JP2955998B2 - Composite magnetic wire - Google Patents

Composite magnetic wire

Info

Publication number
JP2955998B2
JP2955998B2 JP3094977A JP9497791A JP2955998B2 JP 2955998 B2 JP2955998 B2 JP 2955998B2 JP 3094977 A JP3094977 A JP 3094977A JP 9497791 A JP9497791 A JP 9497791A JP 2955998 B2 JP2955998 B2 JP 2955998B2
Authority
JP
Japan
Prior art keywords
magnetic
wire
layer
alloy
ferromagnetic material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3094977A
Other languages
Japanese (ja)
Other versions
JPH04305904A (en
Inventor
幸一 玉城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOOKIN KK
Original Assignee
TOOKIN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOOKIN KK filed Critical TOOKIN KK
Priority to JP3094977A priority Critical patent/JP2955998B2/en
Publication of JPH04305904A publication Critical patent/JPH04305904A/en
Application granted granted Critical
Publication of JP2955998B2 publication Critical patent/JP2955998B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/0302Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity characterised by unspecified or heterogeneous hardness or specially adapted for magnetic hardness transitions
    • H01F1/0304Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity characterised by unspecified or heterogeneous hardness or specially adapted for magnetic hardness transitions adapted for large Barkhausen jumps or domain wall rotations, e.g. WIEGAND or MATTEUCCI effect

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Soft Magnetic Materials (AREA)
  • Measuring Magnetic Variables (AREA)
  • Wire Processing (AREA)
  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は印加磁界の変化速度に関
係なく磁束が印加磁界の微小変化に対して急峻に変化す
る不連続な磁化特性を磁化曲線上の一部に有する複合磁
性線材に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a composite magnetic wire having discontinuous magnetization characteristics in which a magnetic flux changes abruptly in response to a small change in an applied magnetic field, irrespective of the speed of change of the applied magnetic field, in a part of a magnetization curve. Things.

【0002】[0002]

【従来の技術】近年,自動車・精密機器・計測等の分野
において,回転数の検出センサーとして,非接触型で機
械的な接点を持たない信頼性の優れたセンサーの必要性
が高まっている。このようなセンサーに利用できる材料
として最も有力な基本特性は,材料内部に単磁区に近い
磁壁を有し,この磁壁の移動エネルギーが反転磁化の核
形成エネルギーよりも小さいことが望ましい。すなわ
ち,ある方向に磁化された磁性線材に反対の外部磁界が
与えられると,ある磁場のところで磁壁が移動する。こ
れを検出コイルで読み取れば一定の出力信号として取り
出すことができる。このような特性を有する材料で構成
されたセンサーは,印加磁界の変化速度(周波数)に関
係なく磁束が印加磁界の微小変化に対し,一定の出力信
号を取り出すことが可能となる。
2. Description of the Related Art In recent years, in the fields of automobiles, precision equipment, measurement, and the like, there has been an increasing need for a non-contact type sensor having excellent reliability without a mechanical contact as a rotation speed detection sensor. The most indispensable basic characteristics of a material that can be used for such a sensor are that the material has a domain wall close to a single magnetic domain inside, and the transfer energy of the domain wall is desirably smaller than the nucleation energy of reversal magnetization. That is, when an opposite external magnetic field is applied to a magnetic wire magnetized in a certain direction, a domain wall moves at a certain magnetic field. If this is read by a detection coil, it can be extracted as a constant output signal. A sensor made of a material having such characteristics can extract a constant output signal with respect to a minute change in the applied magnetic field regardless of the change speed (frequency) of the applied magnetic field.

【0003】従来,この種の特性を有するものとして,
一般にヴィーガントワイヤと称されている線材がある
(特公昭55−15797号公報,特公昭59−121
42号公報,特公昭61−11379号公報,特開昭5
5−112141号公報参照,以下,夫々参考例1,
2,3,4と呼ぶ)。
[0003] Conventionally, as having this kind of characteristic,
There is a wire generally called a vegant wire (JP-B-55-15797, JP-B-59-121).
42, JP-B-61-11379, JP-A-5
See Japanese Patent Application Laid-Open No. 5-112141.
2, 3, 4).

【0004】[0004]

【発明が解決しようとする課題】参考例1においては,
殻部の保磁力が芯部の保磁力よりも実質的に大であり,
殻部は芯部と同一の化学的組成物からなるワイヤーが示
されている。殻と芯で保磁力に差を設けるために,製造
の最後の工程で加熱と冷却を繰り返し行なうという複雑
な熱処理を施している。しかし最終工程の熱処理が極め
て複雑であるために量産性に劣るという欠点がある。ま
た,参考例2においては,ひねり加工を施して殻の方が
芯部よりも保磁力が小さい磁性線が示されている。しか
しながら同一の化学的組成を有する線材をねじることに
よって,殻と芯で保磁力に差を設けており,線材長手方
向に対して均一にねじることが極めて困難である。この
ため磁気特性の安定した線材を量産的に製造することが
できていない。一方,参考例3においては,保磁力の大
きい強磁性線に保磁力が小さい強磁性層を被覆した線材
であり,線材内部にひねり応力を残留させた線材が示さ
れている。上記参考例1及び参考例2が単一材料を後処
理により保磁力の差を設けているために磁気特性のばら
つきが発生していたのに対し,参考例3の線材では,予
め保磁力の異なる材料を用いているため,上記参考例
1,参考例2における欠点が改善されているようであ
る。しかし保磁力の異なる2層の界面での接合強度が弱
くひねり応力を付与したときに界面で剥離現象が生じる
という問題が新たに確認され,実用化に至っていない。
また,本発明者らの追試実験によって,2種の強磁性体
からそれぞれ異なる出力信号が発生し,このため線材と
しての出力信号が2つのピークを有する複雑なものとな
ってしまうという欠点がある。また,参考例4において
は,異なった保磁力の2種以上の強磁性体を同軸状に一
体複合し,熱処理及び冷間加工後,直線化矯正して,特
殊熱処理なしに磁化曲線の一部に磁束の不連続変化部分
を有する磁性線が示されている。上記参考例3で問題で
あった接合界面の機械的強度は一体複合後の熱処理で改
善されているが,完全に一体化するためには高温で長時
間の熱処理が必要となり,実用化を妨げる問題点として
明らかになってきた。また,同様に上記参考例3で指摘
した出力信号の複雑さが欠点となる。そこで,本発明の
技術的課題は,上記参考例1〜4を改良するもので,線
材の長手方向の磁気特性を安定化させ,ばらつきのない
出力信号が得られる磁性線材を提供することにある。
In the first embodiment,
The coercivity of the shell is substantially greater than the coercivity of the core,
The shell is a wire made of the same chemical composition as the core. In order to provide a difference in coercive force between the shell and the core, a complex heat treatment is performed in which heating and cooling are repeatedly performed in the last step of manufacturing. However, there is a disadvantage that the heat treatment in the final step is extremely complicated, resulting in poor mass productivity. Further, in Reference Example 2, a magnetic wire is shown in which the shell has a smaller coercive force than the core after being twisted. However, by twisting wires having the same chemical composition, there is a difference in coercive force between the shell and the core, and it is extremely difficult to twist uniformly in the longitudinal direction of the wire. For this reason, it has not been possible to mass-produce wires having stable magnetic properties. On the other hand, in Reference Example 3, there is shown a wire rod in which a ferromagnetic layer having a large coercive force is coated with a ferromagnetic layer having a small coercive force, and twisting stress remains inside the wire rod. In the reference example 1 and the reference example 2, the difference in the coercive force was provided by the post-processing of the single material, so that the magnetic characteristics varied. Since different materials are used, it seems that the disadvantages in Reference Examples 1 and 2 are improved. However, it has been newly confirmed that the bonding strength at the interface between the two layers having different coercive forces is weak, and a peeling phenomenon occurs at the interface when a twisting stress is applied, and this has not been put to practical use.
In addition, due to the additional test conducted by the present inventors, different output signals are generated from the two types of ferromagnetic materials, and therefore, there is a disadvantage that the output signal as a wire has a complicated shape having two peaks. . In Reference Example 4, two or more types of ferromagnetic materials having different coercive forces were coaxially integrated and integrated, and after heat treatment and cold working, straightening was corrected, and a portion of the magnetization curve was obtained without special heat treatment. 3 shows a magnetic wire having a discontinuous change portion of the magnetic flux. Although the mechanical strength of the bonding interface, which was a problem in Reference Example 3 above, was improved by heat treatment after integration, a long-time heat treatment at a high temperature was required for complete integration, hindering practical application. It became clear as a problem. Similarly, the complexity of the output signal pointed out in the third embodiment is disadvantageous. Therefore, a technical problem of the present invention is to improve the above-described first to fourth embodiments, and to provide a magnetic wire material that stabilizes the magnetic properties in the longitudinal direction of the wire material and can obtain an output signal without variation. .

【0005】[0005]

【課題を解決するための手段】本発明によれば,円形断
面を有する強磁性体の外周部に非磁性層を被覆した線材
であって,しかも強磁性体と非磁性層との界面に拡散層
を有し,かつ線材全体が機械的にねじられた状態を保持
していることを特徴とする複合磁性線材が得られる。即
ち,本発明においては,円形断面を有する強磁性体の外
周部に磁性を有しない非磁性層を被覆し磁性層と非磁性
層の界面に拡散層を設けることにより,容易に完全な一
体化を達成することができる。次いで,こうして得られ
た線材に機械的にねじられた状態を付与することにより
磁化曲線の一部に磁束が急峻に不連続変化する部分を有
する磁性線が得られる。なお,ねじりを効率的かつ均一
に付与するために,ねじり加工を行なう前に軟化焼鈍を
施したほうが好ましい。ここで,強磁性体同士のクラッ
ドであれば,芯材と皮材の両方で,磁化曲線の一部に磁
束が急峻に不連続変化する場合があるため,線材全体と
しては磁束の不連続変化が2ヵ所で生じるという問題が
ある。しかし,磁性材と非磁性材のクラッドの場合はこ
のような問題は生じない。非磁性層の役目は強磁性体と
の界面で拡散層を形成し,この拡散層とともに強磁性体
のねじれを拘束させることである。このために必要な厚
さは0.1μm 程度以上あれば十分である。非金属層及
び拡散層がない場合は強磁性材のねじれを安定して拘束
することが困難であり,これに起因するばらつきが生じ
る。ここで本発明の複合磁性線材に使用する強磁性体と
しては,Fe,Fe−Si合金,Fe−Co合金,Fe
−Co−V合金やNi−Fe合金等が好ましい。また,
本発明の複合磁性線材に使用する非磁性層としては,ね
じり加工に耐えられるものであればよいが,製造の容易
さという点からは,めっきにより被覆できるものが好ま
しい。例えば,Cu,Cu−Ni合金,Cu−Zn合
金,Ag,Au,Cr等である。Cu−Ni合金やCu
−Zn合金は合金めっき法により行なってもよいが,C
uとNiあるいはZnをそれぞれめっきし,その後の熱
拡散によって合金化してもよい。さらに,めっき以外の
方法で複合化しても何らさしつかえない。次に,本発明
の複合磁性線材において,前記強磁性体の外周部に非磁
性層を被覆する方法を述べる。まず,強磁性体を最終線
径,例えば,外径0.25mmまで線引加工後,非磁性層
をめっきし,次いで拡散層を形成させるために熱処理す
る。次に,強磁性体を中間仕上げにより,例えば,外径
0.6mmに加工後,非磁性層をめっきし,最終線径(例
えば外径0.25mm)に線引し,拡散層を形成するため
に熱処理する。続いて,強磁性体を中間仕上げにより例
えば外径0.6mmに加工後,非磁性層をめっきし,次い
で拡散層を形成するために熱処理を施し,最終線径(例
えば外径0.25mm)に線引する。以上の方法により,
本発明の複合磁性線材が得られる。
According to the present invention, there is provided a wire rod comprising a ferromagnetic material having a circular cross section and a non-magnetic layer coated on an outer periphery thereof, and further having a diffusion at an interface between the ferromagnetic material and the non-magnetic layer. A composite magnetic wire having a layer and having a state in which the entire wire is mechanically twisted is obtained. That is, in the present invention, the outer periphery of a ferromagnetic material having a circular cross section is coated with a non-magnetic layer having no magnetism, and a diffusion layer is provided at the interface between the magnetic layer and the non-magnetic layer, so that complete integration is easily achieved. Can be achieved. Next, a magnetic wire having a portion where the magnetic flux sharply changes discontinuously in a part of the magnetization curve can be obtained by imparting a mechanically twisted state to the wire thus obtained. In order to efficiently and uniformly impart torsion, it is preferable to perform soft annealing before performing torsion processing. Here, in the case of a clad between ferromagnetic materials, the magnetic flux may suddenly change discontinuously in a part of the magnetization curve in both the core material and the skin material. There is a problem that occurs in two places. However, such a problem does not occur in the case of cladding of a magnetic material and a non-magnetic material. The role of the nonmagnetic layer is to form a diffusion layer at the interface with the ferromagnetic material, and to restrain the torsion of the ferromagnetic material together with the diffusion layer. The thickness required for this purpose is about 0.1 μm or more. If there is no non-metal layer and no diffusion layer, it is difficult to stably restrain the torsion of the ferromagnetic material, resulting in variations. Here, as the ferromagnetic material used in the composite magnetic wire of the present invention, Fe, Fe—Si alloy, Fe—Co alloy, Fe
-Co-V alloy, Ni-Fe alloy and the like are preferable. Also,
The non-magnetic layer used in the composite magnetic wire of the present invention may be any layer that can withstand torsion processing, but is preferably a layer that can be coated by plating from the viewpoint of ease of production. For example, Cu, Cu-Ni alloy, Cu-Zn alloy, Ag, Au, Cr and the like. Cu-Ni alloy or Cu
-Zn alloy may be formed by alloy plating,
u and Ni or Zn may be plated and then alloyed by thermal diffusion. Furthermore, there is no problem even if it is compounded by a method other than plating. Next, a method of coating the outer periphery of the ferromagnetic material with a non-magnetic layer in the composite magnetic wire of the present invention will be described. First, after drawing a ferromagnetic material to a final wire diameter, for example, an outer diameter of 0.25 mm, a non-magnetic layer is plated, and then heat-treated to form a diffusion layer. Next, the ferromagnetic material is processed to an outer diameter of, for example, 0.6 mm by intermediate finishing, and then the nonmagnetic layer is plated and drawn to a final wire diameter (for example, an outer diameter of 0.25 mm) to form a diffusion layer. Heat treatment. Subsequently, the ferromagnetic material is processed to an outer diameter of, for example, 0.6 mm by intermediate finishing, then the non-magnetic layer is plated, and then heat-treated to form a diffusion layer, and the final wire diameter (for example, an outer diameter of 0.25 mm) Draw to. By the above method,
The composite magnetic wire of the present invention is obtained.

【0006】[0006]

【実施例】以下に本発明を実施例をもって説明する。The present invention will be described below with reference to examples.

【0007】(実施例1)49wt%Co−10wt%V−
Fe合金を真空溶解にて製造した。得られた鋳塊を熱間
加工及び切削加工により外径外径9mmの線材を作製し
た。これを950℃で溶体化処理後,冷間線引と軟化焼
鈍を繰返して外径0.6mmの連続したフープ状の線材を
得た。この外周部に厚さ5μm のCuを電解めっき法に
より被覆し,これを外径0.25mmに線引加工し,次
いで950℃の温度で連続炉を用いて熱処理した。この
熱処理の目的は拡散層を形成させることと,ねじり加工
を行ないやすくするための軟化処理である。これにねじ
り加工を行ない,さらにねじった状態で250℃に保持
した後,長さ1000mmの試料を得た。図1は実施例1
に係る試料の断面をXMAで観察した結果を示す図であ
る。図1で示すように,強磁性体1として,49Co−
10V−Fe合金と非磁性層2としてCuとの相互拡散
層3は1μm 以下であるが形成されていることが確認さ
れた。尚,本発明の実施例に用いたXMAでは1μm 以
下を正確に測定することが困難であった。図2はCuめ
っきを行なった本発明の実施例1に係る試料の磁気特性
測定結果を示す図である。図2により,磁界25Oe付近
で約3000ガウスにおよぶ磁束密度の不連続部分4が
得られていることがわかる。この不連続部分は試料全長
の1000mmにわたって10mm間隔で100箇所測定し
たが,全測定点で全く同じ不連続部分が確認された。
Example 1 49 wt% Co-10 wt% V-
An Fe alloy was manufactured by vacuum melting. A wire rod having an outer diameter of 9 mm was produced from the obtained ingot by hot working and cutting. This was subjected to solution treatment at 950 ° C., and then cold drawing and soft annealing were repeated to obtain a continuous hoop-shaped wire having an outer diameter of 0.6 mm. The outer peripheral portion was coated with Cu having a thickness of 5 μm by an electrolytic plating method, and this was drawn to an outer diameter of 0.25 mm, and then heat-treated at a temperature of 950 ° C. using a continuous furnace. The purpose of this heat treatment is to form a diffusion layer and to soften to facilitate twisting. This was subjected to a twisting process, and further kept at 250 ° C. in a twisted state to obtain a sample having a length of 1000 mm. FIG. 1 shows the first embodiment.
FIG. 9 is a view showing a result of observing a cross section of a sample according to XMA by XMA. As shown in FIG. 1, 49Co-
It was confirmed that the interdiffusion layer 3 of 10 V-Fe alloy and Cu as the nonmagnetic layer 2 was formed although it was 1 μm or less. Incidentally, it was difficult for XMA used in Examples of the present invention to accurately measure 1 μm or less. FIG. 2 is a diagram showing the results of measuring the magnetic properties of the sample according to Example 1 of the present invention on which Cu plating has been performed. FIG. 2 shows that a discontinuous portion 4 of a magnetic flux density of about 3000 gauss is obtained near a magnetic field of 25 Oe. This discontinuous portion was measured at 100 points at intervals of 10 mm over the entire length of the sample at 1000 mm, and exactly the same discontinuous portion was confirmed at all measurement points.

【0008】次に図4に示すように,交流源10に接続
された磁界印加用コイル11とシンクロスコープ12へ
接続された検出コイル13の中へ試料7を配置して,試
料7へ交流磁界を印加したときの検出コイル13の出力
をシンクロスコープ12で観察するようにした測定回路
を用いて,上述の直線化矯正されたままの本発明の実施
例に係る複合線材を周波数5Hz及び50Hzの交流磁界印
加時の応答特性を測定した。図5にCuめっきを施した
本発明の実施例1に係る試料の測定結果を示す。 図5
で示すように,周波数が5Hz及び50Hzのいずれの場合
でも,鋭い尖頭値を持った同様な出力波形を示し,印加
磁界の変化速度に関係なく磁束が不連続に変化している
様子が確認された。
Next, as shown in FIG. 4, the sample 7 is placed in a magnetic field applying coil 11 connected to an AC source 10 and a detection coil 13 connected to a synchroscope 12, and an AC magnetic field is applied to the sample 7. By using a measuring circuit for observing the output of the detection coil 13 when the voltage is applied with the synchroscope 12, the composite wire according to the embodiment of the present invention, which has been straightened and corrected as described above, has a frequency of 5 Hz and 50 Hz. The response characteristics when an AC magnetic field was applied were measured. FIG. 5 shows the measurement results of the sample according to the first embodiment of the present invention, which has been subjected to Cu plating. FIG.
As shown in the figure, the same output waveform with a sharp peak value is shown at both the frequency of 5 Hz and 50 Hz, and it is confirmed that the magnetic flux changes discontinuously regardless of the change speed of the applied magnetic field. Was done.

【0009】(比較例1)Cuメッキを施さない以外
は,実施例1と全く同一工程で磁性線材を作製し,磁気
特性を測定したところ図2と同様な磁束密度の不連続部
分が試料の片端500mmで観察されたが,反対の500
mm部分は磁束の不連続部分が存在しない図3で示す様な
特性が得られた。磁束の不連続部分が存在しなかった試
料を詳細に観察したところねじれが均一に施されていな
いことが確認された。また,ねじり加工を施さない場合
の磁気特性測定結果は図3と同じであったことからもこ
の事実は裏付けられる。
Comparative Example 1 A magnetic wire was manufactured in exactly the same steps as in Example 1 except that Cu plating was not applied, and the magnetic characteristics were measured. Observed at 500 mm on one end, 500 mm opposite
In the mm portion, a characteristic as shown in FIG. 3 was obtained in which there was no discontinuous portion of the magnetic flux. When the sample in which there was no discontinuous portion of the magnetic flux was observed in detail, it was confirmed that the twist was not uniformly applied. This fact is supported by the fact that the results of measuring the magnetic properties without the twisting were the same as those in FIG.

【0010】(比較例2)49Co−3V−Fe合金を
皮材とし,49Co−10V−Fe合金を芯材とした強
磁性体同士のクラッド材の試料を作製し外径0.25mm
にまで加工した。これにねじり加工を施し実施例1と同
様に図4の測定回路で出力波形を観察した。周波数5Hz
の場合の結果を図6に示す。この場合はピークが2つ存
在しており,皮材と芯材の両方からそれぞれ発生したも
のと考えられる。
(Comparative Example 2) A sample of a clad material of ferromagnetic materials using a 49Co-3V-Fe alloy as a skin material and a 49Co-10V-Fe alloy as a core material was prepared and had an outer diameter of 0.25 mm.
Processed up to. This was subjected to a twisting process, and the output waveform was observed with the measuring circuit of FIG. Frequency 5Hz
FIG. 6 shows the results in the case of the above. In this case, there are two peaks, which are considered to have been generated from both the skin material and the core material.

【0011】(実施例2)非磁性層をCu−Ni合金,
Cu−Zn合金とした場合について,実施例1と同様の
工程でそれぞれ試料を作製した。外径0.6mmの強磁性
体(49Co−10V−Fe)にまずCuを3μm めっ
きし,さらにNiあるいはZnをめっきしたのち一旦9
50℃で合金化のための熱処理を行なっている。これら
について調べたところ,非磁性層の組成によらず実施例
1及び2と同様な結果が得られた。
(Embodiment 2) A non-magnetic layer is made of a Cu-Ni alloy,
In the case of using a Cu-Zn alloy, samples were produced in the same steps as in Example 1. First, 3 μm of Cu is plated on a ferromagnetic material (49Co-10V-Fe) having an outer diameter of 0.6 mm, and then Ni or Zn is plated thereon.
Heat treatment for alloying is performed at 50 ° C. When these were examined, the same results as in Examples 1 and 2 were obtained regardless of the composition of the nonmagnetic layer.

【0012】(実施例3)強磁性体として52%Ni−
Fe合金とし,非磁性層をCuとした場合でも,実施例
1乃至2と同様に磁束密度の不連続部分が得られた。
Example 3 52% Ni—
Even when the Fe alloy was used and the nonmagnetic layer was made of Cu, a discontinuous portion of the magnetic flux density was obtained as in Examples 1 and 2.

【0013】[0013]

【発明の効果】以上述べたように,本発明によれば,円
形断面を有する強磁性体の外周部に非磁性層を被覆した
線材であって,しかも強磁性体と非磁性層との界面に拡
散層を有し,かつ線材全体が機械的にねじられた状態を
保持している複合磁性線材は,磁化曲線上において,磁
束密度の不連続部分を安定して得ることができる。
As described above, according to the present invention, there is provided a wire having a ferromagnetic material having a circular cross section and a non-magnetic layer coated on the outer periphery thereof, and the interface between the ferromagnetic material and the non-magnetic layer. The composite magnetic wire having a diffusion layer at the bottom and the entire wire being mechanically twisted can stably obtain a discontinuous portion of the magnetic flux density on the magnetization curve.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例による複合磁性線材の断面構
成図である。
FIG. 1 is a sectional configuration diagram of a composite magnetic wire according to an embodiment of the present invention.

【図2】図1で示す複合磁性線材の磁気ヒステリシス特
性を示す図である。
FIG. 2 is a diagram showing magnetic hysteresis characteristics of the composite magnetic wire shown in FIG.

【図3】比較例1に係る磁性線材の磁気ヒステリシス特
性を示す図である。
FIG. 3 is a diagram showing a magnetic hysteresis characteristic of a magnetic wire according to Comparative Example 1.

【図4】交流磁界印加時の出力波形を観察するために用
いた測定回路図である。
FIG. 4 is a measurement circuit diagram used for observing an output waveform when an AC magnetic field is applied.

【図5】図2の線材に5及び50Hzの交流磁界を印加し
たときの出力波形図である。
FIG. 5 is an output waveform diagram when an AC magnetic field of 5 and 50 Hz is applied to the wire of FIG. 2;

【図6】比較例2に係る磁性線材にの5Hzの交流磁界を
印加したときの出力波形図である。
FIG. 6 is an output waveform diagram when a 5 Hz AC magnetic field is applied to the magnetic wire according to Comparative Example 2.

【符号の説明】[Explanation of symbols]

1 強磁性体 2 非磁性層 3 相互拡散層 4 磁束の不連続部分 7 試料 10 交流源 11 印加用コイル 12 シンクロスコープ 13 検出コイル DESCRIPTION OF SYMBOLS 1 Ferromagnetic material 2 Nonmagnetic layer 3 Mutual diffusion layer 4 Discontinuous part of magnetic flux 7 Sample 10 AC source 11 Application coil 12 Synchroscope 13 Detection coil

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 円形断面を有する強磁性体の外周部に非
磁性層を被覆した線材であって,前記強磁性体と前記非
磁性層との界面に拡散層を有し,かつ前記線材全体が機
械的にねじられた状態を保持していることを特徴とする
複合磁性線材。
1. A wire rod comprising a ferromagnetic material having a circular cross section and a non-magnetic layer coated on an outer peripheral portion thereof, wherein a diffusion layer is provided at an interface between the ferromagnetic material and the non-magnetic layer, and the entire wire material is provided. Wherein the composite magnetic wire is maintained in a mechanically twisted state.
JP3094977A 1991-04-02 1991-04-02 Composite magnetic wire Expired - Fee Related JP2955998B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3094977A JP2955998B2 (en) 1991-04-02 1991-04-02 Composite magnetic wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3094977A JP2955998B2 (en) 1991-04-02 1991-04-02 Composite magnetic wire

Publications (2)

Publication Number Publication Date
JPH04305904A JPH04305904A (en) 1992-10-28
JP2955998B2 true JP2955998B2 (en) 1999-10-04

Family

ID=14124971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3094977A Expired - Fee Related JP2955998B2 (en) 1991-04-02 1991-04-02 Composite magnetic wire

Country Status (1)

Country Link
JP (1) JP2955998B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4770553B2 (en) * 2006-03-30 2011-09-14 Tdk株式会社 Magnet and manufacturing method thereof

Also Published As

Publication number Publication date
JPH04305904A (en) 1992-10-28

Similar Documents

Publication Publication Date Title
Vazquez et al. A soft magnetic wire for sensor applications
Chiriac et al. Internal stress distribution in glass-covered amorphous magnetic wires
Zhukov et al. The remagnetization process in thin and ultra-thin Fe-rich amorphous wires
Kurlyandskaya et al. Giant magnetic impedance of wires with a thin magnetic coating
JPS5934781B2 (en) Method for reducing magnetic hysteresis loss of soft magnetic amorphous alloy ribbon material
JPS6225741B2 (en)
CA1145009A (en) Magnetic transducer and proximity detection device incorporating such a transducer
JP2955998B2 (en) Composite magnetic wire
Chiriac et al. Magnetic behavior of the amorphous wires covered by glass
US4913750A (en) Amorphous magnetic wire
WO2023074693A1 (en) Magnetic wire, composite magnetic wire, method for producing magnetic wire, and method for producing composite magnetic wire
JP4596136B2 (en) Clad wire manufacturing method, pulse generating element, and pulse generating apparatus for large Barkhausen jumping pulse generating element
EP2148338B1 (en) Ultra-thin glass-coated amorphous wires with gmi effect at elevated frequencies
JPS5961732A (en) Manufacture of torque sensor
US1818054A (en) Magnetic material
JPH04306807A (en) Composite magnetic wire
JP3419519B2 (en) Pulse generating magnetic wire and method of manufacturing the same
JPH05333123A (en) Complex magnetic wire rod
JP2640462B2 (en) Composite magnetic wire and method of manufacturing the same
Chiriac et al. Magnetic behavior of glass-covered amorphous wires
Shalygina et al. Structural and Magnetic Properties of Thick” Microwires Produced by the Ulitovsky-Taylor Method
Luborsky et al. Engineering magnetic properties of Fe-Ni-B amorphous alloys
JPH04221726A (en) Manufacture of magnetostriction detector for torque sensor
Li et al. Magnetic Fibers
Chiriac et al. Magnetic anisotropy in FeSiB amorphous glass-covered wires

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990623

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090723

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090723

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100723

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees