JP2960998B2 - Hydrogen gas separation membrane - Google Patents

Hydrogen gas separation membrane

Info

Publication number
JP2960998B2
JP2960998B2 JP3245430A JP24543091A JP2960998B2 JP 2960998 B2 JP2960998 B2 JP 2960998B2 JP 3245430 A JP3245430 A JP 3245430A JP 24543091 A JP24543091 A JP 24543091A JP 2960998 B2 JP2960998 B2 JP 2960998B2
Authority
JP
Japan
Prior art keywords
thin film
separation membrane
gas separation
hydrogen
porous support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3245430A
Other languages
Japanese (ja)
Other versions
JPH0576738A (en
Inventor
義則 牛房
正康 坂井
頴彦 塚本
芳啓 湯崎
穰 末田
康之 ▲吉▼田
哲雄 梶原
保博 石橋
順一 飯伏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP3245430A priority Critical patent/JP2960998B2/en
Publication of JPH0576738A publication Critical patent/JPH0576738A/en
Application granted granted Critical
Publication of JP2960998B2 publication Critical patent/JP2960998B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は混合ガス中の水素ガスを
分離するための水素ガス分離膜に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrogen gas separation membrane for separating hydrogen gas in a mixed gas.

【0002】[0002]

【従来の技術】省エネルギー型分離技術として、近年、
膜を用いた気体の分離法が注目されている。膜を用いる
水素を分離する方法はPdを含有する膜(Pd膜と略
す)又は特殊なガス分離膜により水素を含有する混合気
体から水素を分離する方法であり、従来次の如き方法が
採用されている。
2. Description of the Related Art In recent years, as an energy-saving separation technology,
Attention has been paid to a gas separation method using a membrane. The method of separating hydrogen using a membrane is a method of separating hydrogen from a hydrogen-containing gas mixture using a Pd-containing membrane (abbreviated as a Pd membrane) or a special gas separation membrane, and the following method is conventionally employed. ing.

【0003】(1)図12に示すように、数μm〜数十
μmの金属繊維を圧延焼結した金属多孔質支持体上にメ
ッキ法等の湿式法によりPdを含有する薄膜を形成させ
て水素ガス分離膜として使用する方法。
(1) As shown in FIG. 12, a Pd-containing thin film is formed by a wet method such as a plating method on a metal porous support obtained by rolling and sintering a metal fiber of several μm to several tens μm. Method used as a hydrogen gas separation membrane.

【0004】(2)又、上記の方法と比較し余り実用的
ではないが、ガラス、セラミックス等の無機質材料から
なる多孔質支持体にPd膜を含有する薄膜を形成させて
水素ガス分離膜として使用する方法(特開昭62−12
1616号公報)。
(2) Although not very practical compared with the above method, a thin film containing a Pd film is formed on a porous support made of an inorganic material such as glass or ceramics to form a hydrogen gas separation film. Method used (Japanese Unexamined Patent Publication No. Sho 62-12)
No. 1616).

【0005】(3)更に、ガス分子の平均自由工程より
小さな細孔をもつ多孔質のガス分離膜による分離法、即
ちクヌーセン拡散法などもある。
(3) There is also a separation method using a porous gas separation membrane having pores smaller than the mean free path of gas molecules, that is, a Knudsen diffusion method.

【0006】[0006]

【発明が解決しようとする課題】(1)図12に示すよ
うな金属多孔質支持体を使用する方法には次の問題があ
る。 支持体の細孔を均一な大きさで、かつ所望の開孔率
で形成せしめることが製造技術上難しく、通常、支持体
の細孔は大きいものから小さいものまで広範囲な細孔が
存在する。 この支持体上にメッキ法でPd膜を成膜する際、P
d金属の細孔内部への侵入、更に細孔を閉塞するには最
も大きな細孔に律則されるため、必然的にPd膜が厚く
なる。 その結果、水素透過性能が低下し、高性能な水素ガ
ス分離膜が得られない。 図12に示すように、その細孔は板厚方向に対し、
直線的でなく複雑な経路で形成されるため、圧損が大き
く水素の透過抵抗が大きくなる。
(1) The method using a metal porous support as shown in FIG. 12 has the following problems. It is difficult in manufacturing technology to form the pores of the support with a uniform size and a desired porosity. Generally, the support has a wide range of pores from large to small. When a Pd film is formed on this support by plating,
The penetration of d metal into the pores and the closing of the pores are governed by the largest pores, so that the Pd film necessarily becomes thicker. As a result, the hydrogen permeation performance decreases, and a high-performance hydrogen gas separation membrane cannot be obtained. As shown in FIG. 12, the pores are in the thickness direction,
Since it is formed not in a straight line but in a complicated path, pressure loss is large and hydrogen permeation resistance is increased.

【0007】(2)無機多孔質支持体にPd膜を成膜さ
せる方法は上記問題の他に強度的に脆弱なため破損し易
く、更に他部材との接合(溶接など)が難しいという問
題がある。
(2) In addition to the above-mentioned problems, the method of forming a Pd film on an inorganic porous support is fragile in terms of strength, so that it is easily broken, and it is difficult to join (welding, etc.) with other members. is there.

【0008】(3)クヌーセン拡散による分離法は、一
般には分離膜として有機高分子膜が採用されるが、耐熱
性、耐薬品性等耐久性に劣るという不具合と高濃度の水
素ガスが得られ難いという問題がある。
(3) In the separation method by Knudsen diffusion, an organic polymer membrane is generally employed as a separation membrane. However, such a method is inferior in durability such as heat resistance and chemical resistance, and high concentration hydrogen gas is obtained. There is a problem that it is difficult.

【0009】本発明は上記技術水準に鑑み、従来技術に
おける上述の問題点を解決しうる高機能水素分離膜を提
供しようとするものである。
The present invention has been made in view of the above-mentioned state of the art, and has as its object to provide a high-performance hydrogen separation membrane which can solve the above-mentioned problems in the prior art.

【0010】[0010]

【課題を解決するための手段】本発明はレーザ法又はエ
ッチングにより孔あけ加工した金属多孔質支持体の表面
に、Pdを含有する薄膜を重ね合わせ、前記金属多孔質
支持体とPdを含有する薄膜との間に薄層のバリア層を
介在させてなることを特徴とする水素ガス分離膜であ
る。
Means for Solving the Problems The present invention to the surface of the record over sitting or etched by drilling metal porous support, superposing the thin film containing Pd, the metal porous
A thin barrier layer between the support and the thin film containing Pd
Hydrogen gas separation membrane der characterized by comprising interposed therebetween
You.

【0011】[0011]

【0012】すなわち、本発明は金属多孔質支持体とし
て、従来の金属繊維・圧延焼結材にかわり、レーザ又は
エッチングにより穿孔し細孔を設けた支持体を使用する
こととし、Pd膜の成膜法をメッキ法等の湿式法ではな
く、圧延等の手段で薄くしたPd膜を上記支持体に貼り
合わせて水素ガス分離膜として使用するようにし、更に
d膜と支持体との間に薄層のバリア層(セラミック、
金属酸化物)を介在させたものである。
That is, according to the present invention, a metal porous support is used in place of the conventional metal fiber and rolled sintered material, and a support provided with holes by laser or etching to form a Pd film. rather than wet process plating method or the like film forming method, a thinned Pd film by a means such as rolling so as to use as a hydrogen gas separation membrane adhered to the support member, further
Between the Pd film and the support, a thin barrier layer (ceramic,
(Metal oxide).

【0013】[0013]

【作用】(1)レーザ又はエッチングにて製造した金属
多孔質支持体は均一な大きさでしかも板厚方向にほぼ直
線的な細孔が形成される。また、孔径或いは開孔率も自
由に変えられ開孔率の大きな金属多孔質支持体が製造で
きる。
(1) A metal porous support produced by laser or etching has pores of uniform size and substantially linear in the thickness direction. Further, the pore diameter or the porosity can be freely changed, and a metal porous support having a large porosity can be manufactured.

【0014】(2)開孔率が大きくしかも板厚方向にほ
ぼ直線的な細孔が得られることから水素透過抵抗の小さ
な金属多孔質支持体を得ることができる。
(2) A metal porous support having a small hydrogen permeation resistance can be obtained because pores are large and substantially linear pores are obtained in the thickness direction.

【0015】(3)Pd膜の成膜法を従来のめっき法に
変わり貼り合わせ方式にしたことにより、めっき時に問
題となる細孔内部へのPd金属の侵入防止が計れる。
(3) By using a bonding method instead of a conventional plating method for forming a Pd film, it is possible to prevent the intrusion of Pd metal into the inside of the pores, which is a problem during plating.

【0016】(4)更に、Pd膜と金属多孔質支持体と
の間に薄層のバリア層を介在させることにより、Pdの
支持体金属への拡散が防止され、Pd膜の劣化を防止す
ることが可能となる。
(4) Further, by interposing a thin barrier layer between the Pd film and the metal porous support, diffusion of Pd into the support metal is prevented, and deterioration of the Pd film is prevented. It becomes possible.

【0017】[0017]

【実施例】(参考例1) 供試材として18−8ステンレス鋼(JIS規格:SU
S304)の薄板(70mm×70mm×1mm)を使
用し、この薄板の表面に微細なスポットに集光でき、金
属材料に対する反射率の小さなYAGレーザを細孔径:
10μm、細孔面積率が20%となるように出力などを
調整、照射し金属多孔質支持体を製作し、細孔径の大き
さ、面積率(薄板の全表面積に対する貫通孔表面積の割
合)を調べた。
EXAMPLES ( Reference Example 1) 18-8 stainless steel (JIS standard: SU
Using the thin plate (70 mm × 70 mm × 1 mm) of S304), a YAG laser capable of condensing a fine spot on the surface of this thin plate and having a small reflectance to a metal material is formed by using a YAG laser having a pore diameter of:
The output and the like are adjusted and irradiated so that the pore area ratio becomes 10% and the pore area ratio becomes 20%, and the metal porous support is manufactured, and the pore size and the area ratio (the ratio of the through-hole surface area to the total surface area of the thin plate) are determined. Examined.

【0018】すなわち、走査型電子顕微鏡で薄板表面を
無作為に30箇所写真撮影(撮影倍率:400倍)し、
その写真を画像解析装置で処理することにより算出し、
その結果、図1に示すように、全ての細孔2が貫通孔と
なっており、平均細孔径が10.4μm(標準偏差σ:
0.94)、細孔面積率が23%の多孔質支持体1が得
られた。
That is, the surface of the thin plate was photographed at random in 30 places with a scanning electron microscope (photographing magnification: 400 times).
Calculated by processing the photo with an image analysis device,
As a result, as shown in FIG. 1, all the pores 2 are through holes, and the average pore diameter is 10.4 μm (standard deviation σ:
0.94) and a porous support 1 having a pore area ratio of 23% was obtained.

【0019】上記レーザ法で製作した多孔質支持体1の
通気抵抗を計測した。測定は常温にて空気を流し単位板
厚当たりの圧力降下を評価する方法で行った。なお、比
較のため従来方法、即ち、金属繊維不織布をベースに圧
延焼結し製作した板厚が1mm、平均細孔径が10.5μ
m、開口率が25%の金属繊維・圧延焼結材についても
同様な計測を行った。
The airflow resistance of the porous support 1 manufactured by the laser method was measured. The measurement was performed by a method of evaluating the pressure drop per unit plate thickness by flowing air at normal temperature. For comparison, a conventional method, that is, a sheet thickness produced by rolling and sintering a metal fiber nonwoven fabric as a base and having an average pore diameter of 10.5 μm was used.
m, the same measurement was performed for a metal fiber / rolled sintered material having an aperture ratio of 25%.

【0020】その結果を図2に示すが、従来法のものと
比較して約1/2程度に通気抵抗が減少しており、本発
明法の有効性が確認される。
The results are shown in FIG. 2. As shown in FIG. 2, the ventilation resistance is reduced to about one half that of the conventional method, confirming the effectiveness of the method of the present invention.

【0021】上記の本発明で使用する金属多孔質支持体
1と10μm厚さのPd薄膜3とを重ね合せた。Pd膜
3の固定方法は種々考えられるが、こゝでは図3に示す
方法で水素ガス分離膜を試作した。すなわち、上記の金
属多孔質支持体1にPd薄膜3を重ね、更に、このPd
薄膜3を固定する支持用リング4を重ね合わせ、この合
わせ部からのガスの漏洩を防止するため、銀ロー5で周
囲を溶接して水素ガス分離膜とした。
The porous metal support 1 used in the present invention and the Pd thin film 3 having a thickness of 10 μm were superposed. Although various methods for fixing the Pd membrane 3 are conceivable, here, a hydrogen gas separation membrane was experimentally manufactured by the method shown in FIG. That is, the Pd thin film 3 is overlaid on the metal porous support 1, and
A support ring 4 for fixing the thin film 3 was overlapped, and the periphery was welded with a silver row 5 to form a hydrogen gas separation membrane in order to prevent leakage of gas from this joint.

【0022】この水素ガス分離膜の水素透過性能を調べ
るため、水素透過試験を行った。試験用の水素ガス分離
膜は図3によって説明したようにして製作したものを図
4のパイプに成形し試験に供した。図4中、1は金属多
孔質支持体、3はPd薄膜、4は支持用リング、5は銀
ロー溶接部を示す。
A hydrogen permeation test was performed to examine the hydrogen permeation performance of the hydrogen gas separation membrane. A hydrogen gas separation membrane for a test manufactured as described with reference to FIG. 3 was formed into a pipe shown in FIG. 4 and subjected to a test. In FIG. 4, 1 is a metal porous support, 3 is a Pd thin film, 4 is a support ring, and 5 is a silver-low weld.

【0023】水素透過試験は図5の試験装置で行った。
即ち、水素ガス分離膜AをOリングBでステンレス鋼製
外管Cに固定し、その外側を電気炉で加熱するようにし
て行った。温度はサーモカップルDを使用し、内管の中
心部で測定した。
The hydrogen permeation test was performed using the test apparatus shown in FIG.
That is, the hydrogen gas separation membrane A was fixed to a stainless steel outer tube C with an O-ring B, and the outside was heated by an electric furnace. The temperature was measured at the center of the inner tube using Thermocouple D.

【0024】供給孔EからH2 /N2 =1(モル)の混
合ガスを連続的に供給し、排出孔Fからブリードガスを
排出し、下部の取り出し孔Gから水素を得る方式とし
た。なお、Hはキャリアガス供給口である。
A mixed gas of H 2 / N 2 = 1 (mol) was continuously supplied from the supply hole E, the bleed gas was discharged from the discharge hole F, and hydrogen was obtained from the lower discharge hole G. H is a carrier gas supply port.

【0025】混合ガスの圧力を3kg/cm2 G、流量を2
0Nl/min.で、温度500℃で試験した結果、99.
99%以上の純粋な水素1.4Nl/min.を得ることが
でき、従来の約1.3倍の性能が得られることを確認し
た。
The pressure of the mixed gas is 3 kg / cm 2 G and the flow rate is 2
As a result of a test at a temperature of 500 ° C. at 0 Nl / min.
It was confirmed that 1.4 Nl / min. Of pure hydrogen of 99% or more could be obtained, and that a performance approximately 1.3 times that of the conventional case could be obtained.

【0026】なお、図6、図7にPd薄膜の他のシール
方法を示す。図6はその断面図、図7はその外観図であ
る。その方法を図6によって説明する。まず圧延等にて
均一厚みでしかも2〜3μm厚まで薄膜化したPdを含
む金属、すなわちPd薄膜3外周部をプレス加工等で
ビード状に成形し、ビード状部3′を形成させる。金属
多孔質支持体1は18−8ステンレス鋼(SUS304
材)の薄板表面に、微細なスポットに集光でき、金属材
料に対する反射率の小さいYAGレーザを細孔径(10
μm径程度)となるよう出力調整、照射し細孔2を加工
してある。
FIGS. 6 and 7 show another sealing method of the Pd thin film. FIG. 6 is a sectional view, and FIG. 7 is an external view thereof. The method will be described with reference to FIG. First, a metal containing Pd having a uniform thickness by rolling or the like and thinned to a thickness of 2 to 3 μm, that is, an outer peripheral portion of the Pd thin film 3 is formed into a bead shape by press working or the like to form a bead-shaped portion 3 ′. The metal porous support 1 is made of 18-8 stainless steel (SUS304).
A YAG laser that can focus light into a fine spot on the surface of a thin plate of
The pores 2 are processed by adjusting the output and irradiating so as to have a diameter of about μm.

【0027】上記Pd薄膜3をこの金属多孔質支持体1
に貼り合わせ、ガスもれを防止するため端部外周を溶接
(ろう付等)5する。
The Pd thin film 3 is coated on the metal porous support 1
Then, the outer periphery of the end is welded (brazed or the like) 5 to prevent gas leakage.

【0028】その後、YAGレーザで細孔加工した比較
的板厚の厚いカバー(SUS304材)1′に、前記金
属多孔質支持体1の細孔2とカバー1′の細孔2′とが
合致するよう貼り合わせたのち、端部外周を溶接5し、
ガスもれを防止するとともに両者を固定する。
Thereafter, the pores 2 of the metal porous support 1 and the pores 2 'of the cover 1' coincide with the relatively thick cover (SUS304 material) 1 'which has been subjected to pore processing with a YAG laser. After welding, the outer periphery of the end is welded 5
Prevent gas leakage and fix both.

【0029】さらにPd薄膜3の上面側に、同様に細孔
2が加工されたSUS304材のカバー1″を貼り合
せ、前記のカバー1′と溶接加工5する。図6において
原料ガスGは図示のようにPd薄膜3側から供給され、
下方のカバー1′の細孔2′より水素H2 が透過され
る。
Further, a cover 1 ″ of SUS304 material similarly processed with pores 2 is attached to the upper surface side of the Pd thin film 3, and the cover 1 ′ is welded 5. The raw material gas G is shown in FIG. Is supplied from the Pd thin film 3 side as in
Hydrogen H 2 is transmitted through the pores 2 ′ of the lower cover 1 ′.

【0030】このように構成された水素分離膜は図7の
ような外観となり、細孔2のある部分がガス供給部とな
る。このような外観の水素分離膜を分離装置構成に応じ
て円筒化したり、箱形あるいは平板形に加工して使用す
る。
The hydrogen separation membrane thus configured has an appearance as shown in FIG. 7, and the portion having the pores 2 serves as a gas supply unit. The hydrogen separation membrane having such an appearance is formed into a cylinder or processed into a box shape or a plate shape according to the configuration of the separation apparatus.

【0031】(参考例2) 供試材として18−8ステンレス鋼(JIS規格:SU
S304)の薄板(10mm×10mm×0.01m
m)を用い、エッチング法による孔明け試験を下記手順
にて実施した。
Reference Example 2 18-8 stainless steel (JIS standard: SU) was used as a test material.
S304) thin plate (10 mm × 10 mm × 0.01 m)
Using m), a drilling test by an etching method was performed according to the following procedure.

【0032】(1)供試材表面に、1〜2μm厚さの紫
外線硬化型のレジストを塗布し、乾燥後にあらかじめ所
定のパターンを形成させたフィルムを貼付けた。
(1) A UV-curable resist having a thickness of 1 to 2 μm was applied to the surface of the test material, and after drying, a film on which a predetermined pattern had been formed was pasted.

【0033】(2)このフィルム上から紫外光を照射
し、レジストを硬化させた後、水洗し、フィルム及び非
硬化部のレジストを除去した。
(2) The film was irradiated with ultraviolet light to cure the resist, and then washed with water to remove the film and the uncured portion of the resist.

【0034】(3)この後、塩化第2鉄溶液を用いて非
硬化部をエッチングし、孔明け処理を行った。なお、塩
化第2鉄溶液の温度は約50℃、エッチング時間は約2
分とした。
(3) Thereafter, the non-cured portion was etched using a ferric chloride solution to perform a hole-piercing treatment. The temperature of the ferric chloride solution was about 50 ° C., and the etching time was about 2 hours.
Minutes.

【0035】この結果、孔ピッチ:80μm、孔径:6
0μm、開孔率:50%の微細孔の加工ができることを
確認した。
As a result, the hole pitch: 80 μm and the hole diameter: 6
It was confirmed that micropores with a pore size of 0 μm and an opening ratio of 50% could be processed.

【0036】(参考例3) 以下、図8、図9及び図10によって、本発明の一参考
例を説明する。図8はここで使用する多孔質金属支持体
1の平面図を、図9はその断面図を示し、図10は水素
ガス分離膜の構成の断面図である。
Reference Example 3 Hereinafter, a reference example of the present invention will be described with reference to FIGS. 8, 9 and 10. 8 is a plan view of the porous metal support 1 used here, FIG. 9 is a cross-sectional view thereof, and FIG. 10 is a cross-sectional view of the structure of the hydrogen gas separation membrane.

【0037】金属材料としては18−8ステンレス鋼
(SUS304)薄板を使用した。この薄板(板厚1m
m)の表面に微細なスポットに集光でき、金属材料に対
する反射率の小さなYAGレーザを細孔径10μm、細
孔面積率が40%となるように出力調整、照射し、金属
多孔質支持体1を製作し、その細孔2の径の大きさ、面
積率を調べた。
As the metal material, a thin plate of 18-8 stainless steel (SUS304) was used. This thin plate (plate thickness 1m
m), a YAG laser capable of condensing light into a fine spot on the surface and having a small reflectance to the metal material is output-adjusted and irradiated so that the pore diameter becomes 10 μm and the pore area ratio becomes 40%. Was manufactured, and the size and area ratio of the pores 2 were examined.

【0038】すなわち、走査型電子顕微鏡で薄板表面を
400倍拡大し、その写真を画像解析装置で処理して調
査した。その結果全てが貫通孔となっており、平均細孔
径が10.4μm、細孔面積率41%の多孔質支持体1
が得られていた。
That is, the surface of the thin plate was magnified 400 times with a scanning electron microscope, and the photograph was processed by an image analyzer and examined. As a result, all of the porous support 1 had through holes, an average pore diameter of 10.4 μm, and a pore area ratio of 41%.
Was obtained.

【0039】板厚1mmに約10μm径の細孔が得られた
ことから、次の手段で水素ガス分離膜の製作を行った。
Since pores having a diameter of about 10 μm were obtained at a plate thickness of 1 mm, a hydrogen gas separation membrane was manufactured by the following means.

【0040】(1)板厚10μmのSUS304材を1
00枚重ねて同時に10μm径の細孔をレーザ加工し、
金属多孔質支持体1を製作した。
(1) One SUS304 material having a thickness of 10 μm
Laser processing of 10 μm diameter pores at the same time
A metal porous support 1 was produced.

【0041】(2)板厚70μmのSUS304材を1
4枚重ねて同時に15μm径の細孔をレーザ加工し、金
属多孔質支持体1′を製作した。
(2) SUS304 material having a thickness of 70 μm
Four sheets were laminated and simultaneously laser-processed the pores having a diameter of 15 μm to produce a metal porous support 1 ′.

【0042】(3)板厚0.5mmのSUS304材を2
枚重ねて30μm径の細孔をレーザ加工し、金属多孔質
支持体1″を製作した。
(3) SUS304 material having a thickness of 0.5 mm
Laser processing was performed on the fine pores having a diameter of 30 μm by stacking to form a metal porous support 1 ″.

【0043】(4)上記で得られた種々板厚、細孔径の
金属多孔質支持体を図10に示すように、Pd薄膜3を
はさみこむように貼り合わせた。Pd薄膜3は圧延加工
で得られた2〜3μmの均一厚みを有するものであり、
これを金属多孔体1で両面からはさみこんで貼り合わせ
る。その後一方向に順次多層状に貼り合わせてゆく方式
である。
(4) The metal porous supports of various thicknesses and pore diameters obtained as described above were bonded so as to sandwich the Pd thin film 3 as shown in FIG. The Pd thin film 3 has a uniform thickness of 2 to 3 μm obtained by rolling,
This is sandwiched from both sides with the porous metal body 1 and bonded. After that, it is a method in which the layers are sequentially laminated in one direction in a multilayer shape.

【0044】Pd薄膜3の両面に金属多孔質支持体1を
設けた理由は、原料ガス供給側に配される触媒が直接P
d薄膜3に接し、Pd薄膜3が損傷するのを防止するも
のであるが、上記のようにすることにより水素分離性能
が低下することはない。
The reason for providing the metal porous support 1 on both sides of the Pd thin film 3 is that the catalyst disposed on the source gas supply side is directly
The contact with the d thin film 3 prevents the Pd thin film 3 from being damaged. However, the above-described operation does not lower the hydrogen separation performance.

【0045】さらにPd薄膜3は圧延加工した均一厚み
の2〜3μm厚のPd含有材を用いているので、従来の
メッキ法の1/5〜1/10厚みとなり、その分だけで
も水素透過性能が向上する。
Further, since the Pd thin film 3 is made of a rolled Pd-containing material having a uniform thickness of 2 to 3 μm, the Pd thin film 3 has a thickness of 1/5 to 1/10 that of the conventional plating method. Is improved.

【0046】また、金属多孔質支持体も板厚方向に直線
的細孔となっているので原料ガスの流入がスムーズ、か
つ分離水素の透過もスムーズとなり、従来より1/3〜
1/5倍の透過抵抗となった。
Further, since the metal porous support also has linear pores in the plate thickness direction, the flow of the raw material gas is smooth, and the permeation of the separated hydrogen is also smooth.
The transmission resistance was 5 times.

【0047】細孔径および細孔面積率は自由に調整加工
できるので目的に応じた膜が製作できる。特にエッチン
グ方法による穿孔は、孔径が板厚に律則されるため、微
細孔を得るためには、微小板厚の薄板が必要であり、こ
れはPd薄膜の支持体としては強度的に不充分となる。
このため上記のようにした多層支持体は支持体の強度ア
ップに有効である。
Since the pore diameter and the pore area ratio can be freely adjusted and processed, a membrane suitable for the purpose can be manufactured. In particular, in the case of drilling by the etching method, since the hole diameter is determined by the plate thickness, a thin plate having a small plate thickness is necessary to obtain fine holes, which is insufficient in strength as a support for the Pd thin film. Becomes
Therefore, the multilayer support as described above is effective for increasing the strength of the support.

【0048】(実施例) 金属多孔質支持体に、Pd薄膜を貼り合せた、水素ガス
分離膜の高温条件下での耐久性、すなわち、長期間使用
した場合にステンレス鋼母材とPdの拡散合金化による
性能低下が懸念されるため、この相互拡散防止を計る目
的で、図11に示すように、バリア層6をステンレス鋼
よりなる金属多孔質支持体1とPd薄膜3との間に介在
させた水素ガス分離膜を作製した。
(Example 1 ) The durability of a hydrogen gas separation membrane obtained by bonding a Pd thin film to a metal porous support under high-temperature conditions, that is, when a stainless steel base material and Pd were used for a long period of time. Since there is a concern that the performance may be degraded due to the diffusion alloying, the barrier layer 6 is placed between the metal porous support 1 made of stainless steel and the Pd thin film 3 as shown in FIG. A hydrogen gas separation membrane interposed was produced.

【0049】すなわち、バリア層6として、TiNを選
定し、熱CVD法により約2μmの厚さで金属多孔質支
持体(20mm×50mm×1mm,平均孔径:10μm,細
孔面積率:20%)1上に成膜させ、その後10μm厚
さのPd薄膜3を貼り合せたものを作製し、長期間使用
による性能評価を実施した。なお、比較のためバリア層
を実施しないものについても、長期間使用による性能評
価を行った。
That is, TiN is selected as the barrier layer 6, and a metal porous support (20 mm × 50 mm × 1 mm, average pore diameter: 10 μm, pore area ratio: 20%) is formed by thermal CVD at a thickness of about 2 μm. Then, a Pd thin film 3 having a thickness of 10 μm was laminated on the substrate 1, and a performance evaluation was performed over a long period of use. For comparison, performance evaluation was also performed on a device without a barrier layer after long-term use.

【0050】この性能評価は既に述べた図5の装置で、
混合ガスの圧力:3kg/cm2 G,流量:20Nl/min
,温度:500℃で実施したが、バリア層を介在させ
たものは1500時間運転後においても性能低下は殆ど
ないが、バリア層を実施しないものでは水素透過量が約
1/2に低下することが判明した。なお、バリア層はT
iNに限らず、他のセラミックや金属酸化物でもよい。
This performance evaluation was performed using the apparatus shown in FIG.
Pressure of mixed gas: 3 kg / cm 2 G, flow rate: 20 Nl / min
, Temperature: 500 ° C., with the barrier layer interposed, there is almost no performance decrease even after operation for 1500 hours, but without the barrier layer, the hydrogen permeation amount is reduced to about 2. There was found. The barrier layer is made of T
Not limited to iN, other ceramics or metal oxides may be used.

【0051】[0051]

【発明の効果】本発明によれば次の効果が奏される。 (1)金属多孔質支持体およびこれの支持カバーに設け
てある細孔は板厚方向にほぼ直線であり、水素分離抵抗
が小さくなる。 (2)Pd薄膜にビードを設けると、熱膨張、変形にビ
ードが対処するのでPd薄膜の損傷が防止できる。 (3)Pd薄膜へのガス供給側に保護カバーを設けてあ
るので、ガス圧力や触媒接触等によるPd薄膜の損傷防
止ができる。 (4)完全シール体となっているため種々形状へ変形加
工できる。 (5)Pd薄膜が従来メッキ法より1/5〜1/10と
薄く、均一にできるので水素透過率が向上し、高純度な
水素が得られる。 (6)Pd薄膜と金属多孔質支持体の間にバリア層を設
けているので、水素ガス分離膜の劣化を防止することが
できる。
According to the present invention, the following effects can be obtained. (1) The pores provided in the metal porous support and its support cover are substantially straight in the plate thickness direction, and the hydrogen separation resistance is reduced. (2) When a bead is provided on the Pd thin film, the bead copes with thermal expansion and deformation, so that damage to the Pd thin film can be prevented. (3) Since the protective cover is provided on the gas supply side to the Pd thin film, it is possible to prevent the Pd thin film from being damaged by gas pressure, catalyst contact, or the like. (4) Since it is a completely sealed body, it can be deformed into various shapes. (5) Since the Pd thin film can be made as thin as 1/5 to 1/10 of the conventional plating method and uniform, the hydrogen permeability is improved and high-purity hydrogen can be obtained. (6) Since the barrier layer is provided between the Pd thin film and the metal porous support, it is possible to prevent deterioration of the hydrogen gas separation membrane.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明で使用する金属多孔質支持体及びそれに
重ね合せたPd膜の状態を示す説明図
FIG. 1 is an explanatory view showing a state of a metal porous support used in the present invention and a Pd film superposed thereon.

【図2】本発明で使用する金属多孔質支持体と従来の金
属組織不織布を圧延焼結した支持体の通気抵抗の比較図
FIG. 2 is a comparison diagram of the air flow resistance between a metal porous support used in the present invention and a support obtained by rolling and sintering a conventional metal structure nonwoven fabric.

【図3】金属多孔質支持体とPd薄膜の重ね合せの一方
法の説明図
FIG. 3 is an explanatory view of one method of superposing a metal porous support and a Pd thin film.

【図4】図3で得られた水素ガス分離膜の水素透過性を
調べるために製作した水素ガス分離膜の説明図
FIG. 4 is an explanatory view of a hydrogen gas separation membrane manufactured for examining the hydrogen permeability of the hydrogen gas separation membrane obtained in FIG.

【図5】図4の水素ガス分離膜の水素透過性を調べるた
めの試験装置の説明図
FIG. 5 is an explanatory view of a test apparatus for examining the hydrogen permeability of the hydrogen gas separation membrane of FIG.

【図6】金属多孔質支持体とPd薄膜の重ね合せの他の
方法の説明のための断面図
FIG. 6 is a cross-sectional view for explaining another method of laminating a metal porous support and a Pd thin film.

【図7】図6の外観図FIG. 7 is an external view of FIG. 6;

【図8】本発明の一参考例で使用する金属多孔質支持体
の平面図
FIG. 8 is a plan view of a metal porous support used in one reference example of the present invention.

【図9】図8の断面図FIG. 9 is a sectional view of FIG. 8;

【図10】本発明の一参考例の水素ガス分離膜の構成の
断面図
FIG. 10 is a cross-sectional view of a configuration of a hydrogen gas separation membrane according to a reference example of the present invention.

【図11】バリア層を介在させた本発明の一実施例の水
素ガス分離膜の構成の断面図
FIG. 11 is a cross-sectional view of a configuration of a hydrogen gas separation membrane of one embodiment of the present invention with a barrier layer interposed.

【図12】従来の水素ガス分離膜の欠点の説明図FIG. 12 is an explanatory view of a defect of a conventional hydrogen gas separation membrane.

フロントページの続き (72)発明者 湯崎 芳啓 広島市西区観音新町四丁目6番22号 三 菱重工業株式会社広島研究所内 (72)発明者 末田 穰 広島市西区観音新町四丁目6番22号 三 菱重工業株式会社広島研究所内 (72)発明者 ▲吉▼田 康之 広島市西区観音新町四丁目6番22号 三 菱重工業株式会社広島研究所内 (72)発明者 梶原 哲雄 広島市西区観音新町四丁目6番22号 三 菱重工業株式会社広島研究所内 (72)発明者 石橋 保博 広島市西区観音新町四丁目6番22号 三 菱重工業株式会社広島研究所内 (72)発明者 飯伏 順一 広島市西区観音新町四丁目6番22号 三 菱重工業株式会社広島研究所内 (56)参考文献 特開 昭62−121616(JP,A) 特開 平1−262924(JP,A) 特開 平1−218607(JP,A) 特開 平1−262903(JP,A) 特開 昭53−95314(JP,A) 特開 昭62−129106(JP,A) 特開 平3−288534(JP,A) 特開 平4−346824(JP,A) 特開 昭61−157326(JP,A) 特開 平4−349926(JP,A) 特開 昭49−127874(JP,A) 特開 平5−76737(JP,A) 特公 昭44−15283(JP,B1) 特公 昭49−48834(JP,B1) (58)調査した分野(Int.Cl.6,DB名) B01D 71/02 B23K 26/00 C01B 3/56 Continuing from the front page (72) Inventor Yoshihiro Yuzaki 4-6-22 Kannon Shinmachi, Nishi-ku, Hiroshima City Inside the Hiroshima Laboratory, Rishiju Heavy Industries Co., Ltd. (72) Inventor Joi Sueda 4-6-22 Kanon Shinmachi, Nishi-ku, Hiroshima City 3 Inside the Hiroshima Research Laboratory, Hishi Heavy Industries Co., Ltd. No. 6-22 Sanyo Heavy Industries Co., Ltd.Hiroshima Research Center (72) Inventor Yasuhiro Ishibashi 4-2-2 Kanon Shinmachi, Nishi-ku, Hiroshima City Within Sanishi Heavy Industries Co., Ltd.Hiroshima Research Center (72) Inventor Junichi Iibushi Kannon, Nishi-ku, Hiroshima City No. 6-22 Shinmachi, Hiroshima Laboratory, Mitsubishi Heavy Industries, Ltd. (56) References JP-A-62-121616 (JP, A) JP-A-1-262924 (JP, A) JP-A-1-218607 (JP) JP-A-1-262903 (JP, A) JP-A-53-95314 (JP, A) JP-A-62-1291 06 (JP, A) JP-A-3-288534 (JP, A) JP-A-4-346824 (JP, A) JP-A-61-157326 (JP, A) JP-A-4-349926 (JP, A) JP-A-49-127874 (JP, A) JP-A-5-76737 (JP, A) JP-B-44-15283 (JP, B1) JP-B-49-48834 (JP, B1) (58) (Int.Cl. 6 , DB name) B01D 71/02 B23K 26/00 C01B 3/56

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 レーザ法又はエッチングにより孔あけ加
工した金属多孔質支持体の表面に、Pdを含有する薄膜
を重ね合わせ、前記金属多孔質支持体とPdを含有する
薄膜との間に薄層のバリア層を介在させてなることを特
徴とする水素ガス分離膜。
1. A thin film containing Pd is superposed on the surface of a porous metal support formed by drilling by a laser method or etching , and the porous support and Pd are contained.
A hydrogen gas separation membrane comprising a thin barrier layer interposed between the thin film and a thin film.
JP3245430A 1991-09-25 1991-09-25 Hydrogen gas separation membrane Expired - Lifetime JP2960998B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3245430A JP2960998B2 (en) 1991-09-25 1991-09-25 Hydrogen gas separation membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3245430A JP2960998B2 (en) 1991-09-25 1991-09-25 Hydrogen gas separation membrane

Publications (2)

Publication Number Publication Date
JPH0576738A JPH0576738A (en) 1993-03-30
JP2960998B2 true JP2960998B2 (en) 1999-10-12

Family

ID=17133545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3245430A Expired - Lifetime JP2960998B2 (en) 1991-09-25 1991-09-25 Hydrogen gas separation membrane

Country Status (1)

Country Link
JP (1) JP2960998B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102378644A (en) * 2009-04-07 2012-03-14 林德股份公司 Diaphragm pipe and reactor having a diaphragm pipe

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5498278A (en) * 1990-08-10 1996-03-12 Bend Research, Inc. Composite hydrogen separation element and module
JP3540495B2 (en) * 1996-03-18 2004-07-07 三菱重工業株式会社 Hydrogen separation membrane
US6152987A (en) * 1997-12-15 2000-11-28 Worcester Polytechnic Institute Hydrogen gas-extraction module and method of fabrication
CH694150A5 (en) * 1998-11-10 2004-08-13 Ati Properties Inc A Delaware Hydrogen separation membrane.
JP2001286742A (en) * 2000-04-10 2001-10-16 Mitsubishi Heavy Ind Ltd Hydrogen separation membrane
JP4274678B2 (en) * 2000-08-09 2009-06-10 東洋鋼鈑株式会社 Gas separation unit and manufacturing method thereof
KR20010000568A (en) * 2000-09-27 2001-01-05 백창호 Metal Screen Filter.
JP2003094542A (en) * 2001-09-25 2003-04-03 Toyo Kohan Co Ltd Laminated material with opening and component using laminated material with opening
CA2461163C (en) * 2001-09-26 2008-01-29 Toyo Kohan Co., Ltd. Gas separating unit and method for manufacturing the same
JP4144780B2 (en) * 2002-04-24 2008-09-03 東洋鋼鈑株式会社 Separation membrane laminate and separation membrane unit using separation membrane laminate
DE10222568B4 (en) 2002-05-17 2007-02-08 W.C. Heraeus Gmbh Composite membrane and process for its production
KR101247410B1 (en) 2004-03-25 2013-03-25 가부시키가이샤 토호쿠 테크노 아치 Metallic glass laminate, process for producing the same and use thereof
JPWO2006011616A1 (en) * 2004-07-26 2008-05-01 日本碍子株式会社 Reactor
US7662218B2 (en) 2004-10-20 2010-02-16 Dai Nippon Printing Co., Ltd. Filter for purifying hydrogen and method for manufacture thereof
JP4911916B2 (en) * 2005-05-11 2012-04-04 日本特殊陶業株式会社 Hydrogen separator
JP4815901B2 (en) * 2005-07-08 2011-11-16 大日本印刷株式会社 Hydrogen purification filter and method for producing the same
JP4917787B2 (en) * 2005-09-30 2012-04-18 日本精線株式会社 Hydrogen separation member and method for producing the same
JP4917786B2 (en) * 2005-09-30 2012-04-18 日本精線株式会社 Hydrogen separation member and hydrogen separation module using the hydrogen separation member
JP4714052B2 (en) * 2006-03-16 2011-06-29 大日本印刷株式会社 Hydrogen purification filter and method for producing the same
JP4692897B2 (en) * 2006-09-10 2011-06-01 和志 山田 Method for producing fine hole material, fine hole material and separation membrane provided with the same.
WO2008103241A2 (en) * 2007-02-16 2008-08-28 Entegris, Inc. A fluid filter with polymeric membrane and metal supports
JP4944656B2 (en) * 2007-03-30 2012-06-06 日本精線株式会社 Membrane support for hydrogen separation and module for hydrogen separation using this support
JP5212888B2 (en) * 2007-10-26 2013-06-19 日産自動車株式会社 Hydrogen separator and hydrogen separator
JP5434075B2 (en) * 2007-12-26 2014-03-05 日産自動車株式会社 Membrane reactor
JP2009291740A (en) * 2008-06-06 2009-12-17 Hitachi Ltd Hydrogen separation member and hydrogen generating apparatus
KR100976196B1 (en) * 2008-09-17 2010-08-17 한국표준과학연구원 Hydrogen Penetration Barrier
JP2012193097A (en) * 2011-03-18 2012-10-11 Panasonic Corp Hydrogen generator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102378644A (en) * 2009-04-07 2012-03-14 林德股份公司 Diaphragm pipe and reactor having a diaphragm pipe
US8753433B2 (en) 2009-04-07 2014-06-17 Plansee Se Membrane tube and reactor having a membrane tube
CN102378644B (en) * 2009-04-07 2014-11-26 普兰西公司 Diaphragm pipe and reactor having a diaphragm pipe

Also Published As

Publication number Publication date
JPH0576738A (en) 1993-03-30

Similar Documents

Publication Publication Date Title
JP2960998B2 (en) Hydrogen gas separation membrane
JP3467779B2 (en) Filter media and air filter unit using the same
JP2991609B2 (en) Joint of gas separator and metal and hydrogen gas separator
US3208198A (en) Method for hydrogen diffusion
US7125440B2 (en) Composite structure for high efficiency hydrogen separation and its associated methods of manufacture and use
JP2007007565A (en) Reinforcing structure for hydrogen-permeable film, and its manufacturing method
EP2531281A1 (en) Membrane for oxygen generation
JP2006272420A (en) Diffusion welding method for metallic foil
JP4944656B2 (en) Membrane support for hydrogen separation and module for hydrogen separation using this support
CA2461163C (en) Gas separating unit and method for manufacturing the same
JP4511199B2 (en) Gas selective permeable membrane and method for producing the same
US7749305B1 (en) Composite structure for high efficiency hydrogen separation containing preformed nano-particles in a bonded layer
JP3207635B2 (en) Hydrogen gas separation device
JP2018538140A (en) Membrane device having a bonding layer
JPH11276867A (en) Joining of hydrogen-permeable membrane
JP3801838B2 (en) Hydrogen gas separation unit and manufacturing method thereof
JP2813274B2 (en) Gas filter device
JP2007509743A (en) Hydrogen gas separator having a composite structure for separating hydrogen with high efficiency, and method for producing and using the same
JP4274678B2 (en) Gas separation unit and manufacturing method thereof
JPH10296061A (en) Hydrogen separation membrane and its manufacture
JP3515192B2 (en) Brazing structure of porous metal body and method of manufacturing the same
EP2106838B1 (en) Hydrogen permeable module and usage thereof
JPH0751552A (en) Membrane for separating hydrogen
JPH08215551A (en) Hydrogen separation membrane
JP2000296316A (en) Pressure-resistant hydrogen permeable membrane and its production

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990629

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080730

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090730

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100730

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110730

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120730

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120730

Year of fee payment: 13