JP2958796B2 - Zero-phase current measurement sensor - Google Patents

Zero-phase current measurement sensor

Info

Publication number
JP2958796B2
JP2958796B2 JP2153983A JP15398390A JP2958796B2 JP 2958796 B2 JP2958796 B2 JP 2958796B2 JP 2153983 A JP2153983 A JP 2153983A JP 15398390 A JP15398390 A JP 15398390A JP 2958796 B2 JP2958796 B2 JP 2958796B2
Authority
JP
Japan
Prior art keywords
zero
ring
current
magnetic field
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2153983A
Other languages
Japanese (ja)
Other versions
JPH0447274A (en
Inventor
一穂 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOOKIN KK
Original Assignee
TOOKIN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOOKIN KK filed Critical TOOKIN KK
Priority to JP2153983A priority Critical patent/JP2958796B2/en
Publication of JPH0447274A publication Critical patent/JPH0447274A/en
Application granted granted Critical
Publication of JP2958796B2 publication Critical patent/JP2958796B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は,電気的ノイズの影響を受けない電流の測定
に関してのもので,特にファラデー効果を用いた光式電
流センサにより零相電流を測定するためのセンサに関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial application] The present invention relates to measurement of a current which is not affected by electric noise, and particularly to measurement of a zero-phase current by an optical current sensor using the Faraday effect. To a sensor for

[従来の技術] 従来,発電,変電,送電の分野では,3相交流の電流が
流れる3本の電力線の各電流値を常に測定し,3相各相の
電流値の和である零相電流の値を監視する必要がある。
従来は電流測定装置としてカレントトランスが使用され
てきたが,近年はより小型でかつ原理的に電磁ノイズの
影響を受けることのない光電流センサの使用が進められ
ている。
[Prior art] Conventionally, in the fields of power generation, transformation, and power transmission, the current values of three power lines through which three-phase alternating current flows are constantly measured, and the zero-phase current, which is the sum of the current values of the three phases, is used. Need to be monitored.
Conventionally, a current transformer has been used as a current measuring device, but in recent years, a photocurrent sensor which is smaller and which is not affected by electromagnetic noise in principle has been used.

第3図は従来の光電流センサの一例を示す図である。 FIG. 3 is a diagram showing an example of a conventional photocurrent sensor.

第3図において光電流センサ100は高透磁性材料によ
る一部に空隙を有するリング状コア(カットコア)117
とこの空隙部に設けられた光磁界測定部101と,このカ
ットコア117を貫通する電力線108とを備えている。
In FIG. 3, the photocurrent sensor 100 is a ring-shaped core (cut core) 117 having a gap in a part made of a highly permeable material.
And an optical magnetic field measuring unit 101 provided in the gap, and a power line 108 passing through the cut core 117.

光磁界測定部101には,光信号を入出力する光ファイ
バー118,119とこの光ファイバー118,119に接続された光
源120と受光素子および解析部121が接続され,電流測定
部を構成し,カットコア117を貫通する電力線108の電流
値を測定する。
The optical magnetic field measuring unit 101 is connected to optical fibers 118 and 119 for inputting and outputting optical signals, a light source 120 connected to the optical fibers 118 and 119, a light receiving element, and an analyzing unit 121, and constitutes a current measuring unit. The current value of the power line 108 is measured.

その原理は以下の通りである。電力線117に流れる電
流による励起磁界の影響を受けない遠方に置かれた安定
な光源120により出力された変動の小さな出力光は第3
図の光ファイバ118によって導かれ,光磁界測定部101内
に導入される。光源としては,一般に半導体レーザが用
いられていることが多い。電力線108に流れる紙面に垂
直下向き114の電流はその電流値に比例する強度の磁界
を,電力線108をとり囲むカットコア117中に励起し,そ
の結果,光磁界測定部101をその磁界強度に相当する磁
力線が貫くこととなる。光磁界測定部101内は,ファラ
デー効果を持つ光学結晶及び2枚の偏光素子から構成さ
れ,印加される磁界の変動によりファラデー回転角が変
動する偏光素子によって,印加磁界の変動が導入光の透
過光量の変化信号に変換されることになる。電力線108
の電流量変動の信号をその強弱に変換された光源120か
らの透過光は,光磁界測定部101から出力され,光ファ
イバー119を透過して受光素子および解析部121に導入さ
れる。このようにして,電力線108の電流値の変動を光
信号の変動として検出することができる。光ファイバー
中を通る光信号自体は電磁ノイズの影響を全く受けない
で,それらに影響を受けない電流測定が可能である。
The principle is as follows. The small fluctuation light output from the remote stable light source 120 which is not affected by the excitation magnetic field due to the current flowing through the power line 117 is the third light.
The light is guided by the optical fiber 118 shown in FIG. In general, a semiconductor laser is often used as a light source. The downward current 114 flowing in the power line 108 perpendicular to the paper surface excites a magnetic field having an intensity proportional to the current value into the cut core 117 surrounding the power line 108, and as a result, the optical magnetic field measuring unit 101 corresponds to the magnetic field intensity. Lines of magnetic force that penetrate through. The inside of the optical magnetic field measuring unit 101 is composed of an optical crystal having a Faraday effect and two polarizing elements, and the fluctuation of the applied magnetic field is transmitted by the polarizing element whose Faraday rotation angle fluctuates due to the fluctuation of the applied magnetic field. This is converted into a light amount change signal. Power line 108
The transmitted light from the light source 120, which is obtained by converting the signal of the current amount variation into its intensity, is output from the optical magnetic field measuring unit 101, passes through the optical fiber 119, and is introduced into the light receiving element and the analyzing unit 121. In this way, a change in the current value of the power line 108 can be detected as a change in the optical signal. The optical signal itself passing through the optical fiber is not affected by the electromagnetic noise at all, and the current measurement can be performed without being affected by the electromagnetic noise.

以上の原理にて動作する光電流センサを3相交流の電
力線の零相電流の測定に使用するには,光電流センサを
3個使用し,3本の電力線のそれぞれの電流値を測定して
加算することとなる。その零相電流測定用センサの概略
構成図を第4図に示す。
To use a photocurrent sensor operating on the above principle to measure the zero-phase current of a three-phase AC power line, use three photocurrent sensors and measure the current values of each of the three power lines. Will be added. FIG. 4 shows a schematic configuration diagram of the zero-phase current measuring sensor.

第4図では,3つの光電流センサ104,105,106は互いに
平行に並べられそれぞれを1本ずつの電力線107,108,10
9がリング状コア面に対して直交するように貫通する。
3本の電力線107,108,109の各々に関して得られた電流
値の総和は,通常はゼロとなるが,何等かの異常が生じ
た場合は,ゼロ以外の値となるので,異常を検出するこ
とができる。
In FIG. 4, three photocurrent sensors 104, 105, and 106 are arranged in parallel with each other, and each of them has one power line 107, 108, and 10 respectively.
9 penetrates so as to be orthogonal to the ring-shaped core surface.
Normally, the sum of the current values obtained for each of the three power lines 107, 108, and 109 is zero, but if any abnormality occurs, the total value becomes a value other than zero, so that abnormality can be detected.

この方法により,従来のカレントトランスを用いる方
法にくらべ,より小型の設備で,より高精度に電流値の
監視を行うことができる。
With this method, it is possible to monitor the current value with smaller equipment and with higher accuracy than the conventional method using a current transformer.

以上述べた従来の零相電流測定用センサでは,光磁界
測定部分で必然的に高透磁率磁性材料によるコアに切目
が生じるためその箇所から外部磁界に起因する磁力線が
侵入し,光磁界測定部の測定結果に誤差を与えてしまう
との問題があった。原因となる外部要因の最大のものは
一般には被測定電力線のごく近傍に位置していると考え
られる3相交流の残り2本の電力線である。前述の通り
光電流センサは電気的なノイズの影響を全く受けないが
電流値を磁界に変換して測定する装置であるので,外部
要因によって光磁界測定部での磁力線に乱れが生じる
と,その量が直接に測定誤差として結果に影響する。従
来はこの問題点を解決するために,3つの光電流センサ10
4〜106を互いにできる限り離して設置したり,各電流セ
ンサ間に高透磁率材料によるシールドを設置する等の対
策を講じていた。
In the conventional zero-sequence current measurement sensor described above, a line of magnetic force caused by an external magnetic field penetrates from the incision in the core made of a high-permeability magnetic material inevitably in the optical magnetic field measurement part, and the optical magnetic field measurement part There is a problem that an error is given to the measurement result of the above. The largest of the external factors that cause this is the remaining two power lines of the three-phase alternating current which are generally considered to be located very close to the power line to be measured. As described above, the photocurrent sensor is not affected by electrical noise at all, but it is a device that converts the current value into a magnetic field for measurement. Therefore, if the magnetic field lines in the photomagnetic field measurement unit are disturbed by external factors, the The amount directly affects the result as a measurement error. Conventionally, to solve this problem, three photocurrent sensors 10
Countermeasures were taken such as placing the 4 to 106 as far away from each other as possible and installing a shield made of a high magnetic permeability material between the current sensors.

[発明が解決しようとする課題] しかしながら,上記従来の対策には,1)光電流センサ
全体の容量がかなり大きくなってしまい,カレントトラ
ンス使用の装置に比べ小型化できるという特徴がうすれ
てしまう,2)完全に磁気漏洩を遮断することはできな
い,との問題が残り,完全な解決を図ることができなか
った。
[Problems to be Solved by the Invention] However, the above-mentioned conventional countermeasures include: 1) the capacity of the entire photocurrent sensor is considerably increased, and the feature that the size can be reduced as compared with a device using a current transformer, 2) The problem that magnetic leakage could not be completely shut down remained, and a complete solution could not be achieved.

そこで,本発明の技術的課題は,測定誤差を大幅に低
減しより高い信頼度の電流値の測定を行うことができる
とともに全体の容量が小さな零相電流測定用センサを提
供することにある。
Therefore, a technical object of the present invention is to provide a zero-phase current measuring sensor that can greatly reduce a measurement error, measure a current value with higher reliability, and has a small overall capacity.

[課題を解決するための手段] 本発明は以上述べた欠点の解決を図るために,3相交流
の電力線とそれらの電流値を測定する合計3個の光電流
センサをそれぞれ互いに直交するように空間内に配し,
各光電流センサの光磁界測定部に対する被測定電力線以
外の残り2本の電力線の励起する磁界が,測定しようと
する磁界に対し,それぞれ直交するように構成したもの
である。
[Means for Solving the Problems] In order to solve the above-mentioned drawbacks, the present invention provides a three-phase AC power line and a total of three photocurrent sensors for measuring their current values so as to be orthogonal to each other. Placed in the space,
The magnetic field excited by the remaining two power lines other than the measured power line with respect to the optical magnetic field measurement unit of each photocurrent sensor is configured to be orthogonal to the magnetic field to be measured.

即ち,本発明によれば,一部に空隙を有するリング状
コアと,該リング状コアに挿通され,被測定の電流を流
すために該電流方向と該リング状コアのリング面が直交
するように設けられた導電線と,該空隙に設けられたリ
ング状コアの形成する磁界の強度に応じて透過する光の
強度を変化させる光磁界測定部と備えた光電流センサを
3個用いることにより構成され,該光磁界測定部に光を
入射させる光源と,該光磁気測定部から出射される光信
号から電流値を検知し,検出された検出値の総和を取っ
て零相電流を測定するための零相電流測定用センサにお
いて,前記3個の光電流センサの夫々の導電線の向きが
互いに直交するように配置して前記導電線を挿通された
夫々のリング状コアのリング面を互いに直交させるよう
に配置したこと特徴とする零相電流測定用センサが得ら
れる。
That is, according to the present invention, a ring-shaped core partially having a gap, and the current direction is perpendicular to the ring surface of the ring-shaped core inserted through the ring-shaped core so that a current to be measured flows. By using three photocurrent sensors provided with a conductive wire provided in the space, and an optical magnetic field measuring unit for changing the intensity of transmitted light according to the intensity of the magnetic field formed by the ring-shaped core provided in the gap. A current value is detected from a light source configured to make light incident on the magneto-optical field measuring unit and an optical signal emitted from the magneto-optical measuring unit, and a zero-phase current is measured by taking the sum of the detected values. Current sensor for zero-phase current measurement, the three photocurrent sensors are arranged so that the directions of the conductive lines are orthogonal to each other, and the ring surfaces of the respective ring-shaped cores through which the conductive lines are inserted are connected to each other. Features that are arranged orthogonally Zero-phase current measurement sensor to obtain.

また,本発明によれば,前記零相電流測定用センサ全
体を前記リング状コアと前記導電線との夫々の位置関係
を崩さないように,透磁率の大きな材料で構成された磁
気シールドケースで覆ったことを特徴とする零相電流測
定用センサが得られる。
Further, according to the present invention, the entirety of the zero-phase current measuring sensor is formed of a magnetic shield case made of a material having a high magnetic permeability so as not to disturb the positional relationship between the ring-shaped core and the conductive wire. A zero-sequence current measurement sensor characterized by being covered is obtained.

一般に,光の進行方向に対し垂直な面内の向きに加わ
る磁界は,次の磁気光学効果には全く寄与しないので,
光電流センサによる測定値は一本の被測定電力線のみの
磁界強度に由来するものとなり,他の2相の電流値の影
響を受けない。また,3相交流の電力線以外の外部磁界に
起因する磁界による影響は,一般に各相の測定電力線の
励起磁界に比べてかなり小さいと考えられるので,互い
に直交する3つの光電流センサを高透磁率材料製のシー
ルドケースの中に一括して収める事で,実用上全く問題
がないと考えられるレベルまで低下させることが可能で
あり,かつ3個の光電流センサがそれぞれ互いに直交し
ているので全体をコンパクトにまとめることができる。
In general, a magnetic field applied in an in-plane direction perpendicular to the traveling direction of light does not contribute to the next magneto-optical effect at all.
The value measured by the photocurrent sensor is derived from the magnetic field intensity of only one measured power line, and is not affected by the current values of the other two phases. In addition, the effect of the magnetic field caused by an external magnetic field other than the three-phase alternating current power line is generally considered to be considerably smaller than the excitation magnetic field of the measured power line of each phase. By putting them all together in a shielded case made of material, it is possible to lower the level to a level that is considered to have no problem in practical use, and since the three photocurrent sensors are orthogonal to each other, the overall Can be compacted.

即ち,本発明によれば,前記零相電流測定用センサ全
体を前記リング状コアと前記導電線との夫々の位置関係
を崩さないように,透磁率の大きな材料で構成された磁
気シールドケースで覆ったことを特徴とする零相電流測
定用センサが得られる。
That is, according to the present invention, the whole of the zero-phase current measuring sensor is formed of a magnetic shield case made of a material having a high magnetic permeability so as not to disturb the positional relationship between the ring-shaped core and the conductive wire. A zero-sequence current measurement sensor characterized by being covered is obtained.

以上により,従来の3相交流電力線の光電流センサに
よる零相電流測定用センサに対し,磁力線による測定誤
差の影響を著しく低減し,かつ占有容積は比較的小さな
零相電流測定用センサの構成が可能となる。
As described above, in comparison with the conventional zero-phase current measurement sensor using the photocurrent sensor of the three-phase AC power line, the configuration of the zero-phase current measurement sensor that significantly reduces the effect of the measurement error due to the magnetic field lines and occupies a relatively small volume is provided. It becomes possible.

[実施例] 以下に本発明の実施例を図面を参照して説明する。Embodiment An embodiment of the present invention will be described below with reference to the drawings.

第1図は本発明の実施例に係る零相電流測定用センサ
の外観を示す斜視図である。
FIG. 1 is a perspective view showing the appearance of a zero-phase current measuring sensor according to an embodiment of the present invention.

第1図において,零相電流測定用センサは外来の磁界
の影響を低減させる目的で,高透磁性材料の匡体20に収
納されている。
In FIG. 1, the zero-phase current measuring sensor is housed in a case 20 made of a highly permeable material for the purpose of reducing the influence of an external magnetic field.

図中の矢印13〜15は通過する電流の向きを示してお
り,符号7〜9は電力線をそれぞれ示している。各電力
線7〜9は,互いに直角な3方向に走行しており,匡体
20の互いに対向する一対の壁部を,それぞれ貫通してい
る。この電力線7〜9と,この電力線7〜9に貫通され
た匡体20の壁部との間には,絶縁材が配置されている。
また,各電力線7〜9の先端部は,各電力線に接続可能
なように,図示しないコネクタが設けられている。
Arrows 13 to 15 in the figure indicate directions of passing current, and reference numerals 7 to 9 indicate power lines, respectively. Each of the power lines 7 to 9 runs in three directions perpendicular to each other.
The pair of 20 opposing walls penetrate each other. An insulating material is disposed between the power lines 7 to 9 and the wall of the housing 20 penetrated by the power lines 7 to 9.
In addition, a connector (not shown) is provided at the end of each of the power lines 7 to 9 so as to be connectable to each of the power lines.

第2図(a)は,本発明の実施例に係る零相電流測定
用センサの内部構造を示す斜視図である。第2図(a)
においてリング状コアのリング面が互いに直交するよう
に配置された光電流センサ4,5,6及びこの光電流センサ
4,5,6内を3相交流の各相の電力線7,8,9が貫通してい
る。
FIG. 2 (a) is a perspective view showing the internal structure of the zero-phase current measuring sensor according to the embodiment of the present invention. Fig. 2 (a)
Sensors 4, 5, 6 arranged such that the ring surfaces of the ring-shaped cores are orthogonal to each other at the same time, and this photocurrent sensor
Power lines 7, 8, and 9 of the three-phase alternating current pass through 4, 5, and 6, respectively.

電力線7,8,9は電流の方向が互いに直交するように配
置されている。
The power lines 7, 8, and 9 are arranged so that the directions of the currents are orthogonal to each other.

光電流センサ4,5,6のリング状コアの空隙部には,従
来と同様に光磁界測定部1,2,3が夫々設けられ,図示し
ない電流測定部に接続されている。
In the gaps of the ring-shaped cores of the photocurrent sensors 4, 5, and 6, the optical magnetic field measuring units 1, 2, and 3 are provided, respectively, as in the related art, and are connected to a current measuring unit (not shown).

第2図(b)は第2図(a)の3つの光電流センサ4,
5,6のうちの1つの光電流センサ4を取り出し,3本の電
力線7,8,9と加わる磁界の向きの関係を示す図である。
第1図(b)において,電流値を測定したい電力線8の
電流の向きは紙面に垂直,下向きとする。このとき,光
電流センサ4の光磁界測定部1に流れる磁束の向きは,
矢印10の向きとなる。一方,光磁界測定部1に平行な向
きの電力線9が励起する光磁界測定部1付近の磁界の向
きは図の矢印11の向きとなり光磁界測定部1に対し直交
する。また,光電流センサ10が電力線13と同一平面内に
含まれるような位置に設置すれば電力線13が励起する光
磁界測定部1近傍での磁界の向きは,図の向き11の方向
となり,やはり光磁界測定部1に対して直交する。よっ
て光磁界測定部1でのファラデー回転に影響を与える磁
界は電力線8により励起された成分のみとなる。他の2
つの光電流センサも同様の空間的な配置をとることがで
き結果として他相の電流値の影響が加わらない3相交流
電力線の単相成分のみの電流値の測定が可能である。
FIG. 2 (b) shows the three photocurrent sensors 4, 4 of FIG. 2 (a).
FIG. 11 is a diagram illustrating a relationship between the direction of the applied magnetic field and three power lines 7, 8, and 9 taken out of one of the photocurrent sensors 4 out of 5, 6;
In FIG. 1 (b), the direction of the current of the power line 8 whose current value is to be measured is perpendicular and downward to the plane of the drawing. At this time, the direction of the magnetic flux flowing through the optical magnetic field measuring unit 1 of the photocurrent sensor 4 is
The direction of the arrow 10 is as follows. On the other hand, the direction of the magnetic field near the optical magnetic field measurement unit 1 excited by the power line 9 in the direction parallel to the optical magnetic field measurement unit 1 becomes the direction of the arrow 11 in the figure, and is orthogonal to the optical magnetic field measurement unit 1. Also, if the photocurrent sensor 10 is installed at a position included in the same plane as the power line 13, the direction of the magnetic field near the optical magnetic field measuring unit 1 excited by the power line 13 will be the direction 11 in FIG. It is orthogonal to the optical magnetic field measurement unit 1. Therefore, the magnetic field that affects the Faraday rotation in the optical magnetic field measurement unit 1 is only the component excited by the power line 8. The other two
The two photocurrent sensors can also have the same spatial arrangement, and as a result, can measure the current value of only the single-phase component of the three-phase AC power line without being affected by the current values of the other phases.

前述の3本の電力線8,9,10の各々に関して得られた電
流値の総和は,通常はゼロとなるが,何等かの異常が生
じた場合は,ゼロ以外の値となるので,検出することが
可能である。
Normally, the sum of the current values obtained for each of the three power lines 8, 9, and 10 is zero, but if any abnormality occurs, the value becomes a non-zero value. It is possible.

尚,光磁界測定部と電流測定部とは第3図の従来例と
同様の構成を有する。光磁界測定部に用いられるファラ
デー回転子としては,磁性ガーネット膜が適当である。
その場合,磁性ガーネット膜の光吸収の小さな領域であ
る光挿入損失の小さい1.0〜1.6μm程度を選択すること
が適当である。
The optical magnetic field measuring section and the current measuring section have the same configuration as the conventional example shown in FIG. As the Faraday rotator used in the optical magnetic field measuring unit, a magnetic garnet film is suitable.
In this case, it is appropriate to select a magnetic garnet film having a small light absorption, that is, a light insertion loss of about 1.0 to 1.6 μm.

また,第3図における光源120と同様に,図示しない
電流測定部の光源の光出力の変動が,精度に対して無視
できない場合は,同じ出力をプリズム等により分離し,
その片方を解析装置に送り込んで,光磁界測定部1から
りの出力信号の変動を補正することによって,より高精
度の測定が可能である。この測定では,電流値信号の送
受に用いた光信号が,電界および磁界の影響を全く受け
ないことを利用し,信号の伝達,測定時のノイズ混入に
よる測定結果の信頼性の低下を防止している。
Also, as in the case of the light source 120 in FIG. 3, if the fluctuation of the optical output of the light source of the current measuring unit (not shown) cannot be ignored with respect to the accuracy, the same output is separated by a prism or the like.
By sending one of them to the analyzer and correcting the fluctuation of the output signal from the optical magnetic field measurement unit 1, more accurate measurement is possible. This measurement uses the fact that the optical signal used to transmit and receive the current value signal is not affected by the electric and magnetic fields at all, and prevents the signal transmission and the reduction of the reliability of the measurement result due to noise contamination during measurement. ing.

以上,述べた3つ光磁界センサを立体的に配置するこ
とにより,前述の匡体20の外形をコンパクトにまとめる
ことが可能である。したがって,匡体20に収納すること
で光電流センサの誤差の原因となる被測定電力線以外を
発生源とする磁界の影響を更に小さくすることができ,
零相電流測定用センサの測定データの信頼性が更に高ま
ることとなる。
As described above, by arranging the three optical magnetic field sensors in a three-dimensional manner, it is possible to compactly arrange the outer shape of the housing 20 described above. Therefore, the effect of the magnetic field having a source other than the power line to be measured, which causes an error of the photocurrent sensor, can be further reduced by being housed in the housing 20.
The reliability of the measurement data of the zero-phase current measurement sensor is further improved.

[発明の効果] 以上述べたように,本発明によればファラデー回転効
果を用いた零相電流測定用センサにおいて,測定誤差を
大きく減少させることが可能である。また,内蔵する3
つの光電流センサが立体的に配置されているため零相電
流測定用センサ全体を比較的コンパクトな匡体にまとめ
上げることが出来るという利点があり,より高い信頼度
の電流値の測定を行うことができる。
[Effects of the Invention] As described above, according to the present invention, it is possible to greatly reduce a measurement error in a zero-phase current measurement sensor using the Faraday rotation effect. In addition, built-in 3
The three photocurrent sensors are arranged three-dimensionally, which has the advantage that the entire sensor for zero-phase current measurement can be put together in a relatively compact housing, and the current value can be measured with higher reliability. Can be.

【図面の簡単な説明】[Brief description of the drawings]

第1図は外部磁界による測定誤差要因を減少させるため
の零相電流測定用センサの磁気シールドとなる匡体の形
状例である。 第2図(a),(b)は本発明における零相電流測定用
センサの内部構成例を示す図で,第2図(a)は3つの
電力線とそれぞれに流れる電流値を測定する光電流セン
サの立体配置の例,第2図(b)はそのうちの1つの光
電流センサに着目した場合の3つの電力線の相対位置関
係の例をそれぞれ示す。 第3図は一つの光電流センサの構成例を示す図である。 第4図は従来のカットコアを用いた光電流センサを使用
する零相電流測定用センサの一例を示す図であり,3相の
電力線に対し3つの光電流センサを平行に配置した場合
の例に相当する。 図中,1〜3:光磁界測定部,4〜6:光電流センサ,7〜9:電力
線,10〜12:励起磁界の向き,13〜15:電流の向き,16:匡
体,17:カットコア,18〜19:光ファイバ,100:光電流セン
サ,117:カットコア,118,119:光ファイバ,101:光磁界測
定部,120:光源,121:受光素子および解析部,108:電力線,
104,105,106:光電流センサ,107,108,109:電力線。
FIG. 1 shows an example of the shape of a housing serving as a magnetic shield of a zero-sequence current measuring sensor for reducing a measurement error factor due to an external magnetic field. 2 (a) and 2 (b) are views showing an example of the internal configuration of a zero-phase current measuring sensor according to the present invention. FIG. 2 (a) shows a photocurrent for measuring current values flowing through three power lines and each of them. FIG. 2 (b) shows an example of the three-dimensional arrangement of the sensors, and FIG. 2 (b) shows an example of the relative positional relationship of the three power lines when focusing on one of the photocurrent sensors. FIG. 3 is a diagram showing a configuration example of one photocurrent sensor. FIG. 4 is a diagram showing an example of a zero-phase current measuring sensor using a conventional photocurrent sensor using a cut core, in which three photocurrent sensors are arranged in parallel with a three-phase power line. Is equivalent to In the figure, 1-3: Photomagnetic field measurement unit, 4-6: Photocurrent sensor, 7-9: Power line, 10-12: Direction of excitation magnetic field, 13-15: Direction of current, 16: Housing, 17: Cut core, 18 to 19: Optical fiber, 100: Photocurrent sensor, 117: Cut core, 118, 119: Optical fiber, 101: Optical magnetic field measurement unit, 120: Light source, 121: Light receiving element and analysis unit, 108: Power line,
104, 105, 106: photocurrent sensor, 107, 108, 109: power line.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】一部に空隙を有するリング状コアと,該リ
ング状コアに挿通され,被測定の電流を流すために該電
流方向と該リング状コアのリング面が直交するように設
けられた導電線と,該空隙に設けられたリング状コアの
形成する磁界の強度に応じて透過する光の強度を変化さ
せる光磁界測定部と備えた光電流センサを3個用いるこ
とにより構成され,該光磁界測定部に光を入射させる光
源と,該光磁気測定部から出射される光信号から電流値
を検知し,検出された検出値の総和を取って零相電流を
測定するための零相電流測定用センサにおいて, 前記3個の光電流センサの夫々の導電線の向きが互いに
直交するように配置して前記導電線を挿通された夫々の
リング状コアのリング面を互いに直交させるように配置
したこと特徴とする零相電流測定用センサ。
1. A ring-shaped core having a gap in a part thereof, and a ring-shaped core inserted through the ring-shaped core and having a current direction perpendicular to a ring surface of the ring-shaped core for supplying a current to be measured. And an optical magnetic field measuring unit for changing the intensity of transmitted light according to the intensity of the magnetic field formed by the ring-shaped core provided in the gap. A light source for causing light to enter the optical magnetic field measuring unit; and a zero light for measuring a zero-phase current by detecting a current value from an optical signal emitted from the magneto-optical measuring unit and calculating a sum of the detected values. In the phase current measurement sensor, the three photocurrent sensors are arranged so that the directions of the conductive lines are orthogonal to each other, and the ring surfaces of the respective ring-shaped cores through which the conductive lines are inserted are orthogonal to each other. Zero phase characterized by being arranged in Current measurement sensor.
【請求項2】第1の請求項記載の零相電流測定用センサ
全体を前記リング状コアと前記導電線との夫々の位置関
係を崩さないように,透磁率の大きな材料で構成された
磁気シールドケースで覆ったことを特徴とする零相電流
測定用センサ。
2. The magnetic sensor according to claim 1, wherein the whole of the sensor for measuring zero-phase current is made of a material having a high magnetic permeability so as not to disturb the positional relationship between the ring-shaped core and the conductive wire. A sensor for measuring zero-phase current, which is covered by a shield case.
JP2153983A 1990-06-14 1990-06-14 Zero-phase current measurement sensor Expired - Fee Related JP2958796B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2153983A JP2958796B2 (en) 1990-06-14 1990-06-14 Zero-phase current measurement sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2153983A JP2958796B2 (en) 1990-06-14 1990-06-14 Zero-phase current measurement sensor

Publications (2)

Publication Number Publication Date
JPH0447274A JPH0447274A (en) 1992-02-17
JP2958796B2 true JP2958796B2 (en) 1999-10-06

Family

ID=15574345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2153983A Expired - Fee Related JP2958796B2 (en) 1990-06-14 1990-06-14 Zero-phase current measurement sensor

Country Status (1)

Country Link
JP (1) JP2958796B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2935203B1 (en) * 2008-08-20 2014-12-12 Centre Nat Etd Spatiales ELECTRIC WIRE DEVICE AND ELECTRIC WIRE HOUSING
JP5418811B2 (en) 2009-01-30 2014-02-19 アイシン・エィ・ダブリュ株式会社 Current detector
JP2011185883A (en) * 2010-03-11 2011-09-22 Tamura Seisakusho Co Ltd Current detector
JP2015155877A (en) * 2014-02-21 2015-08-27 日立金属株式会社 Current sensor arrangement structure, connector and wiring harness
JP6413267B2 (en) * 2014-03-14 2018-10-31 日立金属株式会社 Current detection structure

Also Published As

Publication number Publication date
JPH0447274A (en) 1992-02-17

Similar Documents

Publication Publication Date Title
JP3488576B2 (en) Optical current transformer
CN105629033B (en) A kind of device and method that conductor current is measured using magneto-optic memory technique
JPH07503318A (en) current measurement
CN104655900B (en) A kind of all-fiber current transformator and the method for measuring generator generator terminal zero-sequence current
Song et al. A prototype clamp-on magneto-optical current transducer for power system metering and relaying
JP2958796B2 (en) Zero-phase current measurement sensor
Kurosawa et al. Development of optical fiber current sensors and their applications
CN109765417A (en) A kind of the all-fiber current transformator sensing device and temperature compensation algorithm of embedding distribution formula temperature sensor
US5365175A (en) Method of locating ground faults
CN111721992B (en) Optical fiber sensing system for measuring current intensity of three-phase high-voltage conductor
GB2164145A (en) Temperature compensated current sensor involving faraday effect and fiber optics
JP6453994B2 (en) Optical fiber sensor and measuring device using the same
JP3166987B2 (en) Current sensor
JPS61200477A (en) Current measuring apparatus
JP2000111586A (en) Current-measuring device
JPS5938663A (en) Current measuring apparatus using optical fiber
JPS6224165A (en) Orientation system of transmission and distribution wire failure section
JP4065243B2 (en) Optical CT with failure judgment function
JP4215313B2 (en) Light current transformer
JP3538181B2 (en) Photoelectric field sensor and photoelectric field detection device
CN116953325A (en) Magnetic collecting type optical current sensor
WO2017115623A1 (en) Current sensor, and measuring device and measuring method employing same
JPS5862571A (en) Photometric apparatus
JPH05142265A (en) Device for measuring current
JPH0797116B2 (en) Fiber optic current sensor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees