JP2955040B2 - Method and apparatus for producing hydrogen for fuel cells and supply method - Google Patents

Method and apparatus for producing hydrogen for fuel cells and supply method

Info

Publication number
JP2955040B2
JP2955040B2 JP3063221A JP6322191A JP2955040B2 JP 2955040 B2 JP2955040 B2 JP 2955040B2 JP 3063221 A JP3063221 A JP 3063221A JP 6322191 A JP6322191 A JP 6322191A JP 2955040 B2 JP2955040 B2 JP 2955040B2
Authority
JP
Japan
Prior art keywords
hydrogen
fuel cell
membrane
gas
steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3063221A
Other languages
Japanese (ja)
Other versions
JPH06168733A (en
Inventor
哲也 今井
健之助 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP3063221A priority Critical patent/JP2955040B2/en
Publication of JPH06168733A publication Critical patent/JPH06168733A/en
Application granted granted Critical
Publication of JP2955040B2 publication Critical patent/JP2955040B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は固体高分子膜型燃料電池
に供給する水素含有ガスの製造方法及び装置並びに同水
素の固体高分子膜型燃料電池への供給方法に関する。
The present invention relates about the supply method of the solid polymer membrane fuel cell manufacturing method and apparatus, and the hydrogen in the hydrogen-containing gas supplied to the solid polymer membrane fuel cell.

【0002】[0002]

【従来の技術】燃料電池は水素と酸素との反応により発
生するエネルギーを電気エネルギーとして取り出すもの
である。 H2 + O2 → H2 O (1) この水素製造方法としては石油、天然ガス等の炭化水素
のスチームリフォーミング法がある。これは触媒層中で
原料ガスとスチームとを反応させる方法である。主要な
反応は以下の通りである。 Cn Hm +nH2 O = nCO+ (n+m/2)H2 (平衡反応) (2) Cn Hm +2nH2 O = nCO2 +(2n+m/2)H2 (平衡反応) (3)
2. Description of the Related Art A fuel cell extracts energy generated by a reaction between hydrogen and oxygen as electric energy. H 2 + O 2 → H 2 O (1) As this hydrogen production method, there is a steam reforming method for hydrocarbons such as petroleum and natural gas. This is a method of reacting a raw material gas and steam in a catalyst layer. The main reactions are as follows. Cn Hm + nH 2 O = nCO + (n + m / 2) H 2 ( equilibrium reaction) (2) Cn Hm + 2nH 2 O = nCO 2 + (2n + m / 2) H 2 ( equilibrium reaction) (3)

【0003】これらの反応は触媒層中で生じ、反応速度
及び転化率は触媒層中の各ガス成分の分圧の影響を大き
く受ける。従来の方法では生成ガス全体を触媒層から系
外に除去するのみであるから化学平衡状態までしか反応
は進まないという問題点があった。
[0003] These reactions occur in the catalyst layer, and the reaction rate and conversion are greatly affected by the partial pressure of each gas component in the catalyst layer. In the conventional method, there is a problem that the reaction proceeds only up to the chemical equilibrium state since the entire generated gas is only removed from the catalyst layer to the outside of the system.

【0004】[0004]

【発明が解決しようとする課題】前記反応(2)、
(3)は、大きな吸熱を伴う反応で、熱力学平衡上、転
化率を高くするためには通常700℃以上の高温にする
必要がある。前記反応(2)、(3)の代表例として、
メタンのスチームリフォーミング反応における平衡転化
率を下記の表1に示す。表1に示すように圧力1kg/
cm2 abs.の場合、700℃でメタンの平衡転化率
は97%であるが、圧力を高くすると平衡転化率は低く
なるので、反応温度をさらに高くする必要がある。
The above-mentioned reaction (2),
(3) is a reaction involving a large endotherm, and it is usually necessary to raise the temperature to 700 ° C. or higher in order to increase the conversion in terms of thermodynamic equilibrium. As a typical example of the reactions (2) and (3),
Table 1 below shows the equilibrium conversion in the steam reforming reaction of methane. As shown in Table 1, pressure 1kg /
cm 2 abs. In the case of, the equilibrium conversion of methane at 700 ° C. is 97%, but when the pressure is increased, the equilibrium conversion decreases, so the reaction temperature needs to be further increased.

【表1】 [Table 1]

【0005】また従来の方法では、触媒層から得られる
ガスには表2に示す熱力学平衡濃度に近いCOが生成す
る。
In the conventional method, CO close to the thermodynamic equilibrium concentration shown in Table 2 is generated in the gas obtained from the catalyst layer.

【表2】 [Table 2]

【0006】一方、200℃以下で作動する燃料電池に
おいては、電極の白金などの触媒がCOにより被毒され
るため、該燃料電池に供給する水素含有ガス中のCO濃
度は1%以下にする必要がある。200℃以下で作動す
る燃料電池としては150℃〜200℃で作動するリン
酸型燃料電池、100℃以下で作動する固体高分子膜
型、アルカリ型燃料電池などがある。特に100℃以下
で作動する燃料電池に供給する水素含有ガス中のCO濃
度は10ppm以下にする必要があると言われている。
On the other hand, in a fuel cell which operates at 200 ° C. or lower, since the catalyst such as platinum of the electrode is poisoned by CO, the CO concentration in the hydrogen-containing gas supplied to the fuel cell is set to 1% or lower. There is a need. Examples of the fuel cell operating at 200 ° C. or lower include a phosphoric acid fuel cell operating at 150 ° C. to 200 ° C., a solid polymer membrane type operating at 100 ° C. or lower, and an alkaline fuel cell. In particular, it is said that the CO concentration in the hydrogen-containing gas supplied to the fuel cell operating at 100 ° C. or lower needs to be 10 ppm or lower.

【0007】前述したように従来の方法では触媒層から
得られるガスのCO濃度は通常10%以上であり、上記
燃料電池に供給する場合COを除去しなければならない
などの問題点がある。
As described above, in the conventional method, the CO concentration of the gas obtained from the catalyst layer is usually 10% or more, and there is a problem that CO must be removed when the gas is supplied to the fuel cell.

【0008】[0008]

【課題を解決するための手段】本発明は次の(1)〜
(7)の構成を有するものである。 (1)炭化水素又はメタノールスチームリフォーミン
グにより固体高分子膜型燃料電池用水素を製造するに際
し、スチームリフォーミングにより生成する水素を逐次
水素分離機能膜により透過させ、水蒸気に同伴させて水
素を系外に取出すことを特徴とする固体高分子膜型燃料
電池用水素の製造方法。
Means for Solving the Problems The present invention provides the following (1)-
It has the configuration of (7). (1) When producing hydrogen for a polymer electrolyte membrane fuel cell by steam reforming of hydrocarbons or methanol , hydrogen generated by steam reforming is successively permeated by a hydrogen separation function membrane, and hydrogen is accompanied by water vapor to form hydrogen. A method for producing hydrogen for a polymer electrolyte membrane fuel cell, wherein the hydrogen is taken out of the system.

【0009】(2)炭化水素又はメタノールと水蒸気よ
りなる原料供給手段を有するリフォーミング触媒充填部
の一方に水素分離機能膜を隣接して設置すると共に、リ
フォーミング触媒充填部の他方に加熱部を隣接して設置
してなり、前記水素分離機能膜を透過した水素を系外に
取出す水蒸気供給手段を設けてなることを特徴とする
体高分子膜型燃料電池用水素の製造装置。
(2) A hydrogen separation function membrane is installed adjacent to one of the reforming catalyst filled sections having a raw material supply means composed of hydrocarbon or methanol and steam, and a heating section is provided at the other of the reforming catalyst filled sections. It will be installed adjacent to a solid characterized by comprising providing a steam supply means for taking out the hydrogen that has passed through the hydrogen separation function layer to the outside of the system
Hydrogen production equipment for polymer electrolyte membrane fuel cells.

【0010】(3)水蒸気供給手段を有する水素分離機
能膜製筒体、該水素分離機能膜製筒体を囲撓し、炭化水
素又はメタノールと水蒸気よりなる原料供給手段を有す
るリフォーミング触媒充填筒体、該スチームリフォーミ
ング触媒充填筒体を囲撓し、未反応リフォーミング原料
と空気の供給手段を有する加熱筒体を具備してなること
を特徴とする固体高分子膜型燃料電池用水素の製造装
置。
(3) A cylinder formed of a hydrogen separation function membrane having a water vapor supply means, and a cylinder filled with a reforming catalyst having a raw material supply means composed of hydrocarbon or methanol and water vapor which surrounds the cylinder made of the hydrogen separation function membrane. body, and囲撓the steam reforming catalyst filled cylindrical body, the solid polymer membrane-type fuel cell hydrogen characterized by comprising comprises a heating cylinder body having a supply means unreacted reforming raw material and air Manufacturing equipment.

【0011】(4)未反応リフォーミング原料と空気の
供給手段を有する加熱筒体、該加熱筒体を囲撓し、炭化
水素又はメタノールと水蒸気よりなる原料供給手段を有
するリフォーミング触媒充填筒体、該リフォーミング触
媒充填筒体を囲撓し、水蒸気供給手段を有する水素分離
機能膜製筒体を具備してなることを特徴とする固体高分
子膜型燃料電池用水素の製造装置。
(4) A heating cylinder having supply means for supplying unreacted reforming raw material and air, and a reforming catalyst-filled cylinder having a raw material supply means which surrounds the heating cylinder and is made of hydrocarbon or methanol and steam. , solid high fraction, characterized in that to囲撓the reforming catalyst packed cylindrical body, made comprises a hydrogen separation function membrane made tubular body having a steam supply means
An apparatus for producing hydrogen for membrane fuel cells.

【0012】(5)上記(2)〜(4)のうちのいずれ
かの水素分離機能膜部から取出される水蒸気同伴水素ガ
スを固体高分子膜型燃料電池の水素極に供給することを
特徴とする固体高分子膜型燃料電池への水素の供給方
法。
(5) The hydrogen-entrained hydrogen gas taken out from the hydrogen separation function membrane section in any one of the above (2) to (4) is supplied to the hydrogen electrode of the polymer electrolyte membrane fuel cell. Of supplying hydrogen to a polymer electrolyte fuel cell.

【0013】(6)燃料電池の水素極出口ガスを水素分
離機能膜部に循環することを特徴とする上記(5)記載
固体高分子膜型燃料電池への水素の供給方法。
(6) The method for supplying hydrogen to a polymer electrolyte membrane fuel cell according to the above (5), wherein the hydrogen electrode outlet gas of the fuel cell is circulated to the hydrogen separation function membrane section.

【0014】(7)燃料電池の水素極出口ガスを燃料電
池の水素極入口に循環することを特徴とする上記(5)
記載の固体高分子膜型燃料電池への水素の供給方法
(7) The hydrogen electrode outlet gas of the fuel cell is circulated to the hydrogen electrode inlet of the fuel cell (5).
A method for supplying hydrogen to a polymer electrolyte fuel cell according to the above .

【0015】[0015]

【作用】本発明により下記の作用が奏される。 (1)生成ガス中のH2 を選択的に分離・除去すること
により、スチームリフォーミング反応の速度、すなわち
2 の生成速度が増大する。(2)選択的に透過された
2 の同伴ガスとしてスチームを使用し、透過側の水素
分圧を下げることにより分離膜の水素透過速度を増大さ
せる。(3)分離膜を透過するガスは水素のみであるの
で、200℃以下で作動する燃料電池にそのまま供給で
きる。また同伴ガスとしてスチームを使用するので、冷
却により凝縮させる方法などによりスチームの分圧を容
易に制御することができる。(4)固体高分子膜型燃料
電池では、燃料電池に供給する水素含有ガスを加湿する
必要があるが、本発明では同伴ガスとしてスチームを使
用するので、加湿装置が不要である。(5)燃料電池の
水素極出口ガスを循環使用することによって燃料電池の
効率が向上する。
The present invention has the following effects. (1) The rate of the steam reforming reaction, that is, the rate of H 2 generation, is increased by selectively separating and removing H 2 in the generated gas. (2) Steam is used as an accompanying gas of H 2 that has been selectively permeated, and the hydrogen partial pressure on the permeation side is reduced to increase the hydrogen permeation rate of the separation membrane. (3) Since only hydrogen passes through the separation membrane, it can be supplied to a fuel cell operating at 200 ° C. or lower as it is. Further, since steam is used as the accompanying gas, the partial pressure of steam can be easily controlled by a method of condensing by cooling or the like. (4) In the solid high polymer membrane fuel cell, it is necessary to humidify the hydrogen-containing gas supplied to the fuel cell, in the present invention because it uses steam as carrier gas, the humidifier is not required. (5) The efficiency of the fuel cell is improved by circulating and using the hydrogen electrode outlet gas of the fuel cell.

【0016】以下、本発明方法を実施する装置の概要を
説明する。図1は本発明方法を実施する装置の要部(メ
ンブレンリアクタ)の概略図で、1は反応管、2は外
筒、3は分離膜、4は触媒、5は原料ガス(スチームリ
フォーミング反応原料ガス)、6はスチーム又はスチー
ム及び循環ガス、7はスチームとH2 ガスの混合ガス、
8は未反応ガス、9は加熱ガス、10は燃焼排ガスで
ある。
Hereinafter, an outline of an apparatus for performing the method of the present invention will be described. FIG. 1 is a schematic view of a main part (membrane reactor) of an apparatus for carrying out the method of the present invention, 1 is a reaction tube, 2 is an outer cylinder, 3 is a separation membrane, 4 is a catalyst, 5 is a raw material gas (steam reforming reaction). Source gas), 6 is steam or steam and circulating gas, 7 is a mixed gas of steam and H 2 gas,
8 unreacted gas, 9 heating gas, 10 a combustion exhaust gas.

【0017】反応管1内の分離膜3と区切られた空間に
は触媒4が充填されており、この触媒4充填部に原料ガ
ス5が供給され前記反応(2)、(3)を行わせる。反
応の進行に伴い発生したH2 は分離膜3を透過し分離膜
3内の空間に至り、ここに供給されるスチーム又はスチ
ーム及び循環ガス6により系外にスチーム+H2 混合ガ
ス7として取出される。分離膜3を通して触媒4充填層
から水素が系外に取り出されるので、反応(2)、
(3)は右側に進行し熱力学平衡転化率以上の転化率が
得られる。
A catalyst 4 is filled in a space separated from the separation membrane 3 in the reaction tube 1, and a raw material gas 5 is supplied to a portion where the catalyst 4 is filled, so that the reactions (2) and (3) are performed. . H 2 generated along with the progress of the reaction permeates through the separation membrane 3 and reaches the space inside the separation membrane 3, and is taken out of the system as steam + H 2 mixed gas 7 by the steam or steam and the circulating gas 6 supplied thereto. You. Since hydrogen is taken out of the system from the packed bed of the catalyst 4 through the separation membrane 3, the reaction (2)
(3) proceeds to the right, and a conversion higher than the thermodynamic equilibrium conversion is obtained.

【0018】触媒4充填部から排出される未反応ガス8
は別に設置する燃焼器又は反応管1と外筒2の間の空間
に循環供給され、ここで燃焼させることによって燃焼熱
を発生させ、この熱によって触媒4充填部の加熱に用い
た後、該ガスは燃焼排ガス10となって系外に排出され
る。
Unreacted gas 8 discharged from the catalyst 4 filling section
Is circulated and supplied to a separately installed combustor or a space between the reaction tube 1 and the outer tube 2, where it is burned to generate combustion heat, and this heat is used to heat the catalyst 4 filling portion. The gas is exhausted out of the system as a combustion exhaust gas 10.

【0019】上記構成の装置に使用できる分離膜3とし
ては水素を選択的に透過する膜で、かつ耐熱性を有する
膜が用いられる。例えば膜厚100μ以上のPdを含有
する合金膜又は多孔体に膜厚50μ以下のPdを含有す
る薄膜をコーティングしたものが用いられる。Pdを含
有する膜はPd100%又はPdを10重量%以上含有
する合金をさし、Pdを10重量%以上含有する合金と
してはPd以外にPt,Rh,Ru,IrなどのVIII族
元素、Cu,Ag,AuなどのIb族元素を含有するも
のをさす。上記膜以外にV(バナジウム)を含有する合
金膜、例えばNi−Co−V合金にPdをコーティング
した膜などが用いられる。また上記多孔体としてはセラ
ミックス製多孔体または金属多孔体が用いられる。これ
らの多孔体にPd又はVを含有する薄膜をコーティング
する方法としてはメッキなどの液相法、真空蒸着法、イ
オンプレーティング法、気相化学反応法(CVD)など
の気相法が用いられる。
As the separation membrane 3 that can be used in the apparatus having the above-mentioned configuration, a membrane that selectively permeates hydrogen and has heat resistance is used. For example, a Pd-containing alloy film having a thickness of 100 μ or more or a porous body coated with a Pd-containing thin film having a thickness of 50 μ or less is used. The film containing Pd refers to 100% Pd or an alloy containing 10% by weight or more of Pd, and alloys containing 10% by weight or more of Pd include, in addition to Pd, VIII group elements such as Pt, Rh, Ru, and Ir, and Cu. , Ag, Au and the like containing an Ib group element. In addition to the above film, an alloy film containing V (vanadium), for example, a film obtained by coating a Ni—Co—V alloy with Pd is used. As the porous body, a ceramic porous body or a metal porous body is used. As a method for coating these porous bodies with a thin film containing Pd or V, a liquid phase method such as plating, a vapor deposition method, an ion plating method, and a gas phase method such as a gas phase chemical reaction (CVD) are used. .

【0020】触媒としては第VIII族金属(Fe,Co,
Ni,Ru,Rh,Pd,Pt等)を含有する触媒が好
ましく、Ni,Ru,Rhを担持した触媒又はNiO含
有触媒が特に好ましい。
As a catalyst, a Group VIII metal (Fe, Co,
(Ni, Ru, Rh, Pd, Pt, etc.) is preferable, and a catalyst supporting Ni, Ru, Rh or a NiO-containing catalyst is particularly preferable.

【0021】[0021]

【実施例】【Example】

(例1)本発明の一実施例を図2によって説明する。C
4 ,H2 O等の原料ガス5は触媒4充填部に供給され
てスチームリフォーミング反応によりH2 を生成する。
生成ガス中のH2 は分離膜3により選択的に分離・除去
されて触媒4充填部から反応系外に抜き出され、スチー
ム又はスチーム及び循環ガス6に同伴されてスチーム+
2 混合ガス7となって燃料電池12に供給される。
(Example 1) One embodiment of the present invention will be described with reference to FIG. C
A source gas 5 such as H 4 and H 2 O is supplied to a catalyst 4 filling section to generate H 2 by a steam reforming reaction.
H 2 in the generated gas is selectively separated and removed by the separation membrane 3, extracted out of the reaction system from the packed portion of the catalyst 4, and accompanied by steam or steam and the circulating gas 6 to form steam +
The H 2 mixed gas 7 is supplied to the fuel cell 12.

【0022】燃料電池12内ではH2 と空気13中のO
2 が反応してH2 Oを生成する。燃料電池ではH+ イオ
ン又はOH- イオンの移動に伴う電子の移動を電流とし
て取り出す。H2 の大半を燃料電池12で消費した後の
ガス6は再度分離膜3内に循環使用される。
In the fuel cell 12, H 2 and O in the air 13
2 produces of H 2 O reacts. In a fuel cell, the movement of electrons accompanying the movement of H + ions or OH - ions is extracted as a current. The gas 6 after most of the H 2 has been consumed by the fuel cell 12 is circulated and used again in the separation membrane 3.

【0023】一方、スチームリフォーミング反応で未反
応のCH4 等の未反応ガス8は外筒2に供給され、別途
外部から導入される空気14により燃焼して燃焼熱を発
生する。この燃焼熱をスチームリフォーミング反応の反
応熱として使用する。
On the other hand, unreacted gas 8 such as CH 4 which has not been reacted in the steam reforming reaction is supplied to the outer cylinder 2 and is burned by air 14 separately introduced from the outside to generate combustion heat. This combustion heat is used as reaction heat of the steam reforming reaction.

【0024】図2に示したフローに従って、下記のよう
な具体的条件で水素を製造し、燃料電池の発電を行っ
た。
According to the flow shown in FIG. 2, hydrogen was produced under the following specific conditions, and power was generated by the fuel cell.

【0025】(1)装置寸法 分離膜3 : 外径10mm(内径7mm)×長さ60
0mm 反応管4 : 外径27.2mm(内径23.2mm)
×長さ550mm 外筒 2 : 外径42.7mm(内径38.7mm)
×長さ550mm
(1) Apparatus dimensions Separation membrane 3: outer diameter 10 mm (inner diameter 7 mm) x length 60
0 mm Reaction tube 4: 27.2 mm outside diameter (23.2 mm inside diameter)
X length 550mm outer cylinder 2: outer diameter 42.7mm (inner diameter 38.7mm)
X length 550mm

【0026】(2)分離膜 東芝セラミックス(株)製セラミックフィルターMEM
BRALOX(外表面細孔径:約0.2μm)にPd及
びAgをメッキし800℃で5時間合金化処理を行い、
Pd:Ag=75:25(重量比)の合金膜10μmを
コーティングしたパイプ。
(2) Separation membrane Ceramic filter MEM manufactured by Toshiba Ceramics Co., Ltd.
Palladium and Ag are plated on BRALOX (outer surface pore diameter: about 0.2 μm) and alloyed at 800 ° C. for 5 hours.
A pipe coated with an alloy film 10 μm of Pd: Ag = 75: 25 (weight ratio).

【0027】(3)触媒 メタンのスチームリフォーミング触媒 NiO 70重量%、Al2 3 28重量%、グラフ
ァイト2重量%の組成を有する平均粒径1mmの触媒1
50mlを反応管1と分離膜3の間(図1の触媒4充填
部)に充填する。 燃焼触媒 Pdを5g/l含有する平均粒径1.5mmの触媒35
0mlを反応管1と外筒2の間に充填する。
(3) Catalyst Steam reforming catalyst for methane Catalyst 1 having an average particle size of 1 mm and having a composition of 70% by weight of NiO, 28% by weight of Al 2 O 3 and 2% by weight of graphite
50 ml is filled between the reaction tube 1 and the separation membrane 3 (the catalyst 4 filling portion in FIG. 1). Combustion catalyst A catalyst 35 containing 5 g / l of Pd and having an average particle size of 1.5 mm
0 ml is filled between the reaction tube 1 and the outer cylinder 2.

【0028】(4)ガス流量及び温度 原料ガス 5 : CH4 :28Nl/h,H
2 O:85Nl/h、温度:500℃ スチーム 6 : スチーム:54Nl/h 燃焼用空気14: 340Nl/h、温度:350
℃ 燃料電池用空気13: 350Nl/h、温度:6
0℃
(4) Gas flow rate and temperature Raw material gas 5: CH 4 : 28 Nl / h, H
2 O: 85 Nl / h, temperature: 500 ° C Steam 6: Steam: 54 Nl / h Combustion air 14: 340 Nl / h, temperature: 350
℃ 13 for fuel cell air: 350 Nl / h, temperature: 6
0 ° C

【0029】(5)燃料電池 固体高分子膜型燃料電池 電極面積 70cm2 、5セル 温度 85℃ 以上の条件で試験を行った結果、以下の性能が確認され
た。
(5) Fuel Cell Solid Polymer Membrane Fuel Cell An electrode area of 70 cm 2 , a cell temperature of 85 ° C. or higher As a result of the test, the following performance was confirmed.

【0030】(1)メンブレンリアクタまわりのマスバ
ランス 触媒層4出口の未反応ガス8のガス流量86Nl/
h ガス温度 : 540℃ ガス組成(mol%):H2 :24%、CO:6%、C
2 :23%、CH4 :4%、H2 O:43% 上記ガスと空気14を混合後、燃焼させた触媒層の
温度 最高880℃、燃焼排ガス10の温度590℃ 分離膜3の出口のスチームとH2 混合ガス7 ガス温度 : 520℃ ガス流量 : スチーム:70Nl/h、H2 :72N
l/h
(1) Mass Balance Around Membrane Reactor The gas flow rate of the unreacted gas 8 at the outlet of the catalyst layer 4 is 86 Nl /
h Gas temperature: 540 ° C. Gas composition (mol%): H 2 : 24%, CO: 6%, C
O 2 : 23%, CH 4 : 4%, H 2 O: 43% After the above gas and air 14 are mixed, the temperature of the burned catalyst layer is 880 ° C. at maximum, and the temperature of combustion exhaust gas 10 is 590 ° C. The outlet of the separation membrane 3 Steam and H 2 mixed gas 7 Gas temperature: 520 ° C. Gas flow rate: Steam: 70 Nl / h, H 2 : 72 N
l / h

【0031】(2) 燃料電池まわりのマスバランス 水素極 入口ガス スチーム:70Nl/h、H2 :72Nl/h 出口ガス スチーム:10Nl/h、H2 :27Nl/h 空気極 入口ガス N2 :276.5Nl/h、O2 :73.5Nl/h 出口ガス N2 :276.5Nl/h、O2 :51Nl/h、H2
O:105Nl/h 燃料電池の性能 電圧 3.5V、 電流 21.4A、 得られた電力
75W
[0031] (2) around the fuel cell mass balance hydrogen electrode inlet gas Steam: 70Nl / h, H 2: 72Nl / h outlet gas Steam: 10Nl / h, H 2: 27Nl / h air electrode inlet gas N 2: 276 .5Nl / h, O 2: 73.5Nl / h outlet gas N 2: 276.5Nl / h, O 2: 51Nl / h, H 2
O: 105 Nl / h Fuel cell performance Voltage 3.5 V, current 21.4 A, power obtained 75 W

【0032】(例2) (A)分離膜 外表面細孔径3μmの金属多孔体の表面にPdとAgの
合金を膜厚10μm蒸着したパイプ。 (B)ガス流量 図2において分離膜3内のガス流れを逆にし、向流
にする(すなわち、原料ガス5側からH2 混合ガス7を
取り出す。)。 スチーム及び循環ガス6のガス流量 スチーム:100Nl/h(スチーム供給ライン15の
流量91Nl/h)、H2 :28Nl/h 以上の条件以外は例1と同じ条件で試験を行った結果、
以下の性能が確認された。
(Example 2) (A) Separation membrane A pipe in which an alloy of Pd and Ag is deposited to a thickness of 10 μm on the surface of a porous metal body having an outer surface pore diameter of 3 μm. (B) Gas flow rate In FIG. 2, the gas flow in the separation membrane 3 is reversed to make the gas flow countercurrent (that is, the H 2 mixed gas 7 is taken out from the raw material gas 5 side). Steam and gas flow steam circulating gas 6: (flow rate 91Nl / h of steam supply line 15) 100Nl / h, H 2 : 28Nl / h than the above conditions is a result of the test under the same conditions as Example 1,
The following performance was confirmed.

【0033】(1)メンブレンリアクタまわりのマスバ
ランス 触媒層4出口の未反応ガス8のガス流量85Nl/
h ガス温度 : 550℃ ガス組成(mol%):H2 :23%、CO:6%、C
2 :22%、CH4 :5%、H2 O:44% 上記ガスと空気14を混合後、燃焼させた触媒層の
温度 最高890℃、燃焼排ガス10の温度600℃ 分離膜3出口のスチームとH2 混合ガス7 ガス温度 : 530℃ ガス流量 : スチーム:100Nl/h、H2 :95
Nl/h
(1) Mass Balance Around Membrane Reactor The gas flow rate of the unreacted gas 8 at the outlet of the catalyst layer 4 is 85 Nl /
h Gas temperature: 550 ° C. Gas composition (mol%): H 2 : 23%, CO: 6%, C
O 2 : 22%, CH 4 : 5%, H 2 O: 44% After the above gas and air 14 were mixed, the temperature of the burned catalyst layer was 890 ° C at maximum, and the temperature of combustion exhaust gas 10 was 600 ° C. Gas mixture of steam and H 2 7 Gas temperature: 530 ° C. Gas flow rate: Steam: 100 Nl / h, H 2 : 95
Nl / h

【0034】(2) 燃料電池まわりのマスバランス 水素極 入口ガス スチーム:100Nl/h、H2 :95Nl/h 出口ガス スチーム:9Nl/h、H2 :28Nl/h 空気極 入口ガス N2 :276.5Nl/h、O2 :73.5Nl/h 出口ガス N2 :276.5Nl/h、O2 :40Nl/h、スチ
ーム:158Nl/h 燃料電池の性能 電圧 3.2V、 電流 32.2A、 得られた電力
103W
[0034] (2) around the fuel cell mass balance hydrogen electrode inlet gas Steam: 100Nl / h, H 2: 95Nl / h outlet gas Steam: 9Nl / h, H 2: 28Nl / h air electrode inlet gas N 2: 276 .5Nl / h, O 2: 73.5Nl / h outlet gas N 2: 276.5Nl / h, O 2: 40Nl / h, steam: 158Nl / h fuel cell performance voltage 3.2 V, current 32.2A, Obtained power 103W

【0035】(例3)燃料電池の水素極出口ガスを燃料
電池の水素極入口に循環した場合の燃料電池の水素極ま
わりのマスバランスを図3により説明する。図3のよう
な水素極まわりのマスバランスにおいて、空気極入口ガ
スがN2 :276.5Nl/h、O2 :73.5Nl/
h、空気極出口ガスがN2 :276.5Nl/h、
2 :44.5Nl/h、H2 O:123Nl/hの
時、燃料電池の性能としては電圧3.5V、電流:2
7.5A、得られた電力:96Wであった。
(Example 3) The mass balance around the hydrogen electrode of the fuel cell when the hydrogen electrode outlet gas of the fuel cell is circulated to the hydrogen electrode inlet of the fuel cell will be described with reference to FIG. In the mass balance around the hydrogen electrode as shown in FIG. 3, the air electrode inlet gas is N 2 : 276.5 Nl / h, O 2 : 73.5 Nl / h.
h, the air electrode outlet gas is N 2 : 276.5 Nl / h,
When O 2 is 44.5 Nl / h and H 2 O is 123 Nl / h, the performance of the fuel cell is 3.5 V, current: 2
7.5 A, power obtained: 96 W.

【0036】以上、本発明の主な実施例をあげて本発明
の効果を立証したが、他の実施例はこれら実施例の効果
より自明であるので省略する。
As described above, the effects of the present invention have been proved by citing the main embodiments of the present invention, but other embodiments will be omitted because they are obvious from the effects of these embodiments.

【0037】[0037]

【発明の効果】【The invention's effect】

(1)触媒を充填した反応管内にスチームリフォーミン
グ反応原料を供給して水素を発生させ、分離膜の内側に
スチームを流入させて分離膜を透過した水素をスチーム
に同伴させて系外に抜出すことにより、平衡転化率以上
のメタン転化率を得るとともに高純度の水素を得ること
ができる。 (2)上記方法で得られた水素含有ガスを固体高分子膜
燃料電池に供給することにより、効率良く電力を得る
ことができる。
(1) A steam reforming reaction material is supplied into a reaction tube filled with a catalyst to generate hydrogen, steam is flown into the inside of the separation membrane, and the hydrogen permeated through the separation membrane is accompanied by the steam and extracted out of the system. Thus, a methane conversion rate equal to or higher than the equilibrium conversion rate can be obtained, and high-purity hydrogen can be obtained. (2) The hydrogen-containing gas obtained by the above method is applied to a solid polymer membrane.
By supplying the mold fuel cell, it is possible to obtain the power efficiently.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を実施する装置の要部の概略図FIG. 1 is a schematic view of a main part of an apparatus for implementing the present invention.

【図2】本発明の一実施例の説明図FIG. 2 is an explanatory diagram of one embodiment of the present invention.

【図3】本発明の一実施例のマスバランスの説明図FIG. 3 is an explanatory diagram of mass balance according to one embodiment of the present invention.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) H01M 8/00 - 8/24 C01B 3/32 - 3/56 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 6 , DB name) H01M 8/00-8/24 C01B 3/32-3/56

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 炭化水素又はメタノールスチームリフ
ォーミングにより固体高分子膜型燃料電池用水素を製造
するに際し、スチームリフォーミングにより生成する水
素を逐次水素分離機能膜により透過させ、水蒸気に同伴
させて水素を系外に取出すことを特徴とする固体高分子
膜型燃料電池用水素の製造方法。
When producing hydrogen for a polymer electrolyte membrane fuel cell by steam reforming of hydrocarbons or methanol , hydrogen produced by steam reforming is successively permeated by a hydrogen separation function membrane and is entrained by water vapor. Solid polymer characterized by extracting hydrogen out of the system
A method for producing hydrogen for a membrane fuel cell.
【請求項2】 炭化水素又はメタノールと水蒸気よりな
る原料供給手段を有するリフォーミング触媒充填部の一
方に水素分離機能膜を隣接して設置すると共に、リフォ
ーミング触媒充填部の他方に加熱部を隣接して設置して
なり、前記水素分離機能膜を透過した水素を系外に取出
す水蒸気供給手段を設けてなることを特徴とする固体高
分子膜型燃料電池用水素の製造装置。
2. A hydrogen separation function membrane is installed adjacent to one of the reforming catalyst filling sections having a raw material supply means composed of hydrocarbon or methanol and steam, and a heating section is adjacent to the other of the reforming catalyst filling sections. to be installed, solid high characterized by comprising providing a steam supply means for taking out the hydrogen that has passed through the hydrogen separation function layer to the outside of the system
Equipment for producing hydrogen for molecular membrane fuel cells.
【請求項3】 水蒸気供給手段を有する水素分離機能膜
製筒体、該水素分離機能膜製筒体を囲撓し、炭化水素又
はメタノールと水蒸気よりなる原料供給手段を有するリ
フォーミング触媒充填筒体、該スチームリフォーミング
触媒充填筒体を囲撓し、未反応リフォーミング原料と空
気の供給手段を有する加熱筒体を具備してなることを特
徴とする固体高分子膜型燃料電池用水素の製造装置。
3. A hydrogen separation function membrane-made cylinder having a water vapor supply means, and a reforming catalyst-filled cylinder having a material supply means comprising a raw material supply means composed of hydrocarbon or methanol and water vapor surrounding the hydrogen separation function membrane-made cylinder. Producing a hydrogen for a polymer electrolyte membrane fuel cell, comprising a heating cylinder having a means for supplying unreacted reforming raw material and air, which surrounds the steam reforming catalyst-filled cylinder. apparatus.
【請求項4】 未反応リフォーミング原料と空気の供給
手段を有する加熱筒体、該加熱筒体を囲撓し、炭化水素
又はメタノールと水蒸気よりなる原料供給手段を有する
リフォーミング触媒充填筒体、該リフォーミング触媒充
填筒体を囲撓し、水蒸気供給手段を有する水素分離機能
膜製筒体を具備してなることを特徴とする固体高分子膜
燃料電池用水素の製造装置。
4. A heating cylinder having supply means for supplying unreacted reforming raw material and air, a reforming catalyst-filled cylinder which surrounds the heating cylinder and has a raw material supply means comprising hydrocarbon or methanol and steam, A solid polymer membrane comprising a hydrogen separation function membrane cylinder having a water vapor supply means and surrounding the reforming catalyst-filled cylinder.
For producing hydrogen for portable fuel cells.
【請求項5】 請求項2〜4のうちのいずれかの水素分
離機能膜部から取出される水蒸気同伴水素ガスを固体高
分子膜型燃料電池の水素極に供給することを特徴とする
固体高分子膜型燃料電池への水素の供給方法。
5. The method according to claim 2, wherein the hydrogen-entrained hydrogen gas taken out from the hydrogen separation function membrane section is solid-state high- pressure gas.
Supply to hydrogen electrode of molecular membrane fuel cell
A method for supplying hydrogen to a polymer electrolyte fuel cell.
【請求項6】 燃料電池の水素極出口ガスを水素分離機
能膜部に循環することを特徴とする請求項5記載の固体
高分子膜型燃料電池への水素の供給方法。
6. The solid according to claim 5, wherein the hydrogen electrode outlet gas of the fuel cell is circulated to the hydrogen separation function membrane part.
A method for supplying hydrogen to a polymer membrane fuel cell.
【請求項7】 燃料電池の水素極出口ガスを燃料電池の
水素極入口に循環することを特徴とする請求項5記載の
固体高分子膜型燃料電池への水素の供給方法。
7. The fuel cell according to claim 5, wherein the hydrogen electrode outlet gas of the fuel cell is circulated to the hydrogen electrode inlet of the fuel cell.
A method for supplying hydrogen to a polymer electrolyte fuel cell.
JP3063221A 1991-03-27 1991-03-27 Method and apparatus for producing hydrogen for fuel cells and supply method Expired - Lifetime JP2955040B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3063221A JP2955040B2 (en) 1991-03-27 1991-03-27 Method and apparatus for producing hydrogen for fuel cells and supply method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3063221A JP2955040B2 (en) 1991-03-27 1991-03-27 Method and apparatus for producing hydrogen for fuel cells and supply method

Publications (2)

Publication Number Publication Date
JPH06168733A JPH06168733A (en) 1994-06-14
JP2955040B2 true JP2955040B2 (en) 1999-10-04

Family

ID=13222940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3063221A Expired - Lifetime JP2955040B2 (en) 1991-03-27 1991-03-27 Method and apparatus for producing hydrogen for fuel cells and supply method

Country Status (1)

Country Link
JP (1) JP2955040B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100286572B1 (en) 1998-11-19 2001-04-16 남창우 Fuel cell vehicle small fuel reformer and its system using metal thin film
JP2001110437A (en) * 1999-10-12 2001-04-20 Kansai Research Institute Hydrogen fuel supply system for fuel cell
JP2001143733A (en) * 1999-11-16 2001-05-25 Daikin Ind Ltd Humidifier of fuel cell system
US6656617B2 (en) 2000-01-24 2003-12-02 Toyota Jidosha Kabushiki Kaisha Fuel gas production system for fuel cells
JP2001223017A (en) * 2000-02-09 2001-08-17 Toyota Motor Corp Fuel gas generating system for fuel cell

Also Published As

Publication number Publication date
JPH06168733A (en) 1994-06-14

Similar Documents

Publication Publication Date Title
US6171574B1 (en) Method of linking membrane purification of hydrogen to its generation by steam reforming of a methanol-like fuel
US4684581A (en) Hydrogen diffusion fuel cell
JP4184037B2 (en) Hydrogen production equipment
US6896709B1 (en) Miniature fuel reformer and system using metal thin film
JP3432892B2 (en) Method for removing CO from reformed gas
US7220699B2 (en) Catalyst incorporation in a microreactor
JPS5864771A (en) Fuel battery generating device and method of operating same
US20040063577A1 (en) Catalyst for autothermal reforming of hydrocarbons with increased water gas shift activity
JP2003201103A (en) Reactor system having auto ignition and carbon suppression foam
CA2428548C (en) Methanol-steam reformer
KR102075627B1 (en) Pd-based metal dense hydrogen permeation membrane using a Ni-based porous support with methanation catalyst function
JP2955054B2 (en) Method and apparatus for producing hydrogen for fuel cells and supply method
JP2955040B2 (en) Method and apparatus for producing hydrogen for fuel cells and supply method
JP3297246B2 (en) Cogeneration method
JP2001146404A (en) Apparatus for producing hydrogen gas
JPH04325402A (en) Method and equipment for producing gaseous hydrogen for fuel cell and supply method therefor
JP3971564B2 (en) Fuel cell system
JP4008051B2 (en) Power generation method
JPH09266005A (en) Solid high polymer fuel cell system
JP2755685B2 (en) Hydrogen production method for fuel cell
Makertihartha et al. Advances of zeolite based membrane for hydrogen production via water gas shift reaction
JPH06345405A (en) Hydrogen production device
JP2009242216A (en) Apparatus for generating and separating hydrogen, fuel cell system using the same, and internal combustion engine system
JP3215462B2 (en) Hydrogen production equipment
JP4443968B2 (en) Hydrogen production equipment

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990615

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080716

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090716

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100716

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110716

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110716

Year of fee payment: 12