated.
Such a second phase generally has a low hydrogen storage capacity.

【0010】又Bの組成比は0≦y≦0.2であるがy
が0.2を超えるとLaの効果が失なわれてきて容量の
低下をきたす。また、本発明合金は、上記組成式(I)
で表される合金を主成分とするが、該合金が実質的に水
素吸蔵合金全体の物性を支配する限り、他の金属元素等
を含有していてもよい。この様な不純物としての元素の
うち、例えば、W,Nb等は、相当に含有率が大きくて
も、水素吸蔵合金の特性に悪影響を与えない。
The composition ratio of B is 0 ≦ y ≦ 0.2.
Exceeds 0.2, the effect of La is lost and the capacity is reduced. Further, the alloy of the present invention has the above composition formula (I)
The main component is an alloy represented by the general formula (1), but may contain other metal elements and the like as long as the alloy substantially controls the physical properties of the entire hydrogen storage alloy. Among such elements as impurities, for example, W, Nb and the like do not adversely affect the characteristics of the hydrogen storage alloy even if the content is considerably large.

【0011】次にかかる合金に微量添加する元素Xにつ
いて述べると、式(I)のXは、粒界に偏析し易い元素
であり、かかる元素は粒界に偏析して粒界に保護膜を形
成する。本発明合金を電池に使用した場合耐アルカリ保
護膜として電池寿命の改善に役立つ。特に急冷凝固によ
り得られた微細結晶粒の場合粒界の役割は大きく、微量
元素によるかかる効果の出現に好都合である。又適当な
熱処理により偏析は促進され効果は増大する。
Next, the element X to be added in a small amount to the alloy will be described. In the formula (I), X is an element which is easily segregated at the grain boundary, and such element segregates at the grain boundary to form a protective film on the grain boundary. Form. When the alloy of the present invention is used for a battery, it is useful as an alkali-resistant protective film for improving the battery life. In particular, in the case of fine crystal grains obtained by rapid solidification, the role of the grain boundary is large, which is advantageous for the appearance of such an effect by the trace element. The segregation is promoted by an appropriate heat treatment, and the effect is increased.

【0012】微量元素Xの組成比は0.01≦z≦0.
05であり、zが0.05を超えると微量元素でなくな
り、容量の低下をきたし活性化等に悪影響を与える。
0.01未満では少なすぎて効果が期待できない。本発
明合金は、粒径10μm以下の微細結晶粒組織、即ち、
粒状またはコラム状の微細結晶粒組織から主として構成
されることをもうひとつの特徴とし、かかる微細な結晶
組織は、上述した原料としての合金の溶湯を、周速10
m/sec以上で回転する耐熱性ロール上に、前記合金
の溶湯を流射することにより薄帯化しつつ急冷凝固させ
て、ついで300〜500℃で低温焼鈍して粒径10μ
m以下の微細結晶粒組織を形成させることにより製造す
ることができる。
The composition ratio of the trace element X is 0.01 ≦ z ≦ 0.
05, and when z exceeds 0.05, it is no longer a trace element, resulting in a reduction in capacity and adversely affecting activation and the like.
If it is less than 0.01, the effect is too small to expect an effect. The alloy of the present invention has a fine grain structure having a particle size of 10 μm or less, that is,
Another feature is that it is mainly composed of a granular or columnar fine crystal grain structure.
A melt of the alloy is sprayed onto a heat-resistant roll rotating at a speed of at least m / sec to rapidly solidify while thinning, and then annealed at 300 to 500 ° C. at a low temperature to obtain a particle size of 10 μm.
It can be produced by forming a fine grain structure of m or less.

【0013】この方法によれば、ロールの回転数が大き
くなる程、また、押し出しノズルの口径が小さくなる程
冷却速度が大きく、結晶粒組織がより微細になるので、
ロールの回転の周速は、10m/sec以上とする。一
方、押し出しノズルの口径は、通常用いられる100μ
m以下程度のもので十分である。合金の溶湯をこの様に
比較的細い流出孔のノズルから加圧下に流出させ、この
流出流を上記ロールに当射すれば、溶湯流はロール上で
拡がり薄帯化して固化する。従って本発明の流射におい
ては、溶湯流が合金上で薄帯化する限り、溶湯を種々の
態様でロール上に流出せしめることができるが、上述し
た通り加圧下で又、連続流で流出させれば操作が簡便と
なり好ましい。
According to this method, the cooling rate increases as the rotation speed of the roll increases, and as the diameter of the extrusion nozzle decreases, the crystal grain structure becomes finer.
The peripheral speed of the rotation of the roll is 10 m / sec or more. On the other hand, the diameter of the extrusion nozzle is usually 100 μm.
m or less is sufficient. When the melt of the alloy is caused to flow out from the nozzle having such a relatively small outflow hole under pressure, and this outflow is applied to the roll, the flow of the melt spreads on the roll, becomes thin and solidifies. Therefore, in the spraying of the present invention, as long as the molten metal flow is thinned on the alloy, the molten metal can be discharged onto the roll in various modes. This is preferable because the operation is simplified.

【0014】かかる方法により製造される合金は、安定
なCaCu5 型六方晶構造を有するストイキオメトリッ
クな金属間化合物であり、液体からの急冷によってアモ
ルファス化することなく、得られる効果は微細結晶粒組
織による効果である。本発明方法は、超急冷により、結
晶微細組織を得る方法だが、急冷凝固の際に、大きな内
部歪が導入される。この歪は、水素の侵入を妨げるとと
もに、水素の吸蔵・放出時の膨張、収縮に伴い、素材の
劣化、微粉化を招く場合がある。
The alloy produced by such a method is a stoichiometric intermetallic compound having a stable CaCu 5 type hexagonal structure, and the effect obtained without being amorphous by rapid cooling from a liquid is fine crystal grains. It is the effect of the organization. In the method of the present invention, a crystal microstructure is obtained by ultra-quenching, but a large internal strain is introduced during rapid solidification. This strain may hinder the intrusion of hydrogen, and may cause deterioration and pulverization of the material due to expansion and contraction at the time of absorbing and releasing hydrogen.

【0015】そこで、本発明方法においては、この様な
内部歪を除去すべく、合金の溶湯を、耐熱性ロール上
に、流射して薄帯化しつつ急冷凝固させた後、追加の工
程として、300〜500℃で低温焼鈍する。300℃
以下では、焼鈍の効果が少なく歪を十分除去できず、5
00℃以上では、結晶粒の粗大化を招き微細結晶粒組織
の効果が失われる怖れがある。焼鈍の時間は、温度が高
いときは短く、温度が低いときは長くてよいのは、通常
の熱処理と同様である。かかる範囲の熱処理は微量元素
の粒界偏析を促し、粒界保護膜の形成に効果があること
は十分推察できる。
Therefore, in the method of the present invention, in order to remove such internal strains, the molten alloy is rapidly cooled and solidified while being sprayed and thinned on a heat-resistant roll. And low temperature annealing at 300 to 500 ° C. 300 ℃
In the following, the effect of annealing is so small that the strain cannot be sufficiently removed.
If the temperature is higher than 00 ° C., the crystal grains may be coarsened and the effect of the fine crystal grain structure may be lost. The annealing time may be short when the temperature is high and long when the temperature is low, as in the case of ordinary heat treatment. It can be sufficiently inferred that heat treatment in such a range promotes grain boundary segregation of trace elements and is effective in forming a grain boundary protective film.

【0016】[0016]

【発明の効果】本発明の水素吸蔵合金は、水素の吸蔵容
量が従来の合金より大きく、繰り返し使用してもさほど
吸蔵容量が減少しない。また、水素の吸蔵に伴い生ずる
歪(体積で約1.2〜1.3倍の膨張)を結晶粒界で吸
収、緩和し、水素の吸蔵、放出がより容易となる。従っ
て、各種用途に好適で、特に、電池の電極として使用し
た場合、P.C.T.曲線での平坦なプラトーが得られ
るだけでなく、電極の膨張、収縮に伴う劣化、微粉化を
防ぎ、又、強固な粒界被膜の形成等により高容量、長寿
命を実現するものである。本発明方法は、超急冷によ
り、結晶粒組織を非常に微細とすることができ、高性能
の水素吸蔵合金を容易に製造できる。
As described above, the hydrogen storage alloy of the present invention has a larger hydrogen storage capacity than conventional alloys, and the storage capacity does not decrease so much even when used repeatedly. Further, the strain (expansion of about 1.2 to 1.3 times in volume) caused by the occlusion of hydrogen is absorbed and relaxed at the crystal grain boundaries, and the occlusion and release of hydrogen become easier. Therefore, it is suitable for various uses. C. T. Not only can a flat plateau in a curve be obtained, but also deterioration and pulverization due to expansion and contraction of the electrode can be prevented, and high capacity and long life can be realized by forming a firm grain boundary film. According to the method of the present invention, the crystal grain structure can be made very fine by ultra-quenching, and a high-performance hydrogen storage alloy can be easily produced.

【0017】[0017]

【実施例】以下、実施例により本発明を更に詳細に説明
するが、本発明は、その要旨を越えない限り下記実施例
により限定されるものではない。各実施例及び比較例に
おいては、水素吸蔵合金及びそれを用いた電極を製造
し、次の通り、電極の充放電サイクル試験を行なった。
EXAMPLES The present invention will be described in more detail with reference to the following Examples, which, however, are not intended to limit the scope of the present invention unless it exceeds the gist thereof. In each of Examples and Comparative Examples, a hydrogen storage alloy and an electrode using the same were manufactured, and a charge / discharge cycle test of the electrode was performed as follows.

【0018】充放電サイクル試験 40mA×3時間充電し、レストタイム30分の後、2
0mAで電圧0.6Vとなるまで放電するサイクルを繰
り返し、各サイクルの放電時における放電時間から総放
出電気量を算出した。
Charge / discharge cycle test: Charged at 40 mA × 3 hours, and after a rest time of 30 minutes,
The cycle of discharging at 0 mA until the voltage reached 0.6 V was repeated, and the total amount of discharged electricity was calculated from the discharge time at the time of discharging in each cycle.

【0019】(比較例1) LaNi4.6 Al0.4 の組成になる様に金属元素を配合
し、約50gをアークメルト溶解した。アークメルト溶
解は、約5×10-5Torrまで真空引後、アルゴン置換を
行い、裏表合計4回行なって均一な合金とした。
Comparative Example 1 A metal element was blended so as to have a composition of LaNi 4.6 Al 0.4 , and about 50 g was melted by arc melt. The arc melt was evacuated to about 5 × 10 −5 Torr, and then replaced with argon.

【0020】次に、その合金から約10gを取り、石英
管に封入し、同じく真空引き後、アルゴン置換したチャ
ンバー中で、高周波誘導加熱により瞬時に溶解し、アル
ゴン気流(0.6気圧)とともに石英管底に設けた約
0.7mmの孔から流射し、回転ロール(約3000r.
p.m.、20cmφ銅ロール)上、約0.2mm隙間で5
0μ前後の厚さの合金薄帯となした。
Next, about 10 g of the alloy was taken, sealed in a quartz tube, evacuated, melted instantaneously by high-frequency induction heating in a chamber replaced with argon, and heated with an argon gas flow (0.6 atm). Spray from a hole of about 0.7 mm provided on the bottom of the quartz tube, and rotate it (about 3000 r.
pm, 20cmφ copper roll)
An alloy ribbon having a thickness of about 0 μm was formed.

【0021】上記の様に作製した合金薄帯を、大気中で
粉砕し、100メッシュ以下の粉とした。この粉を、銅
20%になる様に無電解銅メッキを施し、FEP(フッ
ソ樹脂)粉10%と混合し、約0.3gを採り、13m
mφの金型にてゴールドプレスし、薄い円板状タブレッ
トを作り、更に、ホットプレス(300℃、200kg
/cm2 、3分)し、バインダーを硬化させ、電極を作
製した。
The alloy ribbon produced as described above was pulverized in the air to obtain a powder having a size of 100 mesh or less. This powder is subjected to electroless copper plating so as to have a copper content of 20%, mixed with FEP (fluororesin) powder 10%, and about 0.3 g is taken.
Gold press with a mφ mold to make a thin disk-shaped tablet, and then hot press (300 ℃, 200kg
/ Cm 2 , 3 minutes) to cure the binder, thereby producing an electrode.

【0022】この合金電極を、負極として、Ni正極と
ともに6規定KOH水溶液で満たしたガラスのセルに組
み込み、充放電サイクル試験を行い、容量及び容量低下
(寿命)を測定した。結果を図1に示す。
This alloy electrode was mounted as a negative electrode together with a Ni positive electrode in a glass cell filled with a 6N KOH aqueous solution, and a charge / discharge cycle test was performed to measure the capacity and capacity reduction (life). The results are shown in FIG.

【0023】(比較例2) アークメルト溶解して製造したLaNi4.6 Al0.4
る組成の合金を、薄帯化することなく、粉砕し或いは電
極として充放電サイクル試験を行なった以外、前記比較
例1と全く同様にした結果を図1に示す。
Comparative Example 2 Comparative Example 1 was performed except that an alloy having a composition of LaNi 4.6 Al 0.4 produced by melting an arc melt was pulverized without thinning or subjected to a charge / discharge cycle test as an electrode. FIG. 1 shows the result obtained in the same manner as in FIG.

【0024】(実施例1〜9、比較例3) 表−1に記載するX成分を含み、合金組成がLa1.02
4.0 Co0.6 Al0.4 0.05となる様に金属元素を配
合した以外前記比較例1と全く同様にした後、合金薄帯
を、380℃で30分低温焼鈍し、結晶の短軸方向の長
さが10μm以下である微細結晶粒組織状の合金を得
た。これより比較例1と同様に電極を作製し、充放電サ
イクル試験を行なった。100サイクル後の容量低下
(寿命)を表−1に示す。
(Examples 1 to 9, Comparative Example 3) An alloy composition containing the X component shown in Table 1 and having an alloy composition of La 1.02 N
After exactly the same as in Comparative Example 1 except that the metal element was blended to obtain i 4.0 Co 0.6 Al 0.4 X 0.05 , the alloy ribbon was annealed at 380 ° C. for 30 minutes at a low temperature, and the length of the crystal in the minor axis direction was measured. An alloy having a fine grain structure with a grain size of 10 μm or less was obtained. From this, an electrode was produced in the same manner as in Comparative Example 1, and a charge / discharge cycle test was performed. Table 1 shows the capacity decrease (lifetime) after 100 cycles.

【0025】[0025]

【表1】 [Table 1]

【図面の簡単な説明】[Brief description of the drawings]

【図1】水素吸蔵合金からなる電極の充放電サイクル試
験の結果を示すグラフであって、横軸は、充放電サイク
ル数、縦軸は、電極単位重量あたりの総放出電気量を示
す(単位mAhr/g)。図中、実線が比較例1、破線
が比較例2の電極の試験結果を表す。
FIG. 1 is a graph showing the results of a charge / discharge cycle test of an electrode made of a hydrogen storage alloy, in which the horizontal axis represents the number of charge / discharge cycles, and the vertical axis represents the total amount of discharged electricity per unit weight of the electrode (unit). mAhr / g). In the figure, the solid line represents the test result of the electrode of Comparative Example 1, and the broken line represents the test result of the electrode of Comparative Example 2.

フロントページの続き (72)発明者 石川 博 大阪府池田市五月丘1−10−16 (72)発明者 宮村 弘 大阪府豊中市新千里西町3−20−10 (72)発明者 上原 斎 大阪府池田市伏尾台2−3−12 審査官 城所 宏 (56)参考文献 特開 平2−291665(JP,A) 特開 平3−188236(JP,A) (58)調査した分野(Int.Cl.6,DB名) C22C 1/00 - 28/00 Continued on the front page (72) Inventor Hiroshi Ishikawa 1-10-16, Satsukioka, Ikeda-shi, Osaka (72) Inventor Hiroshi Miyamura 3-20-10, Shinsenri-nishimachi, Toyonaka-shi, Osaka (72) Inventor Sei Uehara Osaka 2-3-12 Fushiodai, Ikeda-shi Examiner Hiroshi Shirosho (56) References JP-A-2-291665 (JP, A) JP-A-3-188236 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) C22C 1/00-28/00

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 下記組成式(I)で表される合金を主成
分とし残部は実質的に不純物からなる合金の溶湯を、周
速10m/sec以上で回転する耐熱性ロール上に、流
射することにより薄帯化しつつ急冷凝固させ、ついで3
00〜500℃で低温焼鈍して結晶の短軸方向の長さが
10μm以下である微細結晶粒組織を形成させることを
特徴とする水素吸蔵合金の製造方法。 【化1】 Laa-y Nib-x x y z … (I) (式中、AはAl,Zn,Cu,Co,Cr,Fe,I
n,Mo,Mn,Pb及びBiからなる群から選ばれる
1種以上の元素を表し、1.0≦a≦1.3、3.3≦
b≦4.9、0.1<x<2.0であり、BはLa以外
の希土、あるいはZr,Tiを表わし、XはB,V,G
a,Sn,Ag,Mg,Sb,Srからなる群から選ば
れる1種以上の元素を表わし、0≦y≦0.2、0.0
1≦z≦0.05である)
1. A spray of a molten alloy of an alloy represented by the following composition formula (I) as a main component and the balance substantially consisting of impurities onto a heat-resistant roll rotating at a peripheral speed of 10 m / sec or more. Quenching and solidification while thinning, and then 3
A method for producing a hydrogen storage alloy, wherein low-temperature annealing is performed at 00 to 500 ° C. to form a fine grain structure in which the length of a crystal in a minor axis direction is 10 μm or less. Embedded image Laay Ni bx A x B y X z (I) (where A is Al, Zn, Cu, Co, Cr, Fe, I
represents one or more elements selected from the group consisting of n, Mo, Mn, Pb and Bi, and 1.0 ≦ a ≦ 1.3, 3.3 ≦
b ≦ 4.9, 0.1 <x <2.0, B represents a rare earth other than La, or Zr, Ti, and X represents B, V, G
a, Sn, Ag, Mg, Sb, Sr, represents one or more elements selected from the group consisting of 0 ≦ y ≦ 0.2, 0.0
1 ≦ z ≦ 0.05)
JP4330028A 1991-11-18 1992-11-16 Manufacturing method of hydrogen storage alloy Expired - Lifetime JP2961179B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4330028A JP2961179B2 (en) 1991-11-18 1992-11-16 Manufacturing method of hydrogen storage alloy

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP32955991 1991-11-18
JP3-329559 1991-11-18
JP4330028A JP2961179B2 (en) 1991-11-18 1992-11-16 Manufacturing method of hydrogen storage alloy

Publications (2)

Publication Number Publication Date
JPH06145851A JPH06145851A (en) 1994-05-27
JP2961179B2 true JP2961179B2 (en) 1999-10-12

Family

ID=26573251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4330028A Expired - Lifetime JP2961179B2 (en) 1991-11-18 1992-11-16 Manufacturing method of hydrogen storage alloy

Country Status (1)

Country Link
JP (1) JP2961179B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100239742B1 (en) * 1995-07-10 2000-01-15 이노우에 유스케 Rare earth metal nickel base hydrogen absorbing alloy process for preparing the same and negative electrode for nickel hydrogen secondary battery
DE69616741T2 (en) * 1995-08-31 2002-05-08 Santoku Metal Ind HYDROGEN ABSORBING RARE EARTH METAL / NICKEL BASED ALLOY, PRODUCTION PROCESS AND NEGATIVE ELECTRODE FOR NICKEL HYDROGEN SECONDARY BATTERY
TW488106B (en) * 1999-08-05 2002-05-21 Shinetsu Chemical Co Hydrogen absorbing alloy and nickel-metal hydride rechargeable battery
JP4503915B2 (en) * 2002-09-26 2010-07-14 株式会社三徳 Hydrogen storage alloy and method for producing the same
CN1313632C (en) * 2004-06-23 2007-05-02 中国科学院金属研究所 Hydrogen-storage alloy of metal oxide for air-conditioner
CN102152528B (en) * 2010-10-21 2015-03-11 江西理工大学 Carrier ultrathin copper foil with rare earth modified peel strength and preparation method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3345889B2 (en) * 1989-02-23 2002-11-18 松下電器産業株式会社 Manufacturing method of alkaline storage battery and its negative electrode
JP2771592B2 (en) * 1989-04-18 1998-07-02 三洋電機株式会社 Hydrogen storage alloy electrode for alkaline storage batteries

Also Published As

Publication number Publication date
JPH06145851A (en) 1994-05-27

Similar Documents

Publication Publication Date Title
JP3993890B2 (en) Rare earth metal-nickel-based hydrogen storage alloy, method for producing the same, and negative electrode for nickel-metal hydride secondary battery
JP3688716B2 (en) Rare earth metal-nickel-based hydrogen storage alloy, method for producing the same, and negative electrode for nickel-metal hydride secondary battery
KR100216305B1 (en) Rare earth metal nickel hydrogen occlusion alloy process for producing the same and negative electrode of nickel hydrogen secondary battery
JP3737163B2 (en) Rare earth metal-nickel hydrogen storage alloy and negative electrode for nickel metal hydride secondary battery
JP3965209B2 (en) Low Co hydrogen storage alloy
JP3432873B2 (en) Hydrogen storage alloy for alkaline storage batteries
JP2961179B2 (en) Manufacturing method of hydrogen storage alloy
EP0653796B1 (en) Method of producing alloys suitable for hydrogen storage
JP2004115870A (en) Hydrogen storage alloy and its manufacturing method
JP3266980B2 (en) Hydrogen storage alloy, method for producing the same, and hydrogen storage alloy electrode
JP2895848B2 (en) Method for producing hydrogen storage alloy electrode for alkaline storage battery
WO1998010107A1 (en) Rare earth metal-nickel-base hydrogen absorbing alloy, process for preparing the same, and negative electrode for nickel-hydrogen rechargeable battery
JP4027038B2 (en) AB5 type rare earth-transition intermetallic compound for secondary battery negative electrode
JP5179777B2 (en) Hydrogen storage alloy, negative electrode for nickel metal hydride secondary battery, nickel metal hydride secondary battery
JP2792955B2 (en) Hydrogen storage alloy for hydrogen electrode
JPS63291363A (en) Hydrogen absorption alloy
JP3981423B2 (en) Hydrogen storage alloy for batteries and nickel metal hydride secondary battery
JP3114677B2 (en) Hydrogen storage alloy and method for producing the same
JP3011437B2 (en) Hydrogen storage alloy electrode
JP2000144278A (en) Hydrogen occlusion alloy and its production
JPH11269501A (en) Manufacture of hydrogen occlusion alloy powder, and hydrogen occlusion alloy electrode
JP2008258121A6 (en) Hydrogen storage alloy, negative electrode for nickel metal hydride secondary battery, nickel metal hydride secondary battery
JP3354365B2 (en) Hydrogen storage alloy electrode for alkaline storage battery
JPH04143254A (en) Hydrogen occluding alloy electrode
JP2000129379A (en) Hydrogen storage alloy

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080806

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090806

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100806

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100806

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110806

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120806

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 14