JP2952500B2 - Linear rolling guide - Google Patents

Linear rolling guide

Info

Publication number
JP2952500B2
JP2952500B2 JP1327148A JP32714889A JP2952500B2 JP 2952500 B2 JP2952500 B2 JP 2952500B2 JP 1327148 A JP1327148 A JP 1327148A JP 32714889 A JP32714889 A JP 32714889A JP 2952500 B2 JP2952500 B2 JP 2952500B2
Authority
JP
Japan
Prior art keywords
bearing
roller
rolling
rollers
guide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1327148A
Other languages
Japanese (ja)
Other versions
JPH03189416A (en
Inventor
稔 須田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP1327148A priority Critical patent/JP2952500B2/en
Publication of JPH03189416A publication Critical patent/JPH03189416A/en
Application granted granted Critical
Publication of JP2952500B2 publication Critical patent/JP2952500B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/37Loose spacing bodies
    • F16C33/3706Loose spacing bodies with concave surfaces conforming to the shape of the rolling elements, e.g. the spacing bodies are in sliding contact with the rolling elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C29/00Bearings for parts moving only linearly
    • F16C29/04Ball or roller bearings
    • F16C29/06Ball or roller bearings in which the rolling bodies circulate partly without carrying load
    • F16C29/0633Ball or roller bearings in which the rolling bodies circulate partly without carrying load with a bearing body defining a U-shaped carriage, i.e. surrounding a guide rail or track on three sides
    • F16C29/0652Ball or roller bearings in which the rolling bodies circulate partly without carrying load with a bearing body defining a U-shaped carriage, i.e. surrounding a guide rail or track on three sides whereby the return paths are at least partly defined by separate parts, e.g. covers attached to the legs of the main body of the U-shaped carriage
    • F16C29/0666Ball or roller bearings in which the rolling bodies circulate partly without carrying load with a bearing body defining a U-shaped carriage, i.e. surrounding a guide rail or track on three sides whereby the return paths are at least partly defined by separate parts, e.g. covers attached to the legs of the main body of the U-shaped carriage with rollers

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Bearings For Parts Moving Linearly (AREA)
  • Rolling Contact Bearings (AREA)

Description

【発明の詳細な説明】 本件直動ころがり案内は、従来品における直動ころが
り軸受の中で、直動案内精度、耐久性、耐荷重性、静・
動剛性等のころがり軸受に必要とされている諸性能が勝
っていると考えられている。非循環式クロスローラ形直
動ころがり軸受に着目し、新たに軸受内ころ用の保持器
を提案し、該保持器と共にころを軸受内に形成した循環
径路内に、ころの軸心を相互に交差して供給し、転動体
循環式のクロスローラ形直動ころがり軸受を成形した案
内用軸とで高性能直動ころがり案内を実現したものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The linear motion rolling guide of the present invention is one of the linear motion rolling bearings of the conventional product, and has a linear motion guiding accuracy, durability, load resistance, static
It is considered that various performances required for the rolling bearing such as dynamic rigidity are superior. Focusing on the non-circulating cross roller type linear rolling bearing, we proposed a new cage for the roller inside the bearing, and put the rollers together with the cage in the circulation path formed in the bearing. A high-performance linear rolling guide is realized by a guide shaft formed by forming a cross-roller type linear rolling bearing of a rolling element circulation type which is intersected.

第1図において、図中の(A)、(B)は、上記循環
式クロスローラ形軸受内循環径路に適応させ、各々図中
の記号2,3で示したように、形状を異にして成形したこ
ろの保持器を斜視図によって示したもので、また
(A)、(B)に示した保持器2,3では何れも球面2b,3b
で接触するように成形したものである。図中の矢印で示
した保持器の移動方向の、上記ころの転走径路内周面間
に、僅かの隙間を保ち走行することができるように、各
々の保持器外周面の4ヶ所において転走方向に平行に、
また相互間では直角に、保持器中心に等間隔に成形した
保持器外周面に形成した保持器内ころの走行案内面であ
る。同じく(A)〜(B)における2c,3cは、各々の保
持器内に成形したころ保持器部孔で、2cにおいてはころ
はころの軸方向に収納され、ころの外周面との間に僅か
の隙間を保ち、保持器に対するころの相対的位置決めが
なされる。(B)のころ保持器に対するころの保持部は
図中の3cに示したように、主としてころの軸両端方面で
保持器との位置決めがなされるように、ころの軸心を含
む断面形状にあわせ、挿入口を図示のように長方形状に
成形したものである。
In FIG. 1, (A) and (B) in the figure are adapted to the above-mentioned circulation path in the circulation type cross roller type bearing, and have different shapes as indicated by symbols 2 and 3 in the figure. The cage at the time of molding is shown in a perspective view, and the cages 2 and 3 shown in FIGS. 3A and 3B are both spherical surfaces 2b and 3b.
It is formed so as to contact with. In the direction of movement of the cage indicated by the arrow in the figure, the roller is rolled at four positions on the outer peripheral surface of each cage so that the cage can run with a small gap between the inner peripheral surfaces of the rolling paths of the rollers. Parallel to the running direction,
The running guide surfaces of the inner rollers of the cage formed on the outer peripheral surface of the cage formed at right angles at the center of the cage. Similarly, reference numerals 2c and 3c in (A) and (B) denote roller cage holes formed in the respective cages. In 2c, the roller cage holes are accommodated in the axial direction of the rollers, and between the roller and the outer peripheral surface of the rollers. A small gap is maintained and the rollers are positioned relative to the cage. (B) As shown in 3c in the drawing, the roller holding portion for the roller cage has a cross-sectional shape including the roller axis so that positioning with the cage is performed mainly at both end surfaces of the roller shaft. In addition, the insertion opening is formed in a rectangular shape as shown in the figure.

第2図は第1図(A)に示した、外周面が球形で、循
環径路の形状に順応させ、循環方向に方形状にころの案
内面を形成した、本件直動ころがり軸受用ころ保持器
を、投影図によって示したもので、図中の(A)、
(B)、(C)は各々該保持器の上面図、正面図、側面
図であり、(D)、(E)は正面図(B)中に示した断
面線E−EとF−Fに位置した断面図である。また上記
各々の図において、2aは循環径路内で隣接保持器が接触
を保つ球面、2bは上記循環径路内周面形状に順応して保
持器周辺の4ヶ所に成形したところの案内面のうち、互
いに相対する1対の面に直交して成形した、保持器内こ
ろ保持用円筒面、2dは上記保持器内ころ保持用円筒面に
供給したころの周辺と転走面との接触を保つように、上
記保持器内円筒面2cと、保持器外周面に成形したころの
案内面2b間に成形された長孔、2eは上記保持器外周面4
ヶ所における、互いに直交して隣接するころの案内面間
の角の4ヶ所に、保持器における凸部2と同じく、保持
器の補強を目的として、外周面に形成された凸部であ
る。
FIG. 2 shows the roller holder for a linear motion rolling bearing shown in FIG. 1A in which the outer peripheral surface is spherical, adapted to the shape of the circulation path, and formed with a roller guide surface in a rectangular shape in the circulation direction. The container is shown by a projection view, in which (A),
(B) and (C) are a top view, a front view, and a side view of the cage, respectively. (D) and (E) are cross-sectional lines EE and FF shown in the front view (B). FIG. In each of the above figures, 2a is a spherical surface that keeps adjacent cages in contact with each other in the circulation path, and 2b is a guide surface formed at four locations around the cage in conformity with the inner peripheral surface shape of the circulation path. A cylindrical surface for holding rollers in the cage, which is formed orthogonal to a pair of surfaces facing each other, and 2d keeps contact between the periphery of the roller supplied to the cylindrical surface for holding rollers in the cage and the rolling surface. As described above, the elongated hole formed between the cage inner cylindrical surface 2c and the guide surface 2b of the roller formed on the cage outer peripheral surface,
At the four corners between the guide surfaces of the rollers adjacent to each other at right angles, similarly to the protrusions 2 of the cage, there are protrusions formed on the outer peripheral surface for the purpose of reinforcing the cage.

第3図は第1図(B)の斜視図から示した本件直動こ
ろがり軸受用保持器の投影図で、図中の、(A)は上面
図、(B)は正面図、(C)は側面図、(D)は図
(B)に示す断面線E−Eにおける断面図、(E)は図
(D)中の断面線F−Fにおける断面図、(F)は図
(C)に示す断面線G−Gにおける断面図である。また
(A)〜(F)の各図中において、3aは循環径路中の隣
接保持器の接触面となる球面、3bは保持器外周面の4ヶ
所に成形した、循環径中における保持器内ころの案内
面、3cは図(B),(D),(E),(F)中に示した
ように、示し保持器の場合と異なり、保持器内で主とし
てころを、ころの軸方向両端面で位置決め拘束し、また
図(E)の断面図に示すように、ころ周辺の半ばにおい
ても保持器に対するころの位置決めに関与することがで
きる。また保持器自体においても、ころの循環径路保持
器の形成は容易になるが、ころの軸方向の長さが制約さ
れ、ころの負荷容量も幾分減少する。図(E)、(F)
中における3dは、保持器のころが荷重支持範囲の片側転
走面との接触を保つために形成された孔である。
FIG. 3 is a projection view of the present linear motion rolling bearing retainer shown from the perspective view of FIG. 1 (B), in which (A) is a top view, (B) is a front view, and (C). Is a side view, (D) is a cross-sectional view taken along a cross-sectional line EE shown in FIG. (B), (E) is a cross-sectional view taken along a cross-sectional line FF in FIG. (D), and (F) is a view (C). It is sectional drawing in the sectional line GG shown in FIG. In each of the figures (A) to (F), 3a is a spherical surface which is a contact surface of an adjacent cage in the circulation path, and 3b is formed at four positions on the outer peripheral surface of the cage. As shown in FIGS. (B), (D), (E) and (F), the guide surface of the roller is different from the case of the shown cage as shown in FIGS. As shown in the cross-sectional view of FIG. 8E, the positioning and restraint can be performed at both end surfaces, and even in the middle of the roller, the roller can be involved in the positioning of the roller with respect to the cage. Also in the cage itself, the formation of the roller circulation path cage is facilitated, but the axial length of the roller is restricted, and the load capacity of the roller is somewhat reduced. Figures (E) and (F)
Reference numeral 3d in the figure is a hole formed to keep the rollers of the cage in contact with the one-side rolling surface of the load supporting range.

第4図は、上記第1図(B)と、第3図に示した本件
直動ころ軸受用ころの保持器について、図示のxy平面に
対し角度αだけ傾斜して平面内に、軸受内ころの循環径
路を形成し、循環径路内に上記ころを供給して形成する
軸受の構成例を示し、図において3はころの保持器、3a
は隣接保持器の接触面として形成した球形外周面、3bは
保持器における径路内ころの案内面、3cは保持器内への
ころの挿入口、5,5′はころ、6は案内用軸に成形した
角度90゜のV溝形ころの転走面、7は軸受に形成し、上
記のV形溝6と共にころの荷重支持範囲を形成するV溝
形ころの転走面、8はころの軸受内循環用径路、また図
中の11は上記ころの循環径路を、上記第6図、第7図の
ように、通常の案内用軸の取付面と平行なxy面内に、荷
重支持範囲の径路と平行に、図中のx軸に成形される軸
受内直動循環径路範囲との隔たり、hは上記軸取付面と
平行なxy平面に直交するxz平面内に、x軸に平行に形成
される、軸受内転走範囲の循環径路とx軸間の隔たり、
12は上記の軸受ころの循環径路の中心線を含み、x軸と
平行に、またxy平面と角度αでxz平面と交わる平面内に
おける、図示の荷重支持範囲における径路の中心線と、
軸受け内直動範囲の循環径路の中心線間の隔たり、8は
上記xy平面と角度αで交わる平面内の循環のための片側
半円弧状循環径路内における、保持器中心の角度を示し
ている。図示のように本願直動ころ軸受においては、上
気した第1図中に示したころ2〜3の保持器を用いるこ
とにより、3次元空間においてα=0〜90゜の範囲の任
意の角度範囲において、軸受内ころの循環径路を確保す
ることができ、径路内の隣接保持器は常に球面において
相互の接触を保ち、円滑な循環運動を確保することがで
きる。従って各種高性能機械において、この種ころがり
直動案内の採用をはかる場合、軸受内に循環径路を形成
するための空間的な制約を生じた際、例えば循環径路内
で転動体循環のための半円弧状径路を形成する際に、該
円弧状径路内に配置される上記保持器の数は、少なくと
も4個以上が必要とされ、それ以下の保持器数の軸受構
成では、保持器の循環走行に円滑さが欠除し、軸と軸受
の相対速度の上昇に伴って、この傾向は助長される。し
たがって循環径路構成に際して、図示の円弧状径路の直
径の最大値を11に限定された際、xy平面に対して例えば
45゜傾斜した平面内に形成した場合、上記円弧状径路の
直径は約1.4倍にすることができる。
FIG. 4 is a perspective view of the cage of the roller for the linear motion roller bearing shown in FIG. 1 (B) and FIG. 3, which is inclined at an angle α with respect to the xy plane shown in FIG. An example of the configuration of a bearing that forms a roller circulation path and supplies the rollers in the circulation path is shown. In the figure, reference numeral 3 denotes a roller cage, 3a
Is a spherical outer peripheral surface formed as a contact surface of an adjacent cage, 3b is a guide surface of the roller in the path of the cage, 3c is an insertion hole of the roller into the cage, 5, 5 'are rollers, and 6 is a guide shaft. The rolling surface of a V-groove roller having an angle of 90 ° formed on the bearing, 7 is formed on the bearing, and the rolling surface of the V-groove roller forming a load supporting range of the roller together with the V-groove 6 described above, 8 is a roller bearing in circulation path, also a circulation path of 1 1 above roller in the drawing the Figure 6, as in the FIG. 7, the conventional mounting surface parallel to xy plane of the guiding shafts, load In parallel with the path of the support range, the distance from the linear motion circulation path range in the bearing formed on the x axis in the figure, h is in the xz plane orthogonal to the xy plane parallel to the shaft mounting surface, and the x axis. The gap between the x-axis and the circulation path in the rolling range within the bearing, formed in parallel,
1 2 includes the center line of the circulation path of the bearing roller described above, in a plane parallel to the x-axis, and in a plane intersecting the xz plane at an angle α with the xy plane, the center line of the path in the illustrated load supporting range,
The distance 8 between the center lines of the circulation paths in the linear motion range within the bearing, and 8 indicates the angle of the center of the cage in the one-sided semicircular circulation path for circulation in a plane intersecting the xy plane at an angle α. . As shown in the drawing, in the linear roller bearing of the present invention, by using the cages of the rollers 2 to 3 shown in FIG. In this range, the circulation path of the rollers in the bearing can be ensured, and the adjacent cages in the path always keep contact with each other on the spherical surface, so that smooth circulation movement can be ensured. Therefore, in the case of adopting this kind of rolling linear motion guide in various high-performance machines, when there is a spatial restriction for forming a circulation path in the bearing, for example, a halfway for rolling element circulation in the circulation path. When forming the arc-shaped path, the number of the retainers arranged in the arc-shaped path is required to be at least four or more. This tendency is exacerbated as the relative speed between the shaft and the bearing increases. Thus when the circulation path configuration, when limited to the maximum value of the diameter of the arcuate path shown in 1 1, for example with respect to the xy plane
When formed in a plane inclined at 45 °, the diameter of the arc-shaped path can be increased by about 1.4 times.

第5図は第4図のxy面に対し、上記傾斜平面内に軸受
け内の循環転動体径路を形成した際、転動体の走行方向
を180゜変換するための円弧状径路内における転動体のx
y平面内での旋回運動に加えて、xy平面に直交するz方
向に生じる変位を示したもので、図中の(A)の横軸で
は、傾斜面における転動体の旋回角度を、縦軸には旋回
角度に対応して、上記したz方向への転動体の変位を示
している図示のようにz方向の変位曲線は円弧上径路へ
の入出時にゆるやかな緩衝曲線に従った円滑な変位の挙
動を示し、両緩衝曲線が連なる旋回角度90゜近傍におい
て立ち上がり角度はxy平面に対する傾斜平面の傾き角α
に一致する。図(B)は上記z方向の変位量hに対する
目安として径路内おける上記転動体の旋回角度を示した
ものである。
FIG. 5 shows that, when the circulating rolling element path in the bearing is formed in the inclined plane with respect to the xy plane in FIG. 4, the rolling element in the arc-shaped path for changing the running direction of the rolling element by 180 ° is shown. x
In addition to the turning motion in the y-plane, the displacement generated in the z-direction orthogonal to the xy-plane is shown. The horizontal axis of FIG. Shows the displacement of the rolling element in the z-direction corresponding to the turning angle. As shown in the figure, the displacement curve in the z-direction has a smooth displacement according to a gentle buffering curve when entering and exiting the circular path on the arc. In the vicinity of the turning angle 90 ° where both buffer curves are continuous, the rising angle is the inclination angle α of the inclined plane with respect to the xy plane.
Matches. FIG. 7B shows the turning angle of the rolling element in the path as a guide for the displacement h in the z direction.

第6図(A)〜(E)は、本件直動ころ軸受時におけ
る、上記軸受内循環径路中でのころ保持器の循環運動の
説明図で、図中において2〜2はころの保持器、5はこ
ろ、6は案内軸に形成したころの転動面、7は同じく軸
受に形成したころの転動面、9は案内軸、10は直動ころ
軸受本体、11は軸受内循環径路、また角度βは軸受作動
時、図示の循環径路で湾曲部で生じる保持器の断続的な
旋回角度である。
6 (A) to 6 (E) are explanatory views of the circulating motion of the roller cage in the above-mentioned circulating path in the bearing at the time of the present linear motion roller bearing. 5 is a roller, 6 is a rolling surface of a roller formed on a guide shaft, 7 is a rolling surface of a roller also formed on a bearing, 9 is a guide shaft, 10 is a direct-acting roller bearing body, and 11 is a circulation path in the bearing. And the angle β is the intermittent turning angle of the retainer generated at the curved portion in the illustrated circulation path when the bearing is operated.

はじめに図(A)において軸9と、軸受10とは図中の
矢印で示す軸方向に相対的に移動し、側面図(E)で示
したころ5は、上記V形溝6と7との間で荷重を支持し
て、軸受と反対方向に転走し、図(A)においてこれら
の転走中のころに適用されている保持器2,2,2も軸受の
移動方向と反対方向に移動し、これらの保持器中の2
は、図(B)に示す位置で保持器2との接触を保ちなが
ら、保持器2内のころが、上記した軸と軸受におけるV
形溝6と7に接触して、荷重負荷域の転動を継続する間
に図(C)に示すように保持器2は保持器2と共に循環
径路中の相互接触を保って配置された保持器2に到る一
連の保持器を移動させ、同時に保持器2により、保持器
2を上記軸、軸受に形成されたV形溝6,7とにより成る
荷重支持範囲のころの転走径路に向けて移動させる。つ
いでこれらの保持器は図(D)において、上記保持器2
保持器内ころが荷重支持範囲の転走を終えると共に径路
中の移動を停止し、また保持器2は保持器内ころの荷重
支持範囲の転動に伴い上記軸受の移動と反対方向の移動
を継続して、それぞれ図(A)における各保持器2と2
位置まで移動し、荷重支持範囲に配置される保持器間距
離に相当した範囲でのころの転走面に繰り返される径路
内保持器の移動を一巡する。このような機構によって、
径路内に循環する保持器を適用して構成される。本件直
動クロスローラ形ころがり軸受においては、上記ころの
保持器を荷重支持範囲の上記V形ころの転走面に対し、
保持器内ころの軸心を、交互に直交させて配列し、荷重
を支持して作動する際には、循環径路中のころが保持器
を介し相互間直接の接触を生じることなく、また上記保
持器外周面に形成した球面2a,3aによって保持器間のす
べり摩擦接触を避け、また同じく保持器外周面に循環径
路の方形内周面形状に適応し、高精度に形成した、ころ
の案内面2b,3bとによって軸受内循環径路内における走
行を円滑に行うことができる。
First, in FIG. 5A, the shaft 9 and the bearing 10 move relatively in the axial direction shown by the arrow in the figure, and the rollers 5 shown in the side view (E) Rolling in the opposite direction to the bearing, supporting the load between them, and the cages 2, 2, 2 applied to these rolling rollers in FIG. Move, 2 in these cages
Shows that the rollers in the cage 2 are kept in contact with the cage 2 at the position shown in FIG.
As shown in FIG. 4C, the cage 2 is held together with the cage 2 so as to maintain mutual contact in the circulation path while continuing to roll in the load application area while contacting the grooves 6 and 7. A series of cages reaching the cage 2 are moved, and at the same time, the cage 2 is moved to the rolling path of the rollers in the load supporting range formed by the shaft and the V-shaped grooves 6 and 7 formed in the bearings. Move toward Next, these cages are shown in FIG.
The roller in the cage finishes rolling in the load supporting range and stops moving in the path, and the cage 2 moves in the opposite direction to the movement of the bearing as the roller in the cage rolls in the load supporting range. Continuously, each cage 2 and 2 in FIG.
To the position, and makes a round of the repeated movement of the in-path cage on the rolling surface of the roller in a range corresponding to the distance between the cages arranged in the load support range. With such a mechanism,
It is configured by applying a retainer circulating in the path. In the present linear motion cross roller type rolling bearing, the retainer of the above-mentioned roller is moved with respect to the rolling surface of the above-mentioned V-type roller in the load supporting range.
When the axes of the rollers in the cage are arranged alternately orthogonally to each other, and when operating while supporting the load, the rollers in the circulation path do not directly contact each other via the cage, and Roller guides formed with high precision by avoiding sliding frictional contact between cages by spherical surfaces 2a and 3a formed on the cage outer peripheral surface, and also adapted to the rectangular inner peripheral surface shape of the circulation path on the cage outer peripheral surface With the surfaces 2b and 3b, traveling in the circulation path in the bearing can be performed smoothly.

第7図は、本件軸受の荷重負荷域に成形したころV形
溝転走面と、該転走面に対応して、転走案内用軸に成形
したV形溝ころの転走面間で形成される径路と、これに
連なり軸受内に成形する循環径路内に、ころの保持器を
供給して、直動ころがり案内を構成する際、本件軸受で
設定可能な、上記循環径路の形成と、該径路内への保持
器の配列方向について示したもので、図中(A)、
(B)、(C)、(D)は、上記軸受と案内用軸間に形
成される、循環径路内に配列した保持器2と該保持器中
のころ5の平面図、(A)、(B)、(C)、(D)、
(E)は、上記(A)〜(D)に対応して示した、案内
用軸と軸受に成形したV形ころの転走面6と7及び該転
走面間に成形される径路内におけるころ5と、該ころの
回転の軸心とを側面図によって示したものである。また
これらの図において(A)、(A′)は、軸方向の断面
が方形軸の側面目に成形したV溝形転走面6と、該転走
面に対応して軸受側面に成形したV溝形転走面7とで形
成した径路内に、図示のころの転走方向に交互に直交し
て配列した実施例を示す。図(B)、(B′)において
は、上記図(A)、(A′)の場合と同一に形成され
た、案内用軸と軸受ころの循環径路への保持器内ころの
配列を、ころの回転軸心を相互に交差することなく、何
れが片方の回転軸心にそろえ、該回転軸心が荷重支持範
囲の径路中で、該径路中のころの転走方向に直角に、ま
たころ相互間で平行に配列したものである。図(C)、
(C′)においては、案内用軸と軸受におけるV溝形こ
ろの転走面6と7を図示のように方形状軸の側面と各々
45゜傾斜した側面に成形し、該転走面間と軸受内の循環
径路内に、保持器内にころの軸心を交互に直交して配列
し、また図(D)、(D′)においては、上記(C)、
(C′)と同一の軸、軸受の循環径路の形成において、
上記(B)、(B′)の場合と同じく、上記ころの回転
軸心を交差することなく、図(B)、(B′)の実施例
と同じく、何れかが片側の回転軸心にあわせて循環径路
へ配列した場合の実施例である。
FIG. 7 shows the distance between the rolling surface of the roller V-shaped groove formed in the load application region of the present bearing and the rolling surface of the V-shaped groove roller formed on the rolling guide shaft corresponding to the rolling surface. The path to be formed, the roller path retainer is supplied into the circulation path which is formed in the bearing connected to the path, and when the linear motion rolling guide is formed, the formation of the circulation path, which can be set in the present bearing, , The direction of the arrangement of the cages in the path is shown in FIG.
(B), (C), (D) are plan views of the cage 2 and the rollers 5 in the cage formed between the bearing and the guide shaft and arranged in the circulation path. (B), (C), (D),
(E) shows the rolling surfaces 6 and 7 of the V-shaped roller formed on the guide shaft and the bearing and the path formed between the rolling surfaces shown in (A) to (D). 2 is a side view showing a roller 5 and an axis of rotation of the roller. In these figures, (A) and (A ') show a V-groove-shaped rolling surface 6 whose axial cross section is formed on the side surface of a square shaft and a bearing side surface corresponding to the rolling surface. An embodiment is shown in which the rolling direction of the rollers shown in FIG. In FIGS. (B) and (B ′), the arrangement of the guide inner shaft and the rollers in the cage to the circulation path of the bearing roller, which are formed in the same manner as in FIGS. Each of the rollers is aligned with one of the rotation axes without crossing the rotation axes of the rollers, and the rotation axis is in the path of the load support range, at right angles to the rolling direction of the rollers in the path, and The rollers are arranged in parallel with each other. Figure (C),
In (C '), the rolling surfaces 6 and 7 of the V-groove rollers in the guide shaft and the bearing are respectively connected to the side surfaces of the square shaft as shown in the figure.
Formed on a 45 ° inclined side surface, roller axes are alternately and orthogonally arranged in the cage between the rolling surfaces and in the circulation path in the bearing, and FIGS. (D) and (D ′) In the above (C),
In forming the same shaft and bearing circulation path as (C '),
As in the cases of (B) and (B ') above, without intersecting the rotation axes of the rollers, one of the rotation axes of one of the rollers may be applied to one of the rotation axes as in the embodiment of FIGS. This is an embodiment in the case of arranging them in a circulation path.

このように本件軸受においては、ころの転走用上記V
形溝を、方形状案内用外周面に成形する際、該軸の両側
面、又は該側面と上面間の角の斜面に成形した、V溝形
ころの転走面に対応して軸受に成形したV溝形転走面と
で、荷重負荷域に形成される方形ころの転走径路と、該
径路の両端に連なり軸受に形成した循環のための径路と
で形成した、上記軸方向長円形状の循環径路中にころを
供給する際、該径路内において上記図中の(A)、
(C)に示したような、ころの回転軸心を相互に直交し
て配列する場合のほか、図中(B)、(D)に示したよ
うに、例えば後述する軸受実施例の第12図の実施例のよ
うに、案内用軸の両側面で荷重を支持するように形成し
た、2対のV溝形ころの転走面のうち、案内用軸両側面
の下側に位置して成形した1対のV溝形ころの転走面に
対しては、図中の(A)、(A′)に示したように、上
記軸受け荷重の支持範囲と共に軸受内に形成した循環径
路内隣接ころ間の回転軸心を交互に直角に交差させて配
列し、上記案内用軸と軸受間の位置ぎめならびに案内用
軸の上下、左右方向に作用する軸受荷重を均等に支持さ
せ、ついで上記軸の両側面の上方に位置して形成した1
対のV溝形ころの転走面においては、図中の(B)、
(B′)に示すように、ころ外周面は、図中の軸と軸受
に成形したV溝形転走面6と7の下側と上側転走面との
同時接触を保ち、ころ間の回転軸心は交差することなく
平行に、また案内用軸上面に対して直角に作用する軸受
荷重を負荷して転走することができる。第8図(A)、
(B)、(C)は従来の非循環式クロスローラ形直動こ
ろがり軸受において、上記第1図〜第4図で示した、本
件直動軸受用保持器を軸受内ころに適用して構成した、
循環式単列直動ころがり軸受を、該軸受用の案内用軸と
共に示したもので図中の(A)は上記軸受と案内用軸と
で構成したころがり直動案内の正面図、(B)と(C)
は同じく上記ころがり直動案内図の側面図と平面図であ
る。また図中において、2は上記ころに適用した保持
器、5はころ、6は案内用軸に成形したV形ころの転走
面、7は軸受に成形した荷重負荷域におけるV形ころの
転走面、9は案内用軸,9aは軸9定置用ボルト孔、10は
軸受本体,10aは軸受定置用ねじ孔、12、13は軸受内ころ
の循環径路を形成するための軸受構成要素、14は上記軸
受内循環径路内に供給したころに対する、軸受外への脱
落を防止するための薄板金、15は軸受軸方向両端におけ
る側板、15aは側板15に付加したダストシールである。
Thus, in the present bearing, the above-mentioned V for rolling the rollers is used.
When forming the shaped groove on the outer peripheral surface for rectangular guide, it is formed on the bearing corresponding to the rolling surface of the V grooved roller formed on both sides of the shaft or on the slope of the corner between the side and the upper surface The V-shaped rolling surface, a rolling path of a square roller formed in a load area, and a path for circulation formed in a bearing connected to both ends of the path, the above-mentioned axial ellipse formed in the axial direction. When supplying the rollers into the circulation path having the shape, (A) in FIG.
In addition to the case where the rotating shaft centers of the rollers are arranged orthogonally to each other as shown in (C), as shown in FIGS. As shown in the embodiment of the drawing, of the rolling surfaces of the two pairs of V-groove rollers formed so as to support the load on both sides of the guide shaft, they are located below the both sides of the guide shaft. As shown in (A) and (A ') in the figure, the rolling surface of the pair of molded V-groove rollers is formed in the circulation path formed in the bearing together with the bearing load supporting range. The rotating shafts between the adjacent rollers are alternately arranged so as to intersect at right angles, so that the positioning between the guide shaft and the bearing and the bearing loads acting in the vertical and horizontal directions of the guide shaft are evenly supported. 1 formed above both sides of the shaft
On the rolling surface of a pair of V-groove rollers, (B)
As shown in (B '), the outer peripheral surface of the roller maintains simultaneous contact between the lower and upper rolling surfaces of the V-groove-shaped rolling surfaces 6 and 7 formed on the shaft and the bearing in FIG. The rotation axes can be rolled by applying a bearing load acting in parallel without intersecting and perpendicular to the upper surface of the guide shaft. FIG. 8 (A),
(B) and (C) show a conventional non-circulation type cross roller type linear rolling bearing in which the present linear bearing retainer shown in FIGS. 1 to 4 is applied to a roller in the bearing. did,
A single row linear motion rolling bearing of a circulation type is shown together with a guide shaft for the bearing. (A) in the figure is a front view of a rolling linear motion guide composed of the bearing and the guide shaft, (B) And (C)
FIG. 2 is a side view and a plan view of the rolling linear motion guide diagram. In the drawing, reference numeral 2 denotes a cage applied to the roller, 5 denotes a roller, 6 denotes a rolling surface of a V-shaped roller formed on a guide shaft, and 7 denotes a V-shaped roller in a load area formed on a bearing. Running surface, 9 is a guide shaft, 9a is a bolt hole for fixing the shaft 9, 10 is a bearing body, 10a is a screw hole for fixing the bearing, 12 and 13 are bearing components for forming a circulation path of the inner rollers of the bearing, Reference numeral 14 denotes a sheet metal for preventing the rollers supplied to the inside of the bearing circulation path from falling out of the bearing, reference numeral 15 denotes side plates at both ends in the axial direction of the bearing, and reference numeral 15a denotes a dust seal added to the side plate 15.

第9図は上記第8図に示した軸受を分解し、該軸受の
各々の構成部品を斜視図によって示したもので、荷重負
荷域のV溝形ころの転走面7と、軸受定置用のねじ孔10
a軸受本体と一体に構成される、軸受内ころ保持器の循
環径路11を形成するための部品12,13と、上記ころの転
走面7からのころところ保持器の脱落防止用板金14、お
よび側板15とを固定するためのねじ孔10bならびに上記
軸受内循環径路形成用部品12,13を組み合わせ嵌合させ
るための軸方向の凹部10cが形成され、上記循環径路中
の保持器の脱落防止用の板金14においては、該板金を軸
受本体に固定するための孔14bが、また鋼板15において
は、上記案内用軸のV形ころの転走面に対応したダスト
シール形成用板金の凸部15aと共に、上記軸受本体10に
おけるねじ孔10bに対応し、軸受本体への構造の一体化
を図るための取付孔15bが形成される。
FIG. 9 is an exploded view of the bearing shown in FIG. 8 and shows the respective components of the bearing in a perspective view. The rolling surface 7 of the V-groove roller in the load area and the bearing stationary Screw hole 10
a Parts 12 and 13 formed integrally with the bearing body for forming a circulation path 11 of the inner roller retainer of the bearing, and a sheet metal 14 for preventing the roller from falling off the rolling surface 7 of the roller, And a screw hole 10b for fixing to the side plate 15 and an axial recess 10c for fitting and fitting the above-mentioned parts 12 and 13 for forming the circulation path in the bearing are formed to prevent the retainer in the circulation path from falling off. In the sheet metal 14 for use, a hole 14b for fixing the sheet metal to the bearing body is provided, and in the steel sheet 15, a convex portion 15a of the sheet metal for forming a dust seal corresponding to the rolling surface of the V-shaped roller of the guide shaft is provided. At the same time, a mounting hole 15b corresponding to the screw hole 10b in the bearing main body 10 for integrating the structure with the bearing main body is formed.

第13図は、上記第11図と第12図に示したクロスローラ
方式にしたがい転動するころのV溝形転走面を複列に形
成した案内用軸に対応し、軸受内に上記案内用軸と軸受
間荷重を支持して転走するころの循環径路を複列に形成
した、本件軸受構成の実施例を示したもので、図におい
て、2はころの保持器、5はころ、9は直動案内用軸,9
aは該案内用軸定置用ねじ孔、10は軸受本体、10aは軸受
定置用ねじ孔12、13は軸受内V溝形ころの循環径路を形
成した軸受構成部品、14は軸受作動時に生じる軸受内上
記循環径路からの、ころところ保持器の脱落防止用板
金、14cは該板金固定用ねじ、15は軸受の軸方向両端に
おける軸受用板、15cは軸受本体に対する上記軸受構成
部品15固定用ねじである。また図中の(A)は本実施例
における正面図、(B)は側面図、(C)は平面図で、
図示のように図(A)のG−G断面線に従い、軸受の構
成を示したもので、図示のように本実施例軸受において
は、上記第8図、第9図の実施例における、軸と軸受間
循環式ころの単列転走面構成から、複列に構成したもの
である。したがってこれらの実施例で示した軸受を、前
後、左右、あるいは上下方向移動台の直動案内への適用
をはかる際、上記負荷域ころのV形溝を単列に形成した
軸受を移動台の両側面において、通常行われる上記第8
図(B)の側面図に見られる軸受配置と、本実施例にお
いて移動台の両端の上下面に、第10図の側面図のよう
に、移動台の上下方向荷重に対応して軸受を配置して直
動案内を構成した場合の比較において、上記移動台の上
下方向に作用する主荷重に対し、本実施例の場合、軸受
の耐荷重性を4倍に増加することができる。また本実施
例直動軸受を適用して構成した、往復動移動台において
は、案内用軸と軸受との双方の案内面間に上記クロスロ
ーラ方式によって配置される、多数のころに適応させ2
列のV形溝形状に成形される、各々の傾斜転走面間に介
在させたころを介し、移動台の上面の垂直方向主荷重と
共に、水平面での台の移動方向と直交して作用する荷重
による変位を拘束することができる。
FIG. 13 is a cross-roller type V-groove type rolling surface according to the cross roller system shown in FIG. 11 and FIG. FIG. 3 shows an embodiment of the present bearing configuration in which a rolling path is formed in a double row in which rolling is performed while supporting a bearing shaft and a load between bearings. In the drawing, reference numeral 2 denotes a roller cage, 5 denotes a roller, 9 is a linear guide shaft, 9
a is the guide shaft fixing screw hole, 10 is the bearing body, 10a is the bearing fixing screw holes 12, 13 are the bearing components forming the circulation path of the V-groove roller in the bearing, and 14 is the bearing generated when the bearing operates. Inner metal plate for preventing the roller cage from falling off from the circulation path, 14c is a screw for fixing the metal plate, 15 is a bearing plate at both ends in the axial direction of the bearing, and 15c is a screw for fixing the bearing component 15 to the bearing body. It is. (A) in the figure is a front view in this embodiment, (B) is a side view, (C) is a plan view,
As shown in the drawing, the bearing configuration is shown in accordance with the GG sectional line in FIG. (A). As shown in the drawing, in the bearing of this embodiment, the shaft in the embodiment shown in FIGS. 8 and 9 is used. And a single row rolling surface configuration of the inter-bearing circulation rollers. Therefore, when applying the bearings shown in these embodiments to the linear motion guide of the front-rear, left-right, or up-and-down moving table, the bearing in which the V-shaped groove of the load area roller is formed in a single row is used as the moving table. On both sides, the above-mentioned eighth
In the present embodiment, bearings are arranged on the upper and lower surfaces of both ends of the moving table in accordance with the vertical load of the moving table, as shown in the side view of FIG. In comparison with the case where the linear motion guide is configured, the load resistance of the bearing can be increased four times with respect to the main load acting in the vertical direction of the moving table in the present embodiment. Further, in the reciprocating moving table configured by applying the linear motion bearing of the present embodiment, the cross roller system is arranged between the guide surfaces of both the guide shaft and the bearing by the above-mentioned cross roller system, and is adapted to a large number of rollers.
Acts orthogonally to the direction of movement of the platform in the horizontal plane, together with the vertical main load on the upper surface of the movable platform, via rollers interposed between the inclined rolling surfaces, which are formed into a row of V-shaped grooves. Displacement due to load can be restrained.

移動台の往復運動では、空間的にx軸、y軸、z軸の
直交3軸で許容される、各々の軸における直動と回転に
ついての6自由度の内、5自由度の拘束を行い、例えば
上記x、y、z軸のうちx軸のみの直動を許容する際、
本実施例と同じく、高荷重用として作られているこの種
直動ころ軸受の従来品においては、軸と軸受間に配置さ
れる荷重負荷域におけるころの回転軸心は、長方形状断
面形状から成る案内用軸において、ころの転走面となる
上下、左右の面と平行に、またころ相互間においても転
走方向には直角を保ちながら平行に配置されて、案内面
に直角方向の荷重を支持することはできるが、上記本実
施例転走面における3方向荷重に対する拘束力を期待す
ることはできない。したがってこの種直動ころ軸受を用
い、方形、長方形状の軸、または移動台の直動案内を構
成する場合、上記従来品のころ軸受においては、上記
軸、または移動台の上面と下面、並びに直動方向に平行
な両側面との合計4面に配置して直動案内を形成するこ
とが必要である。上記本件軸受実施例では、上記したよ
うに軸と軸受のV溝形ころの転走面の形成によって両者
間の上下、左右方向の荷重に対応することができ、上記
軸、又は移動台の上面下面、或いは両側面の2面に配置
して、上記軸、又は移動台の直動ころがり案内構成の簡
略化をはかることができる。
In the reciprocating motion of the moving table, five of the six degrees of freedom for translation and rotation in each axis, which are spatially allowed in three orthogonal axes of the x axis, the y axis, and the z axis, are restricted. For example, when allowing the linear motion of only the x-axis among the x-, y-, and z-axes,
As in the present embodiment, in the conventional linear motion roller bearing of this type, which is made for high loads, the rotation axis of the roller in a load load region arranged between the shaft and the bearing has a rectangular cross-sectional shape. The guide shaft is arranged in parallel with the upper and lower, left and right surfaces that are the rolling surfaces of the rollers, and between the rollers in parallel with the rolling direction while maintaining a right angle in the rolling direction. Can be supported, but a restraining force against the three-directional load on the rolling surface of the present embodiment cannot be expected. Therefore, when using a linear roller bearing of this type to form a linear, rectangular shaft, or a linear guide for a moving table, in the conventional roller bearing, the shaft or the upper and lower surfaces of the moving table, and It is necessary to form a linear guide by arranging the linear guide on a total of four surfaces including both side surfaces parallel to the linear direction. In the above bearing embodiment, as described above, by forming the rolling surface of the V-groove roller of the shaft and the bearing, it is possible to cope with the vertical and horizontal loads between the two, and the upper surface of the shaft or the moving table is provided. By arranging them on the lower surface or two surfaces on both sides, the linear rolling guide structure of the shaft or the moving base can be simplified.

第11図は本件直動ころ軸受の実施例において、案内用
軸の両側面に成形したV溝形ころの転走面に対応し、移
動台の両側に上記本件直動ころ軸受における、荷重負荷
域の転走面、ならびにころの循環径路を形成したもの
で、図において2はころの保持器、5はころ、6は案内
用軸におけるV溝形ころの転走面、7は軸受側V溝形こ
ろの転走面、9は案内用軸、9aは該案内よう軸定置用の
ねじ孔、10は軸受本体、10aは移動台に対する軸受本体
定置用のねじ孔、12、13は軸受内ころの循環径路形成用
部品、15は軸受側板、15cは軸受本体10に対する側板固
定用のねじである、図示のように本実施例においては、
方形断面形状の案内用軸9の両側面に形成した、1対の
90゜V溝形状ころの転走面6に対応して、軸受本体10に
おいては、荷重負荷域における90゜V溝形ころの転走面
7を成形すると共に転走面7の軸方向両端に連なり、軸
受内ころの循環径路を、第12図の軸受実施例の図中に示
した、軸受構成部品12,13における1対の循環径路形成
用V形溝12a,13aと同じく、荷重負荷域に連なる軸受内
軸方向長円形状循環径路構成用V形溝を形成した、軸受
構成用部品12,13を図示のように軸受本体10に適合し
て、軸受内ころの循環径路を形成すると共に、軸受本体
10の軸方向両端面には、上記軸受構成部品12,13の軸受
本体に位置ぎめ用側板15を定置し、該側板をねじ15cに
より軸受本体に固定して軸受の構成をはかったものであ
る。
FIG. 11 corresponds to the rolling surface of the V-groove roller formed on both sides of the guide shaft in the embodiment of the linear roller bearing of the present invention. In the figure, 2 is a roller retainer, 5 is a roller, 6 is a V-groove roller rolling surface on a guide shaft, and 7 is a bearing side V in the drawing. Rolling surface of grooved rollers, 9 is a guide shaft, 9a is a screw hole for fixing the guide shaft, 10 is a bearing body, 10a is a screw hole for fixing the bearing body to the moving table, and 12 and 13 are in the bearing. Roller circulation path forming parts, 15 is a bearing side plate, 15c is a screw for fixing the side plate to the bearing body 10, in the present embodiment as shown,
A pair of guide shafts 9 formed on both sides of the guide shaft 9 having a rectangular cross-sectional shape
Corresponding to the rolling surface 6 of the 90 ° V-groove roller, in the bearing body 10, the rolling surface 7 of the 90 ° V-groove roller in the load region is formed, and both ends of the rolling surface 7 in the axial direction are formed. In the same manner as the pair of V-shaped grooves 12a and 13a for forming the circulation path in the bearing components 12 and 13 shown in the drawing of the bearing embodiment of FIG. The bearing-forming parts 12, 13 formed with a V-shaped groove for forming a circular path in the axial direction inside the bearing connected to the bearing are adapted to the bearing body 10 as shown in the figure to form a circular path for the rollers in the bearing. , Bearing body
On both end surfaces in the axial direction of 10, a positioning side plate 15 is fixed to the bearing body of the bearing components 12, 13 and the side plate is fixed to the bearing body with screws 15c to form a bearing. .

上記直動案内においては、案内用軸の両側面に成形し
た1対のV溝形ころの転走面6に対応して、軸受面に成
形した荷重負荷域1対のV溝形ころの転走面7と、該こ
ろの転走面7の軸方向両端に連なる半円弧状と、該半円
弧状の他端に連なる直線状径路とで、軸方向長円形状に
形成される循環径路内に、請求項1記載の保持器を適用
した多数のころを、該ころの軸心を相互間で交互の直交
して配列し、軸受作動時において、該軸受の上下、左右
方向に作用する荷重を、上記案内用軸9と軸受本体10に
成形したV溝形転走面間のころにおいて、均等に負荷し
て作動することができる。
In the above-mentioned linear motion guide, a pair of V-groove rollers of a load-bearing area formed on the bearing surface correspond to the rolling surfaces 6 of a pair of V-groove rollers formed on both side surfaces of the guide shaft. In a circulation path formed in an axially elliptical shape by a running surface 7, a semicircular shape connected to both axial ends of the rolling surface 7 of the roller, and a straight path connected to the other end of the semicircular shape. A plurality of rollers to which the retainer according to claim 1 is applied, the shaft centers of the rollers are arranged alternately and orthogonally to each other, and a load acting on the bearing in the vertical and horizontal directions when the bearing is operated. In the rollers between the guide shaft 9 and the V-groove rolling surface formed in the bearing body 10, the roller can be operated with a uniform load.

第12図(A),(B)は図示のように案内用方形軸の
両側面の各々に、V溝形ころの転走面を複列に成形し、
該転走面に対応して、上記11図の実施例よりも高負荷容
量に構成した、本件直動ころ軸実施例の正面図と側面図
を示し、また第13図は該軸受実施例の各構成部分を斜視
図にとって示したものであり、これらの第12図と第13図
の図中において、2は軸受内ころに適用した保持器、5
はころ、6は上記案内用軸9におけるV溝形ころの転走
面、7は軸受に成形した荷重負荷域におけるV溝形ころ
の転走面、9aは案内用軸9定置用ねじ孔、10は軸受本
体、10aは移動台への軸受定置用ねじ孔、10bと10cは軸
受本体10に対応する側板15固定用のねじ孔、14は軸受を
案内用軸から取外した際、軸受内循環径路中の荷重負荷
域V形溝からのころの脱落を防止するための板金、14a
は該板金に成形したころの脱落防止用の孔、14bは板金1
4を軸受本体10に固定するための孔、15は軸受内ころの
循環径路形成用V形溝15を成形した側板、15bは取付ね
じ15cにより、側板15を軸受本体10に対し、ねじ孔10bに
おいて固定するためのねじ、15eはねじ15fを用い側板15
において上記V形溝15aを成形した部分を軸受本体に固
定するための孔、16,16は上記側板5に成形したV形溝1
5dとともに、軸受内ころの循環径路を形成するためのV
形溝16a,16a′を成形した軸受構成部品である。したが
って本件直動ころ軸受における本実施例においては、第
12図(A),(B)と第13図に示したように、案内用方
形軸9の両側面の各々に2対のV溝形ころの転走面6を
成形し、該転走面6に対応して架台状軸受本体10の内側
側面の2ヶ所に、同じくV溝形ころの転走面7を成形
し、該軸9の転走面6に対応し軸受側荷重負荷域転走面
を形成する軸受本体の転走面7の軸方向両端には、該転
走面7に連なり、軸受構成部品16,16′に成形した同じ
くV溝形案内16a,16a′とで、軸受ころと保持器の走行
径路を形成したもので、循環径路中に上記ころ用保持器
2と共に供給した多数のころ5が、上記軸9と軸受本体
10に成形したV溝形ころの転走面6と7間の荷重負荷域
で転走する際には、第11図の実施例と同じく、上記案内
用軸両側面に直交2平面からなるV溝形に成形した各々
の転走面に対して、交互に回転軸直交して配列された上
記多数のころを介し、軸受に作用する上下、左右の荷重
を均等に負荷することができ、また該負荷容量の値は第
11図に示した実施例の値との比較において倍加すること
ができる。
FIGS. 12 (A) and 12 (B) show V-groove roller rolling surfaces formed in double rows on both sides of the guide rectangular shaft as shown in FIG.
Corresponding to the rolling surface, a front view and a side view of the present linear motion roller shaft embodiment configured to have a higher load capacity than the embodiment of FIG. 11 are shown, and FIG. 13 is a diagram of the bearing embodiment. Each of the components is shown in a perspective view. In FIGS. 12 and 13, reference numeral 2 denotes a retainer applied to the inner roller of the bearing;
A roller, 6 is a rolling surface of the V-groove roller in the guide shaft 9, 7 is a rolling surface of the V-groove roller in a load area formed on the bearing, 9a is a screw hole for fixing the guide shaft 9; 10 is a bearing body, 10a is a screw hole for fixing the bearing to the moving table, 10b and 10c are screw holes for fixing the side plate 15 corresponding to the bearing body 10, and 14 is a circulation in the bearing when the bearing is removed from the guide shaft. Sheet metal for preventing the rollers from falling out of the V-shaped groove in the load area in the path, 14a
Is a hole for preventing a roller formed on the sheet metal from falling off, and 14b is a sheet metal 1
4 is fixed to the bearing body 10, 15 is a side plate formed with a V-shaped groove 15 for forming a circulation path of the inner roller of the bearing, 15b is a mounting hole 15c, and the side plate 15 is screwed into the bearing body 10 with a screw hole 10b. Screw 15f is used for fixing the side plate 15
Holes for fixing the portion in which the V-shaped groove 15a is formed to the bearing body, and 16 and 16 are V-shaped grooves 1 formed in the side plate 5.
Along with 5d, V for forming a circulation path for the rollers in the bearing
This is a bearing component in which the shaped grooves 16a and 16a 'are formed. Therefore, in this embodiment of the linear motion roller bearing,
As shown in FIGS. 12 (A), (B) and FIG. 13, two pairs of V-groove roller rolling surfaces 6 are formed on each of both side surfaces of the guide square shaft 9, and the rolling surfaces 6 are formed. 6, a rolling surface 7 of a V-groove roller is formed at two places on the inner side surface of the gantry-shaped bearing body 10, and the rolling surface 6 of the shaft 9 corresponds to the rolling surface 6 of the shaft 9. At both ends in the axial direction of the rolling surface 7 of the bearing body forming the surface, bearing rollers 16a, 16a 'which are connected to the rolling surface 7 and are formed into bearing components 16, 16' are also formed. And a plurality of rollers 5 supplied together with the roller cage 2 in the circulation path, and the shaft 9 and the bearing body are formed.
When rolling in the load region between the rolling surfaces 6 and 7 of the V-groove roller formed into 10, the V-shaped roller formed of two orthogonal planes on both sides of the guide shaft as in the embodiment of FIG. For each rolling surface formed in a groove shape, through the above-mentioned many rollers which are arranged alternately orthogonally to the rotation axis, it is possible to uniformly apply vertical and horizontal loads acting on the bearing, The value of the load capacity is
This can be doubled in comparison with the values of the embodiment shown in FIG.

第14図(A)、(B)、第15図並びに第16図は、上記
第11図、第12図に示した本件軸受構成において、更に軸
受負荷容量と、軸受剛性の向上を図ることを目的とし
て、図示のように軸受案内用軸の両側面と上面との軸方
向の角に成形した1対の傾斜V溝形ころの転走面と、該
転走面に相対して案内用軸両側に成形した、他の1対の
傾斜V形溝ころの転走面とにおいて、これらの転走面に
上記クロスローラ方式にしたがい、交互に直交して配列
された多数のころの円筒面が、上記案内用軸の上下面に
平行な面と、両側面に直交した2平面間で傾斜V溝形に
形成される2転走面に対して交互に接触を保ち、軸受に
作用する上下、左右の荷重を支持して転走することがで
きるよう構成したものである。
FIGS. 14 (A), (B), 15 and 16 show that the bearing configuration shown in FIGS. 11 and 12 is used to further improve the bearing load capacity and the bearing rigidity. For the purpose, as shown in the drawing, a pair of inclined V-groove roller rolling surfaces formed at the corners in the axial direction between both side surfaces and the upper surface of the bearing guiding shaft, and the guiding shaft opposed to the rolling surface. According to the above-mentioned cross roller system, a cylindrical surface of a large number of rollers alternately arranged on the rolling surfaces of another pair of inclined V-shaped grooved rollers formed on both sides. , Alternately maintaining contact with a plane parallel to the upper and lower surfaces of the guide shaft and two rolling surfaces formed in an inclined V-groove between two planes perpendicular to both side surfaces, It is configured to be able to roll while supporting left and right loads.

すなわち第14図(A)、(B)は上記実施例の正面
図、側面図、第15図は同じく上記実施例における軸受構
成部分の斜視図、第16図は更に該軸受構成部分における
軸受内循環径路構成部品の投影図であり、またこれらの
各図において、2はころ保持器、5はころ、6は案内用
軸における上記V溝形ころの転走面、7は軸受内荷重負
荷域に形成したV溝形ころの転走面、9は案内用軸、9a
は案内用軸9定置用ボルト孔、10は軸受本体、10aは軸
受本体に対する側板15固定用ねじ孔、10bは軸受内ころ
の循環径路形成用管状部品配置用孔、15は上記軸受側
板、15bは軸受本体10に対する側板15固定ねじ用孔、15c
は上記軸受本体に対する側板15固定用ねじ、15gは側板1
5に対する軸受内循環径路形成用部品17,18用凹部、15h
は側板15に対する上記軸受部品位置ぎめ用凹部、17は18
と共に軸受内ころの循環径路中の湾曲部を形成するため
の軸受構成部品、17a,18aは上記軸受構成部品上記軸受
構成部品17と18に成形した、ころの循環径路中の湾曲部
形成用V形溝、17b,18bは軸受内軸方向長円形状ころの
循環径路構成用部品管の接合部形成用V形溝、17c,18c
は軸受側板の凹部15hに対応して成形した、側板15に対
する部品17,18位置ぎめ用の凸部、17d,18dは上記17,18
間の位置決め用凸部と該凸部接合用の孔、19は軸受内に
おける上記ころの循環径路の直動走後部を形成するため
に、軸方向に方形孔19aを成形し、また軸方向両端部に
おいて、上記径路中の湾曲部を形成する部品17,18にお
けるV形溝17b,18bで形成される接合部に対応して接続
部を成形した管状軸受内循環径路構成部品である。
14A and 14B are a front view and a side view of the above embodiment, FIG. 15 is a perspective view of a bearing component of the above embodiment, and FIG. It is a projection view of a circulation path component, and in each of these figures, 2 is a roller retainer, 5 is a roller, 6 is a rolling surface of the V-groove roller in the guide shaft, and 7 is a load load area in the bearing. The rolling surface of the V-groove roller formed at 9 is a guide shaft, 9a
Is a guide shaft 9 fixing bolt hole, 10 is a bearing main body, 10a is a screw hole for fixing the side plate 15 to the bearing main body, 10b is a hole for arranging a tubular part for forming a circulation path inside the bearing, 15 is the bearing side plate, 15b Is a hole for the side plate 15 fixing screw with respect to the bearing body 10, 15c
Is the screw for fixing the side plate 15 to the bearing body, 15 g is the side plate 1
Condensation path forming parts for bearings 17 and 18 for 5, recessed for 15h
Is a recess for positioning the bearing component with respect to the side plate 15;
And bearing components 17a and 18a for forming a curved portion in the circulation path of the roller in the bearing. The bearing components 17 and 18 are formed on the bearing components 17 and 18 to form a curved portion V in the circulation path of the roller. Shaped grooves, 17b and 18b are V-shaped grooves for forming joints of pipes for circulating path components of the axially elongated rollers in the bearing, 17c and 18c
Are formed corresponding to the recesses 15h of the bearing side plate, and convex portions for positioning the parts 17, 18 with respect to the side plate 15, and 17d, 18d are the above 17, 18
The positioning projection between the projection and the hole for joining the projection, 19 is formed into a rectangular hole 19a in the axial direction in order to form a linearly running rear portion of the roller circulation path in the bearing, and both ends in the axial direction In the part, the connecting part is formed corresponding to the joint formed by the V-shaped grooves 17b and 18b in the parts 17 and 18 forming the curved part in the above-mentioned path.

直動ころ軸受における上記実施例においては、各図に
示したように、案内用軸9の両側面と上面との角に成形
した上記1対の傾斜V溝形ころの転走面6と、該転走面
に対応し、同じく案内用軸9の両側面の一定範囲を隔て
て下方に傾斜V溝形形状に成形した一対のころの転走面
6とに対し、軸内には荷重負荷域の転走面7を含み軸方
向長円形状ころの循環径路を、上記第14図〜第16図に示
した実施例における、案内用軸の取付面に平行に形成す
ることなく、第4図、第5図に示したように、案内用軸
の転走面に配列したころの中心線を含み、上記案内用軸
上下面に平行な平面に約45゜の角度傾斜した平面に、第
15図、第16図に示した軸受内循環径路構成部品17,18,19
を軸受本体に成形した取付孔10d及び側板15の凹部15gに
配置し構成したもので、このような構成からなる本実施
例においては、軸受の上下、左右に作用する主荷重は、
上記第11図、第12図に示した案内用軸の両側面に成形し
たV溝形ころの転走面と、該転走面に対応し軸受内荷重
負荷域に成形したV溝形転走面間に介在したころ外周面
により、上記軸受に作用する主荷重の作用方向に対し45
゜傾斜した転走面間で支持される軸受構成と異なり、案
内用軸と軸受転走面におけるころの荷重支持力は、軸、
軸受間接触応力として上下、左右方向に分解されること
なく、直接案内用軸と軸受における上記主荷重と該主荷
重に直角方向の荷重支持力として作用し、上記軸受主荷
重としての上下方向、並びに案内用軸両側面における左
右方向の軸受の耐荷重性の向上をはかることができ、ま
た軸受上下方向の軸受荷重の作用方向における、案内用
軸と軸受間弾性近接地に関連した軸受剛性値について
は、第11図、第12図の実施例と比較し、上記第14図〜第
16図に示した本実施例における、軸に対する軸受剛性値
の向上をはかることができる。更に上記第4図と第5図
に示した、球形外周面を基本として形成した軸受用ころ
保持器の特性にしたがい軸受内ころの循環径路を立体的
に形成した、軸受構成の実施例においては、軸受形成状
の立体的容積が限定されるこの種の軸受において、軸受
内循環径路内湾曲部の上記曲率半径の増加をはかり、径
路内ころの円滑な走行をはかることができる。第17図
(A),(B)及び第18図(A),(B)は上記第11図
から第15図に示した、案内用角軸の両側面に成形した、
ころの転走面に対応して成形した、ころの転走面に対応
して構成した、直動ころ軸受の実施例において、更に軸
受に作用する軸受荷重の特性、軸受構成の簡易さ、移動
台に対する軸受定置方法によって相違する、直動ころ軸
受の構成を示したものである、またこれらの図中におい
て2はころの保持器、5はころ、6,6aは案内用軸に成形
したころの転走面、7,7aは軸受内荷重支持範囲における
この転走面、9は案内用角軸、9aは軸9定置用ボルト
孔、10は軸受本体、10aは軸受本体定置用ねじ孔、15は
軸受側板、19は軸受内軸方向循環径路形成用管である。
In the above-mentioned embodiment of the linear roller bearing, as shown in the drawings, the rolling surface 6 of the pair of inclined V-groove rollers formed at the corner between the both side surfaces and the upper surface of the guide shaft 9; A pair of rolling surfaces 6 of a pair of rollers, which correspond to the rolling surfaces and are formed downward in a V-groove shape with a predetermined range on both side surfaces of the guide shaft 9, have a load applied in the shaft. In the embodiment shown in FIGS. 14 to 16, the circulation path including the rolling surface 7 in the region and the axially elliptical roller is not formed parallel to the mounting surface of the guide shaft in the fourth embodiment. As shown in FIG. 5 and FIG. 5, the plane including the center lines of the rollers arranged on the rolling surface of the guide shaft, and a plane inclined at an angle of about 45 ° to a plane parallel to the upper and lower surfaces of the guide shaft,
Components of the circulation path in the bearing shown in FIGS. 15 and 16
Are arranged in the mounting hole 10d formed in the bearing body and the recess 15g of the side plate 15, and in this embodiment having such a configuration, the main load acting on the top and bottom of the bearing, the left and right,
The rolling surfaces of V-groove rollers formed on both side surfaces of the guide shaft shown in FIGS. 11 and 12, and the V-groove rolling corresponding to the rolling surfaces and formed in the load-bearing area in the bearing. The outer peripheral surface of the roller interposed between the surfaces allows the main load acting on the bearing
異 な り Unlike the bearing configuration supported between the inclined rolling surfaces, the load supporting force of the rollers on the guide shaft and the bearing rolling surface is
The main load on the direct guide shaft and the bearing and acts as a load supporting force in a direction perpendicular to the main load without being disassembled in the vertical and horizontal directions as the contact stress between the bearings. In addition, it is possible to improve the load bearing capacity of the left and right bearings on both sides of the guide shaft, and the bearing stiffness value related to the elastic proximity between the guide shaft and the bearing in the direction in which the bearing load acts in the vertical direction of the bearing. 14 is compared with the embodiment of FIG. 11 and FIG.
In the present embodiment shown in FIG. 16, it is possible to improve the bearing rigidity value with respect to the shaft. Further, in the embodiment of the bearing structure shown in FIGS. 4 and 5, in which the circulation path of the inner roller of the bearing is formed three-dimensionally in accordance with the characteristics of the roller cage for the bearing formed basically on the spherical outer peripheral surface. In this type of bearing in which the three-dimensional volume of the bearing is limited, the above-described radius of curvature of the curved portion in the circulation path in the bearing can be increased so that the rollers in the path can run smoothly. FIGS. 17 (A) and (B) and FIGS. 18 (A) and (B) are formed on both sides of the guide square shaft shown in FIGS. 11 to 15.
In the embodiment of the linear motion roller bearing formed corresponding to the rolling surface of the roller and formed corresponding to the rolling surface of the roller, the characteristics of the bearing load acting on the bearing, simplicity of the bearing configuration, and movement It shows the configuration of a linear motion roller bearing that differs depending on the method of mounting the bearing on the table. In these figures, 2 is a roller retainer, 5 is a roller, and 6, 6a are rollers formed on a guide shaft. 7, 7a are the rolling surfaces in the load supporting range in the bearing, 9 is the guide square shaft, 9a is the bolt hole for fixing the shaft 9, 10 is the bearing body, 10a is the screw hole for fixing the bearing body, Reference numeral 15 denotes a bearing side plate, and 19 denotes a tube for forming a circulation path in the bearing in the axial direction.

はじめに第18図の実施例において、図中の(A)は本
実施例の部分を断面図で示した正面図、図(B)は同じ
く部分を断面図で示した側面図である。図示のように本
実施例においては、案内用軸9の両側面に成形した2対
のころの転走面6についてはV溝形形状に、また6aにお
いては図示のように上記軸9の両側面と上面の角の軸方
向に、上記V溝形転走面の片側傾斜転走面を形成し、こ
れら転走面に対応して軸受内ころの循環径路を、第15図
及び第16図の実施例のように、軸受本体の上下面と両側
面に傾斜し、また上記軸受本体外周部の隣接2面間の4
角に位置して、径路内軸方向の走行経路形成用管状部品
19を適用し形成したもので、該軸受内循環径路におい
て、上記案内用軸上面と両側面の角に成形した、転走面
6aに対応し形成した軸受内循環内におけるころの回転軸
は、上記したクロスローラ方式に従い、相互に交差する
ことなく、上記案内用軸の転走面61に対応して、相互間
の平行を保ち配置される。
First, in the embodiment of FIG. 18, (A) in the figure is a front view showing a portion of this embodiment in a cross-sectional view, and (B) is a side view showing the same portion in a cross-sectional view. As shown, in this embodiment, the rolling surfaces 6 of the two pairs of rollers formed on both side surfaces of the guide shaft 9 have a V-groove shape, and in 6a, both sides of the shaft 9 as shown in the drawing. A single-sided inclined rolling surface of the V-groove-shaped rolling surface is formed in the axial direction of the angle between the surface and the upper surface, and the circulation path of the roller in the bearing corresponding to these rolling surfaces is shown in FIG. 15 and FIG. As shown in the embodiment, the upper and lower surfaces and both side surfaces of the bearing body are inclined.
A tubular part for forming a running path in the axial direction inside the path at a corner
In the bearing circulation path, the rolling surface is formed at the corner between the upper surface of the guide shaft and both sides.
The rotating shafts of the rollers in the bearing internal circulation formed in accordance with 6a do not cross each other according to the above-described cross roller method, and correspond to the rolling surfaces 61 of the guide shafts so as to be parallel to each other. Kept and arranged.

ついで第18図(A)、(B)に示した実施例では、図
示のように軸9の両側面と上面との角に成形した1対の
傾斜V溝形転走面においては、第14図〜第16図の実施例
にしたがい、また軸両側面の中央に位置して成形したV
溝形転走面においては、第11図に示した実施例にしたが
って軸受を構成し、軸受内循環径路中へのころの配置
は、軸受荷重の作用方向により、例えば軸受の上方より
下方に作用する主荷重に対しては、上記軸上面と両側面
において、軸と軸受間荷重負荷域のすべてのころの回転
軸心を、軸9の上、下面と平行に配置し、また上記軸9
両側面の中央に位置して成形した、V溝形転走面と軸受
内荷重負荷域転走面間ころに対しては、上記クロスロー
ラ方式にしたがって荷重を負荷するように配置した際
は、軸受に作用する上下、左右方向に作用する荷重のう
ち、上方から下方に作用する主荷重に対しては、主とし
て上記軸上面と両側面の角に成形した傾斜V溝形転走面
において負荷することができ直動案内用軸受の耐主荷重
特性の向上をはかれる。
Next, in the embodiment shown in FIGS. 18 (A) and 18 (B), as shown in FIG. In accordance with the embodiment shown in FIGS.
In the grooved rolling surface, the bearing is constructed according to the embodiment shown in FIG. 11, and the arrangement of the rollers in the circulation path in the bearing is, for example, lower than above the bearing depending on the direction of operation of the bearing load. With respect to the main load, the rotation axes of all the rollers in the load application region between the shaft and the bearing are arranged parallel to the upper and lower surfaces of the shaft 9 on the upper surface and both side surfaces of the shaft.
For the roller between the V-groove type rolling surface and the rolling surface in the bearing, which is formed at the center of both side surfaces, when a load is applied according to the above cross roller method, Of the loads acting on the bearing in the vertical and horizontal directions, the main load acting from above to below is mainly applied on the inclined V-groove rolling surface formed at the corners of the shaft upper surface and both side surfaces. It is possible to improve the main load resistance of the linear motion guide bearing.

第19図は上記第11図〜第18図で説明した直動ころがり
案内における各実施例について、軸受の上下、左右方向
に対する耐荷重性の相違を比較したもので、その際図中
の各実施例において荷重負荷域における転動体の大きさ
と、転動体数は等しく、また図中の転動体にころを用い
た各実施例において、ころの回転軸心について、該回転
軸心を(A)〜(G)の各図中の対をなした各々の転走
面において、ころの軸心を直交させ配列した場合と、又
は隣接ころ間の軸心を示し、また図中の(A)〜(G)
の各々右側に矢印で示した、軸受の上下、左右方向の負
荷容量は、図(A)における軸の両側面に形成した1対
のV溝形転走面に対して、上記クロスローラ方式にした
がってころを配置して構成される、第11図に示した上
下、左右方向等負荷容量軸受実施例における負荷容量と
の比、したがって軸受実施例の各々において、第12図に
示した実施例における軸受構成において、軸両側面2対
のV溝形転走面のすべてに、上記クロスローラ方式にし
たがってころを配置した、図(B)の場合の軸受上下、
左右方向軸受等負荷容量は、図(A)実施例の負荷容量
の2倍になり、また図(C)に示すように、軸受構成に
おいて図(B)と同一で、図中の軸の両側面に成形した
上記2対のV溝形転走面の上方に位置した、1対のV溝
形転走面におけるころの配置を図示のように配置した際
には、軸受の上下方向の負荷容量において、軸受の上方
から作用する荷重に対しては増大し、逆に下方から作用
する荷重に対しては減少する。また第17図実施例の軸受
構成を示した図(D)においては、軸受構造において図
(C)の実施例と幾分異なるが、軸の転走面に対するこ
ろの配置は、図(C)の場合と同一であり、軸受に作用
する上下、左右方向の荷重に対する軸受負荷容量は両者
で同一になる。第14図〜第16図に示した軸受構成に従っ
た図(E)の実施例において、案内用軸両側面に形成し
た2対の転走面の各々に対し、図示のようにころを配置
し構成した場合の軸受負荷容量は、上記図(A)と図
(B)の実施例と同様に、軸受の上下、左右方向に対し
て均等であり、また該負荷容量の大きさにおいては、上
記図(A)と図(B)の実施例よりも約1.5〜3倍であ
る。図(F)の実施例は、図(E)と同一の軸受形成に
おいて、荷重負荷域転走面間に図示のようにころを配置
し構成したもので、上下、左右の軸受負荷容量は、図
(E)の実施例と比較し、上方より下方に作用する荷重
に対する負荷容量は倍増し、該負荷容量に対応して左右
方向の負荷容量は半減する。第18図に示した軸受構成を
示す図(G)においては、図示のように図(F)の実施
例と同じく、軸受の上方より下方に作用する荷重に対す
る負荷容量は大であるが、上方に対する負荷容量は図
(F)の場合よりも減少する。
FIG. 19 is a comparison of the difference in load resistance in the vertical and horizontal directions of the bearing for each embodiment of the linear motion rolling guide described in FIGS. 11 to 18 above. In the examples, the size of the rolling elements in the load application area is equal to the number of the rolling elements, and in each of the embodiments using the rollers as the rolling elements in the drawing, the rotation axis of the rollers is represented by (A) to (A). In each of the pair of rolling surfaces in each figure of (G), the case where the axes of the rollers are arranged orthogonally or the axes between adjacent rollers are shown, and (A) to (F) in the figures. G)
, The load capacity in the vertical and horizontal directions of the bearing, indicated by arrows on the right side, is determined by the cross roller method with respect to a pair of V-groove-shaped rolling surfaces formed on both side surfaces of the shaft in FIG. Therefore, the ratio of the load capacity in the vertical and horizontal equal load capacity bearing embodiment shown in FIG. 11 and the bearing embodiment shown in FIG. In the bearing configuration, rollers are arranged on all two pairs of V-groove rolling surfaces on both sides of the shaft in accordance with the cross roller method.
The load capacity of the left and right bearings is twice as large as the load capacity of the embodiment of FIG. (A), and as shown in FIG. (C), the bearing configuration is the same as that of FIG. When the arrangement of the rollers on the pair of V-groove rolling surfaces located above the two pairs of V-groove rolling surfaces formed on the surface is arranged as shown in the figure, the vertical load of the bearing is reduced. The capacity increases for loads acting from above the bearing and conversely decreases for loads acting from below. FIG. 17 (D) showing the bearing configuration of the embodiment of FIG. 17 is slightly different from the embodiment of FIG. (C) in the bearing structure, but the arrangement of the rollers with respect to the rolling surface of the shaft is shown in FIG. And the bearing load capacities for vertical and lateral loads acting on the bearing are the same. In the embodiment shown in FIG. 14E in accordance with the bearing configuration shown in FIGS. 14 to 16, rollers are arranged as shown on each of two pairs of rolling surfaces formed on both side surfaces of the guide shaft. The bearing load capacity in this case is uniform in the vertical and horizontal directions of the bearing, as in the embodiment of FIGS. (A) and (B), and the magnitude of the load capacity is as follows. It is about 1.5 to 3 times that of the embodiment shown in FIGS. In the embodiment of FIG. (F), in the same bearing formation as in FIG. (E), rollers are arranged as shown in the figure between the load-bearing area rolling surfaces. Compared with the embodiment of FIG. 9E, the load capacity for a load acting downward from above is doubled, and the load capacity in the left-right direction is reduced by half corresponding to the load capacity. In FIG. 18 (G) showing the bearing configuration shown in FIG. 18, as in the embodiment shown in FIG. 18 (F), the load capacity with respect to the load acting below the bearing is larger than that of the embodiment shown in FIG. Is smaller than in the case of FIG.

したがって上記した案内用角軸の両側面に成形した1
〜2対の転走面に対応し、軸受内にクロスローラ方式に
したがって配置されるころの循環径路を形成した各々の
直動案内用ころ軸受実施例においては、軸受の上下、左
右方向荷重に対応することができる、軸受耐荷重特性
と、径路内ころ相互間の配列を、上記図中の実施例に示
したように、経路内のすべての隣接ころ間で軸心を交
差、又は平行に配置し、或いは径路中で間欠的に2個に
対し1個、3個に対し1個等の割合でころの軸心を交差
し配置することが可能であり、したがって本件軸受構成
においては軸受の上下、左右に利用する軸受荷重の大き
さに対応して軸受耐荷重性への適応をはかると共に軸受
の静・動剛性の向上等を目的とした、適正予荷重の設定
が可能であり、この種軸受に必要とされる多様な軸受負
荷特性への対応をはかることができる。
Therefore, the one formed on both sides of the above-described guide square shaft
In each of the linear motion guide roller bearing embodiments corresponding to ~ 2 pairs of rolling surfaces and forming a roller circulation path arranged according to the cross roller system in the bearing, the vertical and horizontal loads of the bearing are reduced. The bearing load-bearing characteristics and the arrangement between the rollers in the path, which can correspond, as shown in the embodiment in the above figure, cross the axis between all the adjacent rollers in the path or parallel to the axis. It is possible to arrange or intersect the roller shafts intermittently in the path at a ratio of one for two, one for three, etc. Therefore, in the present bearing configuration, Appropriate preload can be set for the purpose of adapting to the bearing load resistance according to the magnitude of the bearing load used vertically and horizontally and improving the static and dynamic rigidity of the bearing. Supporting various bearing load characteristics required for seed bearings It is possible.

したがってこれら本件直動ころがり軸受においては、
相互に直交する2平面で形成される、V溝形転走面を成
形した1対の案内用軸の、上記V溝形転走面に形成され
る、案内用軸の軸方向方形に、2対の転走面を形成した
径路中に、直径よりも長さを僅かに短く成形したころ
を、該ころの軸心を交互に直交させ、板金状保持器を介
して軸方向等間隔に配置し、上記径路中のころが上記径
路中2対の転走面に対して交互に接触を保ち、荷重を支
持して転走することができるようにした、クロスローラ
方式にしたがった非循環式直動ころ軸受において、該直
動ころ軸受のクロスローラ方式にしたがって循環式直動
ころ軸受として構成するため、第1図〜第3図に示し
た、上記循環式ころ軸受用ころの適用するための保持器
を創案し、ついで該保持器を適用したころを第6図〜第
7図に示した隣接ころの軸心を交差したクロスローラ方
式にしたがい、或いは隣接ころに軸心を相互に平行に軸
受内に形成される軸方向長円形状循環径路内に配置する
ことができるように構成したもので、該構成方法にした
がって第8図〜第19図に示した直動ころ軸受は、この種
軸受の従来品と比較して次のような特徴を有している。
Therefore, in these linear motion rolling bearings,
A pair of guide shafts formed with two V-shaped rolling surfaces formed by two planes orthogonal to each other, and a pair of guide shafts formed on the V-shaped grooved rolling surfaces in an axial rectangular In the path where the pair of rolling surfaces are formed, rollers formed slightly shorter in length than the diameter are arranged at equal intervals in the axial direction via a sheet metal-shaped retainer with the axes of the rollers alternately orthogonal to each other. A non-circulation type according to a cross roller system, in which the rollers in the path can alternately maintain contact with two pairs of rolling surfaces in the path to support the load and roll. In the linear roller bearing, in order to configure as a circulating linear roller bearing according to the cross roller system of the linear roller bearing, to apply the roller for the circulating roller bearing shown in FIGS. 1 to 3. Of the cage of FIG. 6 and then applying the cage to the adjacent rollers shown in FIGS. According to a cross roller system in which the axes intersect, or in such a way that the axes can be arranged in an axially elliptical circulation path formed in the bearing parallel to each other in adjacent rollers. The linear roller bearings shown in FIGS. 8 to 19 according to the construction method have the following features as compared with conventional bearings of this kind.

すなわち上記案内用角軸に成形した、クロスローラ方
式にしたがって配置するころのV溝形転走面に対応し
て、軸受内に成形した荷重負荷域V溝形転走面の軸方向
両端部に連なり、軸受内に形成する上記軸方向長円形状
ころの循環径路における、上記軸受荷重負荷域と案内用
角軸に形成したV溝形ころの転走面間で形成される、循
環方向直角断面で方形状に形成される循環径路壁に順応
した、ころの円滑な循環走行をはかるために、該径路内
ころへの適用を目的とした、第1図〜第3図に示したこ
ろ保持器を開発したもので、該保持器においては上記第
1図〜第7図に示したように、径路内保持器間の接触面
は各々円筒面、又は球面に成形され、該外周面相互間に
おいて常に線接触、又は点接触を保って走行し、したが
って径路内の湾曲部においても、保持器相互間では相対
すべりを生じることなくころがり接触が継続され、保持
器間に接触圧を生じる際にも、保持器間の相互干渉を僅
少にとどめて、径路内循環運動の円滑化をはかることが
できる。また保持器と循環径路間においては、上記軸受
荷重負荷域における案内軸と軸樹に成形した、V溝形2
対のことの転走面に対応して形成される軸受内方形循環
径路の壁面に順応し、保持器外周面には、上記循環径路
内荷重負荷域転走面に対する、保持器内ころの転走方向
の偏りを回避し、また保持器の径路内の円滑な走行を確
保するために、上記循環径路壁間との間に僅かの隙間を
確保して、上記第1図〜第3図の各図に示した保持器外
面の4ヶ所の走行案内面を形成し、上記径路内保持器相
互間の干渉の回避と共に、循環径路内における保持器
と、該保持器内に挿入したころとの走行の円滑化をはか
ったものである。
That is, corresponding to the V-groove-shaped rolling surface that is formed according to the cross roller method and that is formed on the guide square shaft, the load-bearing area V-shaped rolling surface that is formed in the bearing is provided at both ends in the axial direction. A cross section perpendicular to the circulation direction formed between the bearing load load area and the rolling surface of the V-groove roller formed in the guide square shaft in the circulation path of the axially elongated roller formed in the bearing. The roller cage shown in FIG. 1 to FIG. 3 is intended for application to rollers in the path in order to achieve smooth circulation of the rollers in conformity with the circulation path wall formed in a square shape. In the cage, as shown in FIGS. 1 to 7, the contact surfaces between the cages in the path are each formed into a cylindrical surface or a spherical surface. Always travel with line or point contact, and therefore bend However, rolling contact is maintained without relative sliding between cages, and even when contact pressure is generated between cages, mutual interference between cages is minimized and smooth circulation movement in the path Can be measured. Further, between the cage and the circulation path, a V-groove 2 is formed on the guide shaft and the shaft tree in the bearing load application region.
The inner surface of the cage conforms to the wall surface of the rectangular circulation path formed in correspondence with the rolling surface of the pair, and the outer peripheral surface of the cage has a roller in the cage relative to the load surface in the load path in the circulation path. In order to avoid deviation in the running direction and to ensure smooth running of the cage in the path of the retainer, a slight gap is secured between the circulation path walls, and The four running guide surfaces on the outer surface of the cage shown in each figure are formed to avoid interference between the cages in the above-mentioned path and to prevent the cage in the circulation path from being inserted into the cage. The aim was to make traveling smoother.

したがって直動ころ軸受においては、新たに上記クロ
スローラ方式にしたがった、高性能循環式直動ころ軸受
を構成したもので、該軸受とこの種軸受の従来品との比
較において、次のような成果が期待できる。
Therefore, in the linear roller bearing, a high performance circulating linear roller bearing is newly constructed in accordance with the above-mentioned cross roller system. Results can be expected.

1)軸受構成について 直動案内用循環式直動ころ軸受においては、第1図〜
第3図に示した軸受内ころに適用する保持器を成形し、
該保持器をころに適用して軸受内の軸方向長円形状循環
径路内に、第5図に示したクロスローラ方式にしたがっ
て配列して、案内用軸と軸受荷重支持範囲に成形したV
溝形転走面と共に、第8図〜第18図に示した各々の軸受
実施例における軸受構成に対応し、軸受内ころの循環径
路を構成したもので、したがって上記本件軸受の実施例
においては、該軸受の構成上の特性にしたがって各種機
械への適用がはかられると共に、各々の実施例における
軸受構成においては、例えば小型精密測定機器から大型
工作機械・産業機械等への適用をはかる機械に対応し
て、上記軸受構成用ころの直径を例えば1.5粍〜20粍に
わたり形成される、極めて広範囲にわたる多様な軸受の
構成が可能である。
1) Bearing configuration Fig. 1 ~
A cage to be applied to the roller in the bearing shown in FIG. 3 is formed,
The cage is applied to the rollers and arranged in the axially elliptical circulation path in the bearing in accordance with the cross roller system shown in FIG. 5 to form a guide shaft and a bearing load bearing range.
Together with the grooved rolling surfaces, the bearings correspond to the bearing configuration in each of the bearing embodiments shown in FIGS. 8 to 18 and constitute a circulation path for the inner rollers of the bearing. In addition to being applicable to various machines in accordance with the structural characteristics of the bearing, the bearing configuration in each embodiment can be applied to, for example, a machine that is applied to a small precision measuring device to a large machine tool, an industrial machine, or the like. Accordingly, it is possible to provide a very wide variety of bearing configurations in which the diameter of the bearing-forming rollers is formed, for example, in a range of 1.5 to 20 μm.

また各図に示した軸受構成においては、第19図に示し
たように、軸受の上下、左右方向軸受荷重の大きさに対
応して、軸受の負荷容量をはかることができる。すなわ
ち本件軸受においては、上記循環径路内にころに本件保
持器を適用し、径路内ころの循環走行の円滑化をはかる
ことができるばかりでなく、例えば第5図に示したよう
に、上記軸受荷重方向に対応し、案内用軸の両側面に上
記V溝形、あるいは両側面と軸上面との軸方向の角に傾
斜V溝形状に成型したころの転走面に対応し、軸受荷重
負荷転走面と、該転走面の軸方向両端に連なるころの循
環径路を立体的に形成することができ、また本件軸受に
おける上記軸受内ころの循環径路におけるころの走行方
向直角断面形状は、上記第4図中の8に示すように方形
に形成され、また該径路に対するころの配列は、ころに
適用する保持器外周面における径路案内面が、第1図〜
第3図の2b,3bに示したように、保持器の走行方向に直
角な断面が方形に形成された上記径路壁に対応して、該
径路壁間に僅かな隙間を保ち走行することができるよう
に、保持器走行方向に直角な断面形状が、上記径路壁断
面形状と同じく方形に形成され、該案内面と共に保持器
外周面残余の円筒面、又は球面は、何れも保持器内ころ
の軸心に対して対称的に形成され、しちがって径路内周
面形状に対応して該径路内に配列した保持器外周面の形
状は、保持器内隣接ころの軸心を相互に直交させ、ある
いは上記ころの軸心を相互に平行に配置した場合におい
て同一であり、径路内を走行する際の径路壁と保持器外
周面の相対的位置関係も同一である。したがって第8図
〜第18図に示した本件軸受の各実施例においては、軸受
に作用する上下、左右方向の軸受荷重と、転走面ところ
間に生じる隙間除去を目的として設定される軸受予荷重
等の各々の荷重に対して、軸と軸受に形成した上記V溝
形、あるいは傾斜V溝形転走間に形成される2対のころ
の転走面間において、上記軸受荷重を負荷する多数のこ
ろにおける荷重の均等化をはかるために、上記循環径路
内2対の転走面に対応して、隣接保持器内ころの軸心を
上記クロスローラ方式にしたがって、交互に直交させて
配列する場合のほか、交互に2対1、3対1等の割合で
配列し、あるいは上記荷重負荷域径路内のすべてのころ
について、ころの軸心を交差することなく、平行に配置
することができるように循環径路内ころの配列を行うこ
とができ、このような配列方法にしたがい本件軸受にお
いて、例えば第12図〜第18図の案内用軸の両側面に成型
したV溝形、あるいは傾斜V溝形2対の転走面に対応し
て構成した、軸受構成の各実施例において第190図で示
した、軸受に作用する主荷重あるいは軸受予荷重等に対
応した軸受構成の多様化をはかることができる。
In the bearing configuration shown in each figure, as shown in FIG. 19, the load capacity of the bearing can be measured in accordance with the magnitude of the bearing load in the vertical and horizontal directions of the bearing. That is, in the present bearing, not only can the present cage be applied to the rollers in the circulation path to smooth the circulation of the rollers in the path, but also, for example, as shown in FIG. It corresponds to the load direction and corresponds to the rolling surface of the roller molded into the V-groove shape on both sides of the guide shaft, or the V-groove at the angle between both sides and the shaft upper surface in the axial direction. The rolling surface and the circulation path of the rollers connected to both ends in the axial direction of the rolling surface can be formed in a three-dimensional manner. As shown at 8 in FIG. 4, the rollers are arranged in a square shape, and the arrangement of the rollers with respect to the paths is such that the path guide surfaces on the outer peripheral surface of the cage applied to the rollers are shown in FIGS.
As shown in 2b and 3b in FIG. 3, it is possible to travel while maintaining a slight gap between the path walls corresponding to the path walls having a rectangular cross section perpendicular to the traveling direction of the cage. The cross section perpendicular to the cage traveling direction is formed in the same rectangular shape as the above-mentioned path wall cross section so that the cylindrical surface or the spherical surface remaining on the outer peripheral surface of the cage together with the guide surface is a roller inside the cage. The outer peripheral surface of the cage, which is formed symmetrically with respect to the axis of the cage and is arranged in the path corresponding to the inner peripheral surface shape of the path, makes the axes of the adjacent rollers in the cage mutually orthogonal. Or when the shaft centers of the rollers are arranged parallel to each other, and the relative positional relationship between the path wall and the outer peripheral surface of the cage when traveling in the path is also the same. Therefore, in each embodiment of the present bearing shown in FIGS. 8 to 18, the bearing loads acting on the bearing in the vertical and horizontal directions and the bearing pre-set set for the purpose of removing the clearance between the rolling contact surfaces. For each load such as load, the bearing load is applied between the rolling surfaces of two pairs of rollers formed between the V-groove formed on the shaft and the bearing or the inclined V-groove rolling. In order to equalize the load in a large number of rollers, the axes of the rollers in the adjacent cages are alternately arranged orthogonally in accordance with the cross roller system, corresponding to the two pairs of rolling surfaces in the circulation path. In addition to the above cases, the rollers may be alternately arranged at a ratio of 2: 1 or 3: 1, or all the rollers in the above-mentioned load-loading area path may be arranged in parallel without crossing the axis of the rollers. Arrange the rollers in the circulation path so that According to such an arrangement method, in the present bearing, for example, V-grooves formed on both sides of the guide shaft shown in FIGS. It is possible to diversify the bearing configuration corresponding to the main load or the bearing preload acting on the bearing as shown in FIG. 190 in each embodiment of the bearing configuration.

2)直動案内精度の向上 本件直動ころ軸受における、案内用軸と軸受に成形し
た、直交2平面により形成されるV溝形転走面に、直径
よりも軸方向の長さを僅かに短く成形した多数のころ
を、該ころ保持器を介し、上記クロスローラ方式に従っ
て配置し、案内用軸と軸受間に直交する2対の転走面に
よって、軸と軸受間の上下、左右方向の力を拘束して行
う直動ころがり案内軸受の構成においては、直動案内精
度を左右する軸と軸受の上記V溝形転走面と、ころの成
形加工時における寸法精度、並びに平面度、2平面の直
角度、ころの円筒度等の形状精度を、この種直動ころが
り軸受において、転動体に球を用いて構成した従来品の
円弧溝状転走面と異なり、極めて高精度に行うことがで
き、したがって最近の例えば、超精密測定用機器、放電
加工機等の超精密工作機械、或いは高密度半導体製造工
程におけるボンディングマシン等における超精密先端技
術を必要とする分野で、上記クロスローラ方式にしたが
って非循環式直動ころ軸受を適用した往復動移動台の構
成が行われている。しかし上記クロスローラ方式にした
がって非循環式直動ころ軸受においては、往復動作動時
の移動台の行程は、案内用軸と軸受に成形した転走面間
に介在するころの転動に伴う、上記転走面間の相対的移
動により、上記軸と軸受転走面長さの約1/2に限定さ
れ、また長時間にわたる移動台の往復動につれて、軸と
軸受間のころは、ころに適用した板金状保持器と共に、
転走面軸方向の定位置から移動することが認められ、極
めて高精度の直動案内構成の可能性が認められながら、
各種機械への適用の範囲が限定されてきた。本件直動軸
受では、上記非循環式クロスローラ方式直動ころ軸受の
精度特性に着目し、新たに上記循環方式にしたがって、
従来品にみられなかった高精度直動ころ軸受を実現する
ことができる。
2) Improvement of linear motion guide accuracy In this linear motion roller bearing, the V-groove type rolling surface formed by two orthogonal planes formed on the guide shaft and the bearing has a slightly smaller axial length than diameter. A large number of rollers formed short are arranged in accordance with the above-described cross roller system via the roller retainer, and two pairs of rolling surfaces orthogonal to the guide shaft and the bearing make it possible to vertically and horizontally move the shaft and the bearing. In the configuration of the linear motion rolling guide bearing in which the force is restrained, the V-groove type rolling surface of the shaft and the bearing which influence the linear motion guidance accuracy, the dimensional accuracy at the time of forming the rollers, and the flatness, In this type of linear rolling bearing, extremely high accuracy of shape accuracy such as squareness of the plane and cylindricity of the roller is achieved in this kind of linear rolling bearing, unlike the conventional circular grooved rolling surface using balls as rolling elements. And thus recent, for example, ultra-precision measuring instruments, Reciprocating motion using non-circulating linear roller bearings according to the above cross roller method in fields requiring ultra-precision advanced technology in ultra-precision machine tools such as electric machining machines or bonding machines in high-density semiconductor manufacturing processes The configuration of the moving table is performed. However, in the non-circulating linear motion roller bearing according to the above cross roller method, the stroke of the moving table during reciprocating operation is accompanied by the rolling of the roller interposed between the guide shaft and the rolling surface formed on the bearing. Due to the relative movement between the rolling surfaces, the length of the shaft and the bearing rolling surface is limited to about 1/2, and as the moving table reciprocates for a long time, the roller between the shaft and the bearing is Along with the applied sheet metal cage,
Moving from a fixed position in the axial direction of the rolling surface is recognized, and while the possibility of an extremely high accuracy linear motion guide configuration is recognized,
The range of application to various machines has been limited. In this linear motion bearing, focusing on the accuracy characteristics of the non-circulating cross roller type linear roller bearing,
A high-precision linear motion roller bearing not found in conventional products can be realized.

3)摩擦・摩耗特性について 案内用軸と軸受間に循環転動する球、またはころは介
在する、この種直動ころがり軸受において、作動時の軸
受に総合的に作用する摩擦抵抗は、上記第6図に示した
ように、循環径路中の荷重負荷域における転動体のころ
がり摩擦力と、転動体の循環径路壁に対する走行摩擦
力、ならびに循環域から荷重負荷域への移行時、軸受荷
重起因した軸と軸受間弾性近接置に伴って転動体に生じ
る抵抗に大別され、転動体ころに上記保持器を適用して
構成した本件軸受においては、荷重負荷域におけるころ
の転動は保持器に案内されて、転動体相互間の干渉はも
とより、ころ転走方向の偏りによって生じるスキュー現
象に伴う、ころ軸方向両端と径路壁間の摩擦を生じるこ
となく、また循環径路における湾曲部と直線走行部にお
いても、ころは保持器内に隔離されてころ相互間の干渉
を生じることなく、上記第6図で述べたようにころ保持
器間においては、保持器外周面における円筒面、または
球面間のころがり接触により保持器相互間の摺動摩擦力
は回避され、更に保持器外周面において、上記径路内周
面に僅かの隙間を保ち成形した案内面により、径路内保
持器は相互間の蛇行を生じることなく円滑な循環走行が
確保される。また上記循環域から荷重負荷域へのころの
移行時に生じる抵抗は、軸受荷重に対応して生じる軸と
軸受間弾性近接置が、転動体に球を用いて構成するこの
種軸受との比較においても1/3〜1/4の僅かな値であり、
上記ころの荷重負荷域移行時の抵抗によって生じる、軸
受作動時における摩擦力変動も著しく減少し、第8図〜
第18図に示した直動ころがり案内の各実施例における直
動ころがり軸受において作動時における転動体ころ相互
間、ならびにころと荷重負荷域転走面、ならびに循環径
路壁間の摩擦、摩耗現象は改善されて長時間にわたる軸
受寿命の確保と、円滑な軸受作動特性を維持することが
できる。
3) Friction and wear characteristics In this type of linear rolling bearing, in which a rolling ball or roller is interposed between the guide shaft and the bearing, the frictional resistance acting comprehensively on the bearing during operation is the above-mentioned value. As shown in Fig. 6, the rolling frictional force of the rolling element in the load area in the circulation path, the running frictional force of the rolling element against the wall of the circulation path, and the bearing load caused by the transition from the circulation area to the load area. In the present bearing, which is roughly classified into the resistance generated in the rolling element due to the elastic proximity between the shaft and the bearing, and applying the above cage to the rolling element roller, the rolling of the roller in the load area is Without causing friction between the rolling elements and the skew phenomenon caused by bias in the rolling direction of the rollers, without causing friction between both ends in the roller axial direction and the path wall. Running The rollers are also separated in the cages without any interference between the rollers, and between the roller cages as described in FIG. Sliding frictional force between the cages is avoided by rolling contact, and furthermore, on the outer peripheral surface of the retainer, a guide surface formed by keeping a small gap on the inner peripheral surface of the above-mentioned path allows the retainer in the path to meander between each other. Smooth circulation travel is ensured without any occurrence. In addition, the resistance generated at the time of the transfer of the rollers from the circulation region to the load load region, the elastic proximity between the shaft and the bearing generated corresponding to the bearing load is compared with this type of bearing in which the ball is used as the rolling element. Is also a small value of 1/3 to 1/4,
The fluctuation of the frictional force during the operation of the bearing, which is caused by the resistance at the time of shifting the load range of the rollers, is also significantly reduced.
In the linear motion rolling bearing in each embodiment of the linear motion rolling guide shown in FIG. 18, the friction between the rolling element rollers during operation, and the friction between the roller and the load load area rolling surface, and the circulating path wall, wear phenomenon is The improved bearing life can be ensured for a long time and smooth bearing operating characteristics can be maintained.

4)耐荷重性について 転走2面間にころ又は球を介在させて荷重を負荷する
ころがり軸受負荷特性において、両者間の直径が等し
く、また軸方向の長さが直径と等しいころと球における
負荷容量は、ころの場合に球における値の約3倍を越え
ることは周知のことである。したがって各種機械におけ
る直動案内においても、従来品における球にかえてころ
を適用した循環式直動ころがり軸受の開発が試みられた
が、軸受構成の困難さから未だにこの種軸受において汎
用性が認められる製品は見受けられない。
4) Load resistance Rolling bearings with a roller or ball interposed between the two rolling surfaces are used to apply a load. In the load characteristics, the diameter of the roller and the ball whose axial length is equal to the diameter are the same. It is well known that the load capacity exceeds about three times the value in a sphere in the case of a roller. Therefore, as for linear motion guides in various machines, the development of a circulating linear motion rolling bearing that uses rollers instead of balls in conventional products has been attempted, but the versatility of this type of bearing is still recognized due to the difficulty of the bearing configuration. Product is not found.

本件直動案内用ころ軸受では、上記第8図〜第18図の
各種軸受実施例に示したように、例えば各種計測器等の
小型機器から工作機械をはじめとする宇宙開発機械等に
わたる極めて広範囲の機械の直動案内への適用が予定さ
れる。耐荷重性に優れた高性能各種循環式直動ころ軸受
を構成したもので、特に最近の先端技術超高精密機械に
球を用いて構成した。この該直動ころがり軸受を用いた
直動案内において、球と該球の転走面間の点接触部分に
おける軸受繰り返し荷重の作用下で生じる1μm前後の
微少剥離現象に伴う破損対策として、ころを用いて構成
したこの種軸受における線接触における、荷重作用下で
の上記転走面剥離現象の回避等に対応することを目的と
し、新たにころを用いて構成した直動ころ軸受の実現を
はかったものである。
As shown in the various bearing embodiments of FIGS. 8 to 18 described above, the linear motion rolling roller bearing according to the present invention has a very wide range from small devices such as various measuring instruments to space development machines such as machine tools. It is planned to be applied to linear motion guidance of machines. It consists of high-performance various types of circulating linear roller bearings with excellent load-bearing properties, and in particular, has been constructed using balls in recent advanced technology ultra-high precision machines. In the linear motion guide using the linear motion rolling bearing, as a measure against breakage due to a micro-separation phenomenon of about 1 μm generated under the action of a bearing repetitive load at a point contact portion between a ball and a rolling surface of the ball, In order to cope with the avoidance of the above-mentioned rolling surface separation phenomenon under the action of a load in line contact in this type of bearing configured by using a roller, a linear roller bearing newly configured by using a roller is to be realized. It is a thing.

5)静・動剛性について 転動体の循環式直動ころがり軸受を用いて構成する直
動案内においては、軸受荷重が軸と軸受に成形した転走
面と小数個の転動体との接触面間に集中して作用し、し
たがって該転動体の弾性変形による、軸と軸受間の弾性
近接置により、軸受荷重作用下の静剛性が大きく左右さ
れ、また軸受に外乱が作用した場合の動剛性は、上記軸
受静剛性と軸受の固有振動数、並びに転動体と転走面間
の接触状況等に起因した減衰係数等に影響される。した
がって転動体にこの種軸受従来品における球に変えてこ
ろを採用し構成した本件軸受においては、上記従来品よ
りも転動体自体において3〜4倍の剛性値を確保するこ
とができ、静荷重作用下における軸受転動体の変形、並
びに該転動体変形にもとづいた荷重負荷域軸受と軸転走
面間の弾性近接量も僅少になり、荷重作用下における軸
受精度の確保と共に円滑な軸受作動特性を確保すること
ができる。また動剛性については、該動剛性に直接的に
関与する上記高度の静剛性値と、加振時における軸と軸
受転走2面間におけるころの減衰係数は、球の場合の約
3倍であり、さらに本件軸受内転動体には補充期が適用
されて上記減衰効果を助長し、したがって該保持器が採
用されていないこの種直動案内の従来品と比較し、軸受
外部から加えられる加振力、並びに軸受内において、転
動体が上記荷重負荷域を含む循環径路走行時に発生する
振動等によって軸受に加振力が作用した場合の動剛性を
示す軸と軸受間相対振動の振幅の値は僅少であり、また
従来品で発生する上記振動に誘発される高周波の騒音も
防止される。
5) Static / dynamic stiffness In a linear motion guide composed of rolling element linear rolling bearings, the bearing load is between the contact surface between the rolling surface formed on the shaft and the bearing and a small number of rolling elements. Therefore, the static stiffness under the load of the bearing is greatly affected by the elastic proximity between the shaft and the bearing due to the elastic deformation of the rolling element, and the dynamic stiffness when a disturbance acts on the bearing is The bearing static rigidity and the natural frequency of the bearing, and the damping coefficient and the like caused by the contact state between the rolling element and the rolling surface, and the like. Therefore, in the present bearing in which rollers are used as rolling elements in place of the balls in conventional bearings of this kind, the rigidity of the rolling elements themselves can be secured 3 to 4 times as compared with the above-mentioned conventional products, and the static load can be secured. The deformation of the bearing rolling element under the action, and the amount of elastic proximity between the bearing and the shaft rolling surface due to the deformation of the rolling element are reduced. Can be secured. As for the dynamic rigidity, the above-mentioned static static rigidity value directly related to the dynamic rigidity and the damping coefficient of the roller between the shaft and the two rolling contact surfaces during the vibration are about three times that of the ball. In addition, a replenishment period is applied to the rolling elements in the bearing to promote the above damping effect, and therefore, compared to a conventional linear motion guide of this type in which the retainer is not employed, a load applied from outside the bearing is provided. The value of the amplitude of the relative vibration between the shaft and the bearing, which indicates the dynamic rigidity when the vibrating force is applied to the bearing by the vibration and the like generated when the rolling element travels on the circulating path including the load load area in the bearing. And the high-frequency noise induced by the above-mentioned vibration generated in the conventional product is also prevented.

6)構成要素の成形加工について 本件軸受を用いて構成する直動案内においては、各実
施例に示したように、案内用軸と、該軸に成形したころ
の転走面に対応した軸受とからなり、さらに該軸受は、
ころ、ころ保持器、軸受本体、軸受内ころの循環径路形
成部品、該循環径路内ころ保持器の脱落防止用板金、軸
受側板等の要素により形成される。これらの構成要素の
うち、本件軸受内クロスローラ方式に配列したころの円
滑な循環走行を実現した。第1図〜第3図に示したころ
保持器の成形は、図中に示した径路内における保持器間
の円筒形、又は球形接触面3a、径路内走行案内面3b、保
持器内転動体挿入用円筒形の孔、及び長方形状と円筒形
状、又は円筒形状と球面からなる凹部3cと、該孔又は凹
部と上記案内面3b間における保持器内転動体と該転動体
用転走面接触に必要な孔3d、さらに保持器外周面におけ
る保持器補強用の凹部2eの成形は、金属材料、高分子材
料等の各種材料からの切削加工法では、保持器に必要と
される作動特性、ならびに互換性等から必要とされる0.
01粍単位の高度の加工精度の確保は極めて困難であり、
特に最近の精密測定機器、電気、電子関連機器等での高
性能機械への対応が期待されている。直径1粍前後のこ
ろを用いて構成する、上記直動案内用ころの保持器の製
作は不可能に近く、また直動案内における上記軸受内循
環径路中に必要な保持器数は100〜200個であり、このよ
うな多数の保持器を製品価格に対応して供給することも
不可能である。上記保持器においては、該保持器におけ
る諸性能の充実を前提とした、保持器外周面と保持器内
における形状を、加工精度を0.001粍単位で成形するこ
とのできる金型を用い、溶融高分子材料からの射出成形
によって成形することを目的とし、上記保持器の諸機能
の充実と共に、上記射出成形を困難にするアンダーカッ
トを生じる形状を避けて保持器の形状を定めたもので、
上記高分子材料により成形した際には、該高分子材料に
より成形した際には、該高分子材料における、最近のポ
リアミド、ポリアセタール系等の強度、耐摩性、耐熱性
に優れたエンジニヤリングプラスチック材料に、更にガ
ラス、ケプラ等の繊維強化、並びに二硫化モリブデン、
テフロン等の固体潤滑剤を添加した高性能高分子複合材
料よりの射出成型法により、軽量で高精度、ならびに強
力、耐久性、潤滑性、緩衝性等の諸特性に優れた、高性
能上記保持器を量産方式により、低廉な製作費により成
形することができる。また軸受内における、第9図、第
13図、第15図において詳記した、軸受内ころところ保持
器の循環径路形成用部品、並びに軸受側板においても、
上記ころ保持器と同じく、上記エンジニヤリングプラス
チック材料の射出成型法によって成形することができ、
軸受本体と、軸受案内用軸においては軸受鋼、或いは主
として低炭素クロム鋼等の浸炭焼入合金鋼を対象とし、
本件各実施例に示すように、軸受本体と、案内用軸の各
々において、軸方向直角断面形状が軸方向に一定した架
台状、或いは方形、長方形状に設計されて素形段階にお
ける、熱間・冷間鍛造と圧延成形による加工の合理化を
はかると共に、荷重負荷域における転動体転走面の成形
が容易であり、特に上記軸受と案内用軸に成形する高精
度ころの転走面の成形においては、精密加工時と精度測
定に必要な基準面を容易にして、高精度の直動案内精度
を確保することができ、また案内用軸から軸受を取り外
した際、軸受内循環径路中の荷重負荷域に生じるころと
保持器の脱落防止用の薄板金の成形は、鉄系、あるいは
鋼系薄板金よりプレス成形により、高精度で容易に成形
することができる。これを要するに本件直動ころがり案
内は、上記各図と詳細な説明で述べたように、この種こ
ろがり軸受において、上記軸受内循環径路中に、従来の
主として球を用いて構成した直動ころがり軸受におい
て、新たに転動体にころを用いた軸受の簡略な構成と、
軸受直動案内精度、耐荷重性、耐久性等の諸性能におい
て最も優れた特性が認められながら円滑に作動する循環
式直動ころ軸受への展開が不可能とされてきた、非循環
式クロスローラ方式に着目し、該クロスローラ方式にし
たがって循環式直動ころ軸受を実現するため、第1図
(A)、(B)、及び第2図〜第3図に示した、上記軸
受循環径路内ころに適用する保持器を創案し、該保持器
を保持器内ころとともに第4図〜第7図に示したように
上記循環径路内に配列し、第8図〜第18図の本件軸受の
実施例に示したように、軸受案内用各軸の片側側面、両
側面、或いは上面に単列、又は複列に成形したV溝形傾
斜V溝型上記ころの転走面に対応して、軸受内荷重負荷
域転走面の軸方向両端に連なり、軸方向長円形状に形成
し循環径路内に多数のころを供給して、上記クロスロー
ラ方式の循環式直動ころ軸受を構成し、該軸受に適用す
る上記直動案内用軸と共に上記方式に従ったころがり直
動案内を実現し、また上記第1図(B)と、第4図に
は、上記ころに適用した保持器の形状に順応し、該直動
ころがり軸受の構成により、技術上の困難さから軸受循
環径路中の球に対して保持器の適用がはかられなかっ
た、この種軸受けと比べ、高性能直動軸受と該軸受を用
いて構成した直動ころがり案内を実現したものである。
6) Forming of components In the linear motion guide formed by using the present bearing, as shown in each embodiment, a guide shaft and a bearing corresponding to a rolling surface of a roller formed on the shaft are provided. And the bearing further comprises:
A roller, a roller cage, a bearing main body, a component for forming a circulation path of the roller in the bearing, a sheet metal for preventing the roller cage from falling off, a bearing side plate and the like are formed. Among these components, smooth circulation running of the rollers arranged in the cross roller system in the bearing was realized. The roller cage shown in FIGS. 1 to 3 is formed by a cylindrical or spherical contact surface 3a between the cages in the path shown in the figure, a traveling guide surface 3b in the path, a rolling element in the cage. A cylindrical hole for insertion, a concave portion 3c having a rectangular shape and a cylindrical shape, or a cylindrical shape and a spherical surface, and a rolling element in the cage and a rolling surface contact for the rolling element between the hole or the concave portion and the guide surface 3b. The hole 3d necessary for forming the concave portion 2e for reinforcing the retainer on the outer peripheral surface of the retainer is formed of a metal material, a cutting method from various materials such as a polymer material, the operating characteristics required for the retainer, 0 required for compatibility, etc.
It is extremely difficult to secure a high processing accuracy of 01 mm unit.
In particular, it is expected to respond to high-performance machines in recent precision measuring instruments, electric and electronic related instruments, and the like. It is almost impossible to manufacture a cage for the linear motion guide roller constituted by using a roller having a diameter of about 1 mm, and the number of cages required in the circulation path in the bearing in the linear motion guide is 100 to 200. It is impossible to supply such a large number of cages corresponding to the product price. In the above-mentioned cage, assuming that the various performances in the cage are fulfilled, a mold capable of forming the shape of the outer peripheral surface of the cage and the inside of the cage with a processing accuracy of 0.001 abrasion unit is used. The purpose of molding by injection molding from a molecular material, with the enhancement of the various functions of the cage, the shape of the cage is determined so as to avoid a shape that causes an undercut that makes the injection molding difficult,
When molded with the above-mentioned polymer material, when molded with the polymer material, an engineering plastic material having excellent strength, abrasion resistance and heat resistance, such as recent polyamide and polyacetal-based materials, in the polymer material In addition, glass, fiber reinforced such as Kepra, and molybdenum disulfide,
Injection molding from a high-performance polymer composite material to which a solid lubricant such as Teflon has been added. High-performance retention with light weight, high precision, and excellent properties such as strength, durability, lubricity, and cushioning. The container can be formed by a mass production method at a low production cost. 9 and FIG.
13 and 15, the parts for forming the circulation path of the roller and the cage in the bearing, and the bearing side plate, which are described in detail in FIG. 15,
Like the roller cage, it can be molded by the injection molding method of the engineering plastic material,
For the bearing body and the bearing guide shaft, bearing steel or mainly carburized and quenched alloy steel such as low carbon chromium steel,
As shown in each embodiment of the present invention, in each of the bearing main body and the guide shaft, the axially perpendicular cross-sectional shape is designed to be a pedestal shape, or a square shape or a rectangular shape which is constant in the axial direction.・ In addition to rationalizing the processing by cold forging and rolling, it is easy to form the rolling surface of the rolling element in the load area, especially for the rolling surface of high-precision rollers formed on the bearing and guide shaft. In high precision linear motion guidance accuracy can be ensured during precision machining and the reference surface required for accuracy measurement, and when the bearing is removed from the guide shaft, The sheet metal for preventing the rollers and retainers from falling off in the load area can be easily formed with high precision by press forming from an iron-based or steel-based sheet metal. In short, the linear motion rolling guide according to the present invention is, as described in the above figures and the detailed description, in such a type of rolling bearing, a linear motion rolling bearing conventionally constituted mainly using a ball in the above-mentioned circulation path in the bearing. In, a new simple configuration of the bearing using rollers for rolling elements,
A non-circular cross that has been considered to be impossible to develop into a circulating linear roller bearing that operates smoothly while exhibiting the best characteristics in various performances such as bearing linear motion guide accuracy, load resistance, durability, etc. Paying attention to the roller system, in order to realize a circulating linear roller bearing in accordance with the cross roller system, the above-described bearing circulation path shown in FIGS. 1 (A) and (B) and FIGS. A cage to be applied to the inner roller is devised, and the cage and the inner roller of the cage are arranged in the circulation path as shown in FIGS. 4 to 7, and the bearing of FIG. 8 to FIG. As shown in the embodiment of the present invention, on one side, both sides, or the upper surface of each bearing guide shaft, a single row, or a V-shaped inclined V-groove formed in a double row corresponding to the rolling surface of the roller. , Connected to both ends in the axial direction of the rolling surface in the load area within the bearing, and formed in the shape of an ellipse in the axial direction. Rollers are supplied to constitute the cross-roller type circulating linear motion roller bearing, which realizes the rolling linear motion guide according to the above system together with the linear motion guide shaft applied to the bearing. 4 (B) and FIG. 4 show that the configuration of the linear motion rolling bearing conforms to the shape of the cage applied to the above-mentioned rollers, and the configuration of the linear motion rolling bearing holds the ball against the ball in the bearing circulation path due to technical difficulty. Compared with this type of bearing, the application of which has not been achieved, a high-performance linear motion bearing and a linear motion rolling guide constituted by using the bearing are realized.

【図面の簡単な説明】[Brief description of the drawings]

第1図(A)、(B)は軸受転動体用保持器の斜視図、
第2図、第3図は径路内保持器間接触面を球形に成形し
た、ころ用保持器の投影図、第4図と第5図は、上記外
周面に球面を成形した保持器を、軸受内に立体的に形成
した、循環径路内に配列した場合の説明図、第6図は上
記軸受内循環径路内に配列した保持器の循環走行移動の
説明図、第7図は同じく軸受内循環径路中への上記保持
器の配列方式の説明図、第8図は片側側面にV溝形転走
面を成形した案内用角軸と、該角軸に対応して構成した
本件直動ころ軸受とで構成した直動ころがり案内の実施
例、第9図は上記第8図直動ころがり案内用軸受構成用
の各部分を、斜視図によって示した説明図、第10図は角
軸上面にV溝形並列転走面を成形した案内用角軸と、該
軸に対応して形成した複列直動ころ軸受とで構成した直
動ころがり案内の実施例、第11図は角軸両側面に1対の
V溝形転走面を成形した案内用軸と、該軸両側面の転走
面に対応して形成した本件直動ころがり軸受とで構成し
た直動案内実施例、第12図は角軸両側面の各々に複列V
溝形転走面を成形した案内用軸と、該案内用軸に対応形
成した本件直動ころがり軸受とで構成した直動案内、第
13図は上記第12図直動案内における軸受形成要素の斜視
図、第14図は角軸両側面並列傾斜V溝形転走面を成形し
た案内用軸と、該案内用軸転走面に対応して形成した本
件直動ころ軸受とで構成した直動ころがり案内の実施
例、第15図、第16図は上記第14図実施例における軸受形
成要素の斜視図と投影図、第17図と第18図は各々角軸両
側面における1対のV溝形転走面と共に角軸両側面と上
面との軸方向の角における斜面状転走面、または傾斜V
溝形転走面を成形した各々の案内用軸と該案内用軸に対
応して形成した本件直動ころ軸受とで構成した直動ころ
がり案内の実施例、第19図(A)〜(G)は上記本願直
動ころがり案内用軸受実施例おける軸受内に形成される
循環径路内への、保持器を介した転動体の配列方向の相
違等による軸受負荷容量の値の比較説明図である。 また図中の記号の各々については、 1……外周面に円筒面を成形したころ用保持器 2……外周面に球面を成形したころ用保持器 3……外周面に球面を成形したころ用保持器 4……外周面に球面を成形した球用保持器 5……ころ 6……案内用軸に成形したころの転走面 7……軸受に成形したころの転走面 8……軸受内転動体循環径路壁断面図 9……軸受案内用軸 10……軸受本体 11……軸受内軸方向長円形状転動体循環径路 12……軸受内循環径路形成用部品 13……軸受内循環径路形成用部品 14……保持器脱落防止用板金 15……軸受側板 16……軸受内循環径路形成用部品 17……軸受内循環径路形成用部品 18……軸受内循環径路形成部品 19……軸受内循環径路形成部品 20……球
1 (A) and 1 (B) are perspective views of a cage for a bearing rolling element,
2 and 3 are projection views of a roller cage in which a contact surface between cages in a path is formed into a spherical shape. FIGS. 4 and 5 show a cage in which a spherical surface is formed on the outer peripheral surface. FIG. 6 is an explanatory view of a case in which the cage is arranged in the circulation path formed three-dimensionally in the bearing, FIG. 6 is an explanatory view of the circulation traveling movement of the cage arranged in the circulation path in the bearing, and FIG. FIG. 8 is an explanatory view of an arrangement method of the cage in the circulation path, and FIG. 8 is a guide square shaft formed with a V-groove-shaped rolling surface on one side surface, and the present linear roller corresponding to the square shaft. FIG. 9 is a perspective view of each of the components for the configuration of the linear motion rolling guide bearing shown in FIG. 8, which is a perspective view, and FIG. A linear rolling guide composed of a guide square shaft formed with a V-groove parallel rolling surface and a double row linear roller bearing formed corresponding to the shaft. FIG. 11 shows an example of a guide shaft having a pair of V-groove-shaped rolling surfaces formed on both side surfaces of a square shaft, and a linear motion rolling bearing formed according to the rolling surfaces on both side surfaces of the shaft. FIG. 12 shows a double-row V on each of both side surfaces of the square shaft.
A linear motion guide comprising a guide shaft formed with a grooved rolling surface and the present linear motion rolling bearing formed corresponding to the guide shaft;
FIG. 13 is a perspective view of a bearing forming element in the linear motion guide of FIG. 12, and FIG. 14 is a guide shaft formed with parallel inclined V-groove rolling surfaces on both side surfaces of a square shaft, and the guide shaft rolling surface. 15 and 16 are perspective views and projection views of a bearing forming element in the embodiment of FIG. 14 and FIG. 17, respectively. And FIG. 18 show a pair of V-groove-shaped rolling surfaces on both side surfaces of the square axis and a sloped rolling surface or a slope V at an axial angle between the both side surfaces and the upper surface.
19 (A) to 19 (G), an embodiment of the linear motion rolling guide constituted by each of the guide shafts formed with the grooved rolling surfaces and the present linear roller bearings formed corresponding to the guide shafts. FIG. 7) is a comparative explanatory view of the value of the bearing load capacity due to the difference in the arrangement direction of the rolling elements via the retainer into the circulation path formed in the bearing in the embodiment of the linear motion rolling guide bearing of the present invention. . The symbols in the drawing are as follows: 1... A roller cage having a cylindrical surface formed on the outer peripheral surface 2... A roller cage having a spherical surface formed on the outer peripheral surface 3. Cage for ball 4 ... Cage for ball with spherical surface formed on the outer peripheral surface 5 ... Roller 6 ... Rolling surface of roller formed on guide shaft 7 ... Rolling surface of roller formed on bearing 8 ... Cross section of rolling element circulation path wall in bearing 9 …… Bearing guide shaft 10 …… Bearing body 11 …… Elongation of elliptical rolling element circulation path in bearing axial direction 12 …… Parts for forming circulation path in bearing 13 …… In the bearing Parts for forming the circulation path 14 ... The metal plate for preventing the cage from falling off 15 ... The bearing side plate 16 ... Parts for forming the circulation path in the bearing 17 ... Parts for forming the circulation path in the bearing 18 ... Parts for forming the circulation path in the bearing 19 ... … Parts forming the circulation path in the bearing 20 …… Ball

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】案内用軸と軸受の各々に直交V溝型1対の
ころの転走面を形成し、該1対のV溝形転走面間で形成
される方形状ころの循環径路内に、多数のころの軸心を
クロスローラ方式にしたがい、ころ軸受けを交互に交差
配列して転送する、ころの適用するためのころ保持器に
おいて、上記軸受ころの循環径路中の、隣接ころ相互間
接触面を保持器内ころの中心に対応した球面として、軸
受内保持器相互間の径路内保持器相互間の干渉を回避
し、また同じく上記案内用軸と軸受間方形径路内周面間
に、保持器走行に必要な僅かな隙間が設定され、また上
記球形外周面の中心に対して対称的に、上記径路内周面
と平行な方形保持器走行案内面が形成され、またこれら
保持器外周面走行案内面における2対の平行案内の1対
の案内面の、片側中央に、該保持器案内面に直交して成
形し、円筒形状穴との間に僅かの遊隙を確保して、保持
器内にころを挿入するための円筒形状の穴と、該穴に対
応して、上記2対の径路案内のうち何れか他の1対の案
内において、保持器内ころが、上記方形径路転走面との
接触を保つための、保持器内ころの軸方向長方形状の孔
が形成される。また上記案内用軸と軸受間1対のV溝形
転走面間方形径路に対応して形成した、保持器外周面方
形案内の4ヶ所の角には、上記V溝形転走面を成形した
案内用軸と、軸受間平行案内面間の遊隙と、上記1対の
V溝形案内面の高精度成形加工時に必要な、溝底逃げ面
成型用の角溝に対応し、上記保持器外周面の球面に連な
り、保持器補強用の凸部を形成したことを特徴とする、
直動ころがり用案内用ころの保持器。
1. A pair of orthogonal V-groove type rolling surfaces are formed on each of a guide shaft and a bearing, and a square roller circulating path formed between the pair of V-groove type rolling surfaces. In the roller retainer for applying the rollers, the roller bearings are alternately arranged in an intersecting manner according to a cross-roller system in accordance with a cross roller system of a large number of rollers, the adjacent rollers in the circulation path of the bearing rollers. The mutual contact surface is a spherical surface corresponding to the center of the roller in the cage to avoid interference between the cages in the path between the cages in the bearing and also the inner peripheral surface of the guide shaft and the rectangular path between the bearings. Between them, a slight gap required for cage traveling is set, and a square cage traveling guide surface parallel to the inner peripheral surface of the path is formed symmetrically with respect to the center of the spherical outer peripheral surface. One side of one pair of guide surfaces of two pairs of parallel guides on the outer circumferential surface running guide surface of the cage. A cylindrical hole for inserting rollers into the cage, with a small clearance between the cylindrical guide hole and the cylindrical hole, corresponding to the hole. Then, in any other pair of the two pairs of path guides, the cage inner roller is formed in an axially rectangular shape of the cage inner roller for maintaining contact with the rectangular path rolling surface. Holes are formed. In addition, the V-groove-shaped rolling surface is formed at four corners of the rectangular guide on the outer peripheral surface of the retainer formed corresponding to a pair of V-groove-shaped rolling surfaces between the guiding shaft and the bearing. The clearance between the guide shaft and the parallel guide surface between the bearings, and the above-described holding of the pair of V-groove-shaped guide surfaces corresponding to the square groove for forming the groove flank surface required for high-precision forming processing. Characterized in that it is connected to the spherical surface of the outer peripheral surface of the container, and a convex portion for reinforcing the retainer is formed,
Guide roller retainer for linear rolling.
【請求項2】請求項1)記載のクロスローラ型ころがり
案内におけるころの保持器について該保持器の外周面に
成形した、径路内走行方形2対の側面の1対の片側側面
の中央に、また径路内ころ走行方向に直交して、ころの
直径よりも短く(ころの直径の約2/3〜3/4)に成形した
ころを挿入する凹部と該穴の底面に保持器走行時におけ
る保持器内ころと、ころの転走面間との接触を図るため
の、ころの転走方向長方形孔を形成すると共に、保持器
外周面形状の簡略化をはかることができることを特徴と
する、クロスローラ型直動案内用ころの保持器。
2. The cross-roller type rolling guide according to claim 1, wherein the roller cage is formed on an outer peripheral surface of the cage, and a center of a pair of side surfaces of two pairs of side surfaces of a traveling square in a path, In addition, at the time of running the cage at the time of running the retainer, the roller is inserted in the bottom of the hole, which is perpendicular to the roller running direction and shorter than the roller diameter (about 2/3 to 3/4 of the roller diameter). In order to achieve contact between the rollers in the cage and the rolling surfaces of the rollers, a rectangular hole in the rolling direction of the rollers is formed, and the outer peripheral surface shape of the cage can be simplified. Cross roller type roller cage for linear motion guide.
【請求項3】請求項1)記載のころの保持器を、軸受内
ころに適用して作動する、直動ころがり軸受において、
軸受本体を形成する方形軸における1対の両側面の各々
に、対称的に直交2平面より成るV溝形ころの転走面を
形成し、該転走面の軸方向面端部に形成した、半円弧状
1対のV溝形ころの転走面とで、軸受内に軸方向長円形
状ころの往復動循環経路を形成すると共に、上記軸受内
のころに対応する、方形案内用軸の転走面には、上記軸
受内ころの転走面としての、直交2平面より成るV形こ
ろの転走面を形成して、上記軸受内V形転走面とで構成
される、軸受内の循環経路内に、保持器を適用した、多
数のころを供給して構成したことを特徴とする直動ころ
がり軸受。
3. A linear motion rolling bearing which operates by applying the roller cage according to claim 1 to a roller inside the bearing.
On each of a pair of both side surfaces of a square shaft forming a bearing body, a V-groove roller rolling surface composed of two planes which are symmetrical and orthogonal to each other is formed, and formed at an axial end of the rolling surface. A pair of semi-circular rolling contact surfaces of the V-groove rollers form a reciprocating circulation path of the axially elongated rollers in the bearing, and a square guiding shaft corresponding to the rollers in the bearing. The bearing surface is formed with a V-shaped roller rolling surface formed of two orthogonal planes as a rolling surface of the bearing inner roller, and is formed with the V-shaped rolling surface in the bearing. A linear motion rolling bearing comprising a plurality of rollers supplied by applying a retainer to a circulation path in the roller.
【請求項4】請求項1)記載のころの保持器を軸受内循
環径路中のころに適用して構成する直動ころがり案内に
おいて、該直動案内用方形軸の両側面に対称的に成形し
た、1〜2対のV溝形軸方向ことの転走面に対応し、上
記案内用軸の両側面に案内されて作動する、架台状軸受
本体の内側の両側面に平行に、また上記案内用両側面間
に僅かの遊隙を保ち、上記案内用軸に形成したV溝形転
走面と軸受側V溝形転走面とで形成される、軸受内方形
径路が形成されると共に、該径路の軸方向両端部に連な
り、軸受内に形成した上記径路の軸方向両端部に連なる
半円弧状と、負荷径路とより成る軸受内径路とで長方形
状に形成される循環径路内に、上記ころの保持器を適用
した多数のころを、供給して構成したことを特徴とす
る、直動ころがり案内。
4. A linear rolling guide constructed by applying the roller retainer according to claim 1 to a roller in a circulation path in a bearing, and symmetrically formed on both side surfaces of the linear guide rectangular shaft. Corresponding to one or two pairs of V-groove-shaped rolling surfaces, which are guided by both side surfaces of the guide shaft and operate in parallel with both inner side surfaces of the gantry-shaped bearing body. While maintaining a small clearance between the guide side surfaces, a bearing inner-sided path formed by the V-groove rolling surface formed on the guide shaft and the bearing-side V-groove rolling surface is formed. A semicircular arc formed in the bearing and connected to both ends in the axial direction of the path, and a semicircular shape connected to both ends in the axial direction of the path formed in the bearing; , A linear motion rolling plan characterized by supplying and configuring a large number of rollers to which the above roller cage is applied. .
【請求項5】請求項1)記載のころの保持器を、軸受内
多数のころに適用して構成する直動クロスローラ型直動
ころがり案内において、軸受循環径路内保持器内のころ
の相互間では、隣接ころにおける軸心の交差をすること
なく軸心間平行に配列することができ、軸受案内面隣接
ころと同一方向同一負荷に対応することができ、もって
軸受内ころの配列の選択により、広範囲にわたる軸受適
正負荷容量ころがり案内を実現することを、特徴とする
直動ころがり案内。
5. A linear cross-roller type linear rolling guide, wherein the roller retainer according to claim 1 is applied to a large number of rollers in a bearing. Between the adjacent rollers, they can be arranged in parallel to each other without crossing the axes, so that the same load can be applied in the same direction as the adjacent rollers on the bearing guide surface. A linear motion rolling guide characterized by realizing a rolling guide with a proper load capacity for a wide range of bearings.
JP1327148A 1989-12-19 1989-12-19 Linear rolling guide Expired - Fee Related JP2952500B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1327148A JP2952500B2 (en) 1989-12-19 1989-12-19 Linear rolling guide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1327148A JP2952500B2 (en) 1989-12-19 1989-12-19 Linear rolling guide

Publications (2)

Publication Number Publication Date
JPH03189416A JPH03189416A (en) 1991-08-19
JP2952500B2 true JP2952500B2 (en) 1999-09-27

Family

ID=18195848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1327148A Expired - Fee Related JP2952500B2 (en) 1989-12-19 1989-12-19 Linear rolling guide

Country Status (1)

Country Link
JP (1) JP2952500B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2894089B2 (en) * 1992-06-19 1999-05-24 竹内精工株式会社 Linear motion bearing
DE10322006A1 (en) * 2003-05-16 2004-12-02 Ina-Schaeffler Kg Roller circulation unit of a linear bearing
KR101893082B1 (en) * 2011-06-30 2018-08-29 에스엠시 가부시키가이샤 Linear actuator

Also Published As

Publication number Publication date
JPH03189416A (en) 1991-08-19

Similar Documents

Publication Publication Date Title
US5431498A (en) Linear motion bearing
TWI409393B (en) Rolling guide device and manufacturing method thereof
JPS6211216B2 (en)
JPS61116120A (en) Rectilinear motion roller bearing
JPH0353497B2 (en)
JPS62242126A (en) Direct driven rolling bearing
WO2013168434A1 (en) Motion guide device
US5248202A (en) Bearing and a table for linear sliding motion
JP2003194057A (en) Rectilinear guide unit equipped with separator between rolling elements
JPS6211209B2 (en)
CN102434585B (en) Linear bearing sliding mechanism
JPH02163510A (en) Direct operated rolling guide unit
JP2952500B2 (en) Linear rolling guide
JPH0735137A (en) Ball spline
JPS6233140Y2 (en)
US10837491B2 (en) Multi-row rolling element housing band and motion guide apparatus
JP4025563B2 (en) Linear motion guide unit with separator between rollers
US6287005B1 (en) Roller guiding apparatus
JP2017089772A (en) Bendable rolling guide unit
GB2256902A (en) Load bearing guide
JP2006329401A (en) Linear motion guide unit
JPH02150508A (en) Straight rolling guide unit
CN100378354C (en) Linear shifter
CN218377326U (en) Lightweight bearing device
JP5222609B2 (en) Rolling body circuit structure and exercise device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees