JP2949296B2 - Aluminum nitride substrate - Google Patents

Aluminum nitride substrate

Info

Publication number
JP2949296B2
JP2949296B2 JP2061780A JP6178090A JP2949296B2 JP 2949296 B2 JP2949296 B2 JP 2949296B2 JP 2061780 A JP2061780 A JP 2061780A JP 6178090 A JP6178090 A JP 6178090A JP 2949296 B2 JP2949296 B2 JP 2949296B2
Authority
JP
Japan
Prior art keywords
aluminum nitride
metal
sintered body
conductor layer
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2061780A
Other languages
Japanese (ja)
Other versions
JPH03228873A (en
Inventor
善裕 大川
慎 池田
健一郎 宮原
吉明 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=13180951&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2949296(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2061780A priority Critical patent/JP2949296B2/en
Publication of JPH03228873A publication Critical patent/JPH03228873A/en
Priority to US08/597,349 priority patent/US5830570A/en
Application granted granted Critical
Publication of JP2949296B2 publication Critical patent/JP2949296B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal

Landscapes

  • Ceramic Products (AREA)
  • Inorganic Insulating Materials (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、窒化アルミニウム質基板に関し、詳細には
金属導体層をその表面に有する半導体素子収納用パッケ
ージ等の電子部品に適した窒化アルミニウム質基板に関
する。
Description: FIELD OF THE INVENTION The present invention relates to an aluminum nitride substrate, and more particularly to an aluminum nitride substrate suitable for an electronic component such as a semiconductor element housing package having a metal conductor layer on its surface. Regarding the substrate.

(従来技術) 近時、情報処理装置の高性能化、高速化に伴い、それ
を構成する半導体集積回路も高密度化、高集積化が急速
に進み、そのために半導体集積回路素子の大電力化によ
り該素子の発熱量が著しく増加し、前記半導体集積回路
素子を正常に且つ安定に作動させるためにはその発熱す
る熱をいかに効率的に除去するかが大きな課題となって
いる。
(Prior art) In recent years, as information processing apparatuses have become higher in performance and higher in speed, semiconductor integrated circuits constituting the information processing apparatuses have been rapidly becoming denser and more highly integrated, thereby increasing the power of semiconductor integrated circuit elements. As a result, the amount of heat generated by the element significantly increases. In order to operate the semiconductor integrated circuit element normally and stably, how to efficiently remove the heat generated by the element has become a major issue.

そこで、従来から高熱伝導性に優れたセラミック材料
として酸化ベリリウム質焼結体、ダイヤモンド、炭化珪
素質焼結体等が提案されているが、酸化ベリリウム質焼
結体は毒性があり使用上難点があり、ダイヤモンドは高
価であり、また炭化珪素質焼結体は電気絶縁性、誘電率
等の特性が悪いという欠点を有している。
Therefore, beryllium oxide sintered bodies, diamonds, silicon carbide sintered bodies, and the like have been proposed as ceramic materials having excellent high thermal conductivity, but beryllium oxide sintered bodies have toxicity and are difficult to use. In addition, diamond is expensive, and silicon carbide-based sintered bodies have disadvantages such as poor electrical insulating properties and dielectric constants.

最近に至り、従来の高熱伝導性材料に代わり、高熱伝
導性を有するとともに高い機械的強度、高電気絶縁性を
有し、且つ熱膨張係数がアルミナに比べてシリコン単結
晶に近い等の優れた特性を有する材料として窒化アルミ
ニウム質焼結体が注目されている。
Recently, instead of conventional high thermal conductivity materials, it has high thermal conductivity, high mechanical strength, high electrical insulation, and excellent thermal expansion coefficient, such as closer to silicon single crystal than alumina. As a material having characteristics, attention has been paid to an aluminum nitride sintered body.

この窒化アルミニウム質焼結体は、これを基板母材と
してその表面に金属導体層を形成しようとする場合、窒
化アルミニウム自体、金属との濡れ性が小さいことから
基板母材と金属導体層との接着強度が低いという欠点を
有している。
When this aluminum nitride-based sintered body is used as a substrate base material to form a metal conductor layer on the surface thereof, aluminum nitride itself has a low wettability with metal, so that the substrate base material and the metal conductor layer are It has the disadvantage of low adhesive strength.

このような問題に対し、窒化アルミニウム質焼結体を
たとえば空気中で加熱して表面に金属との濡れ性のよい
酸化アルミニウム層を形成するか、または酸化珪素等の
ガラス質層を塗布し、その表面に導体層を被着形成する
ことにより接着強度を高めようとする方法が提案されて
いる。
For such a problem, an aluminum nitride sintered body is heated in air, for example, to form an aluminum oxide layer having good wettability with metal on the surface, or a glassy layer such as silicon oxide is applied, There has been proposed a method of increasing the adhesive strength by forming a conductor layer on the surface.

(発明が解決しようとする問題点) しかしながら、上述のように窒化アルミニウム質焼結
体表面に酸化アルミニウム層を形成することによって導
体層の接着強度は酸化アルミニウム層を設けない場合に
比較して接着強度は向上するものの、実用的なレベルに
は至っておらず、特に金(Au)や銀(Ag)等を主体とす
る導体層を形成する場合には接着強度は不十分であっ
た。
(Problems to be Solved by the Invention) However, by forming the aluminum oxide layer on the surface of the aluminum nitride sintered body as described above, the adhesive strength of the conductor layer is higher than that in the case where the aluminum oxide layer is not provided. Although the strength was improved, it was not at a practical level. In particular, when a conductor layer mainly composed of gold (Au) or silver (Ag) was formed, the adhesive strength was insufficient.

よって、窒化アルミニウム質焼結体を用いた電子部品
の信頼性の点からも導体層の接着強度の高い基板が望ま
れている。
Therefore, from the viewpoint of the reliability of electronic components using an aluminum nitride sintered body, a substrate having a high bonding strength of a conductor layer is desired.

(発明の目的) よって、本発明の目的は窒化アルミニウム質焼結体を
母材とする導体層の接着強度に優れた窒化アルミニウム
質基板およびその製造方法を提供するにある。
(Object of the Invention) Accordingly, an object of the present invention is to provide an aluminum nitride substrate having excellent adhesion strength of a conductor layer made of an aluminum nitride sintered body as a base material and a method for producing the same.

(問題点を解決するための手段) 本発明者等は、上記問題点に対し検討を重ねた結果、
母材として特定の金属およびそれらの金属化合物を含有
する窒化アルミニウム質焼結体の表面に酸化アルミニウ
ムを主体とする被覆層を形成し、さらにこの酸化アルミ
ニウム層上に金属導体層を被着形成するもので、特定の
金属あるいは金属化合物としてTi、V、Nb、Mo、W、Co
およびNiの単体あるいはこれらの炭化物、窒化物、ホウ
化物、酸化物から選ばれる1種以上を選択することによ
り金属導体層の母材との接着強度を高めることができる
ことを見出した。
(Means for Solving the Problems) The present inventors have studied the above problems, and as a result,
A coating layer mainly composed of aluminum oxide is formed on the surface of an aluminum nitride sintered body containing a specific metal and a metal compound thereof as a base material, and a metal conductor layer is further formed on the aluminum oxide layer. And Ti, V, Nb, Mo, W, Co as specific metals or metal compounds
It has been found that the adhesion strength between the base material of the metal conductor layer and the base material can be increased by selecting one or more selected from a simple substance of Ni and a carbide, nitride, boride and oxide thereof.

以下、本発明を詳述する。 Hereinafter, the present invention will be described in detail.

本発明の窒化アルミニウム質基板において、用いられ
る母材は、窒化アルミニウムを主体とし、少なくとも相
対密度95%の相対密度を有し、高密度、高熱伝導性であ
ることが望ましく、また、場合によっては従来から公知
の焼結助剤、例えば、Ca、Ba、Sr等のアルカリ土類金属
やY等の希土類金属の酸化物、炭化物、窒化物、フッ化
物等を20重量%以下の割合で含有する。
In the aluminum nitride substrate of the present invention, the base material used is preferably composed mainly of aluminum nitride, has a relative density of at least 95%, a high density, and high thermal conductivity. Conventionally known sintering aids, for example, contain 20% by weight or less of oxides, carbides, nitrides, fluorides, and the like of alkaline earth metals such as Ca, Ba, and Sr and rare earth metals such as Y. .

本発明によれば、上記窒化アルミニウム質焼結体がT
i、V、Nb、Mo、W、CoおよびNiの単体もしくは炭化
物、窒化物、ホウ化物、酸化物から選ばれる少なくとも
1種を含有することが重要である。この金属あるいは金
属化合物は窒化アルミニウム質焼結体中に0.01〜5重量
%の割合で含有され、焼結体の色相を黒色化させる作用
をなす。
According to the present invention, the aluminum nitride sintered body is T
It is important to contain i, V, Nb, Mo, W, Co and Ni alone or at least one selected from carbides, nitrides, borides and oxides. The metal or metal compound is contained in the aluminum nitride sintered body at a ratio of 0.01 to 5% by weight, and functions to blacken the hue of the sintered body.

本発明によれば、上記特定の金属あるいは金属化合物
を含有する窒化アルミニウム質焼結体の表面に酸化アル
ミニウムを主体とする被覆層を形成する。この被覆層は
基板としての耐化学薬品性、例えばアルカリ等に対する
腐食性を低減すると同時にこの被覆層上に金属導体層を
形成した場合に母材への金属導体層の接着強度を向上す
ることができる。
According to the present invention, a coating layer mainly composed of aluminum oxide is formed on the surface of the aluminum nitride sintered body containing the specific metal or metal compound. This coating layer can reduce the chemical resistance of the substrate, for example, the corrosiveness to alkali and the like, and at the same time, when the metal conductor layer is formed on this coating layer, can improve the adhesive strength of the metal conductor layer to the base material. it can.

また、上記被覆層はその厚みが0.05〜5μm、特に0.
2〜4μmであることが重要で、その厚みが0.05μmよ
り薄いと基板の耐化学薬品性や導体層の母材との接着強
度が不十分となり、5μmを越えると被覆層と母材との
熱膨張差等に起因しクラック等が生じてしまう恐れがあ
る。
Further, the coating layer has a thickness of 0.05 to 5 μm, particularly 0.1 μm.
It is important that the thickness is 2 to 4 μm. If the thickness is less than 0.05 μm, the chemical resistance of the substrate and the adhesive strength with the base material of the conductor layer become insufficient. Cracks and the like may occur due to a difference in thermal expansion and the like.

一方、被覆層上に形成される導体層としては従来から
周知のものが挙げられ、例えばW、Mo、Au、Ag、Mo−Mn
等を主体とする金属導体からなり、これらは0.01〜100
μmの厚みで被着形成される。
On the other hand, as the conductor layer formed on the coating layer, there are conventionally known conductor layers, for example, W, Mo, Au, Ag, Mo-Mn
Consisting of metal conductors mainly composed of
It is formed with a thickness of μm.

本発明の窒化アルミニウム質基板の製造方法として
は、例えば母材として窒化アルミニウムを主体とし、T
i、V、Nb、Mo、W、CoおよびNiの単体あるいはこれら
の炭化物、窒化物、ホウ化物、酸化物から選ばれる1種
以上の金属またはその化合物を含有する焼結体を用意す
る。具体的には酸素含有量0.4〜3重量%の窒化アルミ
ニウム粉末に前記金属および金属化合物を0.01〜5重量
%の割合で添加する。また所望により焼結性を高めるた
めにCa、Ba、Sr等のアルカリ土類金属やY等の希土類金
属の酸化物、炭化物、窒化物等を焼結助剤として0.01〜
15重量%の割合で添加混合した後に、公知の方法で成形
し、窒素や窒素と水素との混合雰囲気等の非酸化性雰囲
気中で1550〜1950℃の温度で焼成することにより相対密
度95%以上の焼結体を得ることができる。
As a method for manufacturing an aluminum nitride substrate of the present invention, for example, aluminum nitride is mainly used as a base material, and T
A sintered body containing a simple substance of i, V, Nb, Mo, W, Co and Ni, or one or more metals or compounds thereof selected from carbides, nitrides, borides and oxides thereof is prepared. Specifically, the metal and the metal compound are added to aluminum nitride powder having an oxygen content of 0.4 to 3% by weight in a ratio of 0.01 to 5% by weight. Further, in order to enhance sintering properties as desired, oxides, carbides, nitrides, etc. of rare earth metals such as alkaline earth metals such as Ca, Ba, and Sr and Y are used as sintering aids.
After adding and mixing at a ratio of 15% by weight, the mixture is molded by a known method, and calcined at a temperature of 1550 to 1950 ° C. in a non-oxidizing atmosphere such as nitrogen or a mixed atmosphere of nitrogen and hydrogen to obtain a relative density of 95% The above sintered body can be obtained.

なお、例えば前記金属および金属化合物として酸化物
を選択しても焼成条件により金属単体やその他の金属化
合物に変換することができる。例えば、TiO2、V2O5、WO
3は窒素と水素との混合雰囲気中での焼成によりTiN、V
N、W金属に還元される。また焼成炉内に敷粉や匣鉢と
してBN等が存在する場合、硼化物が生成される場合もあ
る。
For example, even if an oxide is selected as the metal and the metal compound, it can be converted to a simple metal or another metal compound depending on the firing conditions. For example, TiO 2 , V 2 O 5 , WO
3 : TiN, V by firing in a mixed atmosphere of nitrogen and hydrogen
Reduced to N and W metals. Further, when BN or the like is present as a bedding powder or a sagger in the firing furnace, boride may be generated in some cases.

次に、上記窒化アルミニウム質焼結体に対し酸化処理
を行うことによりその焼結体表面の窒化アルミニウムを
酸化アルミニウムに変換するこのにより被覆層が形成す
ることができる。この時の被覆層はそのほとんどがα−
Al2O3質で、その層中には焼結体中に含まれていた焼結
助剤成分や前記金属または金属化合物も一部酸化された
状態で含有される。この酸化処理は、例えば焼結体を大
気中で700〜1400℃の温度で処理するか、または酸化性
雰囲気中でレーザー光等を照射し部分的に酸化処理して
もよい。なお、被覆層の厚みは前述した理由から0.05〜
5μmになるように処理時間等を調整することが必要で
ある。
Next, an oxidation treatment is performed on the aluminum nitride-based sintered body to convert aluminum nitride on the surface of the sintered body into aluminum oxide, whereby a coating layer can be formed. Most of the coating layer at this time is α-
It is Al 2 O 3 and its layer also contains the sintering aid component and the metal or metal compound contained in the sintered body in a partially oxidized state. In this oxidation treatment, for example, the sintered body may be treated at a temperature of 700 to 1400 ° C. in the air, or may be partially oxidized by irradiating a laser beam or the like in an oxidizing atmosphere. In addition, the thickness of the coating layer is 0.05 to
It is necessary to adjust the processing time and the like so that the thickness becomes 5 μm.

次に、前記被覆層上に金属導体層を形成する場合に
は、例えば周知の厚膜法等の手法によりスクリーン印
刷、または浸漬法等により金属ペーストを塗布した後に
700〜1600℃の温度で焼付け処理を行うか、または薄膜
法の手法により蒸着法等により形成することができる。
この金属導体層の厚みは0.01〜100μmが望ましい。
Next, when a metal conductor layer is formed on the coating layer, for example, after a metal paste is applied by screen printing or a dipping method by a known thick film method or the like, for example.
It can be formed by performing a baking treatment at a temperature of 700 to 1600 ° C., or by a vapor deposition method or the like by a thin film method.
The thickness of the metal conductor layer is desirably 0.01 to 100 μm.

以下、本発明を次の例で説明する。 Hereinafter, the present invention will be described with reference to the following examples.

(実施例) 窒化アルミニウム原料として酸素量1.0重量%、BET比
表面積3.8m2/g、カーボン量280ppmのものを用い、焼結
助剤としてBET比表面積が6.0m2/gのEr2O3粉末及びCaCO3
粉末、さらに平均粒径が0.1〜15μmの各種金属化合物
を用いて第1表に示す割合で、さらにバインダーを添加
して混合した。この混合物をスプレードライにより造粒
後1ton/cm2の圧力でプレス成形した。
(Example) An aluminum nitride raw material having an oxygen content of 1.0% by weight, a BET specific surface area of 3.8 m 2 / g, and a carbon amount of 280 ppm was used. Er 2 O 3 having a BET specific surface area of 6.0 m 2 / g was used as a sintering aid. Powder and CaCO 3
Powder and various metal compounds having an average particle size of 0.1 to 15 μm were further added and mixed with a binder at a ratio shown in Table 1. This mixture was granulated by spray drying and press-molded at a pressure of 1 ton / cm 2 .

この成形体を脱バインダー処理した後、タングステン
炉により窒素ガス雰囲気中で1800℃で3時間焼成した。
After debinding the molded body, the molded body was fired at 1800 ° C. for 3 hours in a nitrogen gas atmosphere in a tungsten furnace.

この焼結体をバレル研磨し、第1表の条件で酸化処理
し、酸化膜を形成した。この時の外気湿度はいずれも30
〜80%であった。
This sintered body was barrel-polished and oxidized under the conditions shown in Table 1 to form an oxide film. The outside air humidity at this time was 30
~ 80%.

次にこの酸化膜上にAuペーストを塗布し、850℃で焼
付けを行い、そのAu導体層上にAu−Si箔を乗せ、さらに
Au−Si箔上に接触面積が8.55mm2、直径1.5mmのAgメッキ
したCu棒を乗せ、440℃の温度で接着した。
Next, an Au paste is applied on the oxide film, baked at 850 ° C., and an Au-Si foil is placed on the Au conductor layer.
An Ag-plated Cu rod having a contact area of 8.55 mm 2 and a diameter of 1.5 mm was placed on the Au-Si foil and bonded at a temperature of 440 ° C.

得られた各試料に対し、焼結体の組成をX線回折によ
り同定し、さらに熱伝導率、誘電率、誘電正接、固有抵
抗値を25℃において測定した。また、導体層の接着強度
は前記AgメッキしたCu棒を垂直に引っ張り、導体層が剥
がれる時の強度を測定した。
For each of the obtained samples, the composition of the sintered body was identified by X-ray diffraction, and the thermal conductivity, dielectric constant, dielectric loss tangent, and specific resistance were measured at 25 ° C. The adhesive strength of the conductor layer was measured by pulling the Ag-plated Cu rod vertically and peeling the conductor layer.

また、第1表中、試料番号22,23,24はカーボン炉内で
焼成した。
In Table 1, Sample Nos. 22, 23 and 24 were fired in a carbon furnace.

結果は第1表に示した。 The results are shown in Table 1.

第1表によれば、酸化処理を全くせずに導体層を形成
した試料No.9では接着強度は0.1Kg/mm2以下であり、殆
ど実用に耐えないのに対し、母材中に前述した金属ある
いは金属化合物を含有しない試料No.8、18、28は酸化膜
形成してもその導体層の接着強度はせいぜい2.0Kg/mm2
であり、試料No.9に比較すると効果は認められるが、接
着強度としては不十分である。
According to Table 1, in Sample No. 9 in which the conductor layer was formed without any oxidation treatment, the adhesive strength was 0.1 kg / mm 2 or less, which was hardly practical. Samples Nos. 8, 18, and 28 containing no metal or metal compound showed an adhesive strength of at most 2.0 kg / mm 2 even when an oxide film was formed.
Although the effect is recognized as compared with Sample No. 9, the adhesive strength is insufficient.

これに対し、母材中に前述したような金属を含有する
本発明品はいずれも高い接着強度を示したが、酸化処理
による酸化膜の厚みが0.05μmより薄い試料No.10や、
膜厚が5μmより厚い試料No.19,20,21はいずれも接着
強度が低くなった。
On the other hand, all of the products of the present invention containing the above-described metal in the base material exhibited high adhesive strength, but the thickness of the oxide film by the oxidation treatment was smaller than 0.05 μm.
Sample Nos. 19, 20, and 21 having a film thickness of more than 5 μm all had low adhesive strength.

なお、母材中に金属化合物を含有させた場合、試料N
o.31,34に示すようにその量が多すぎると特性は劣化す
る。
When the base metal contains a metal compound, the sample N
As shown in o.31 and 34, if the amount is too large, the characteristics deteriorate.

(発明の効果) 以上詳述したように、本発明の窒化アルミニウム質基
板によれば、母材である窒化アルミニウム質焼結体の熱
伝導率やその他の電気特性に何ら影響を及ぼすことな
く、その表面に形成される金属導体層の基板母材との接
着強度を高めることができ、これにより電子部品への適
用において信頼性を高めるとともに製造歩留りをも挙げ
ることができ、窒化アルミニウム質焼結体の基板として
の応用を大きく促進することができる。
(Effects of the Invention) As described above in detail, according to the aluminum nitride substrate of the present invention, the aluminum nitride sintered body as a base material has no influence on the thermal conductivity and other electrical characteristics. The bonding strength between the metal conductor layer formed on the surface and the base material of the substrate can be increased, thereby increasing the reliability in application to electronic components and increasing the production yield. The application as a body substrate can be greatly promoted.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI H01L 23/15 H01L 23/12 Q (58)調査した分野(Int.Cl.6,DB名) C04B 35/58 C04B 41/87 - 41/90 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 identification symbol FI H01L 23/15 H01L 23/12 Q (58) Investigated field (Int.Cl. 6 , DB name) C04B 35/58 C04B 41 / 87-41/90

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】窒化アルミニウムを主体とし、Ti、V、N
b、Mo、W、CoおよびNiの単体あるいはこれらの炭化
物、窒化物、硼化物、酸化物から選ばれる1種以上を含
有する焼結体の表面に酸化アルミニウムを主体とする厚
さ0.05〜5μmの被覆層を形成したことを特徴とする窒
化アルミニウム質基板。
An aluminum nitride, Ti, V, N
b, the thickness of a sintered body containing at least one selected from the group consisting of simple substances of Mo, W, Co and Ni or carbides, nitrides, borides and oxides of the same, with a thickness of 0.05 to 5 μm mainly composed of aluminum oxide An aluminum nitride substrate, comprising a coating layer of:
【請求項2】窒化アルミニウムを主体とし、Ti、V、N
b、Mo、W、CoおよびNiの単体あるいはこれらの炭化
物、窒化物、硼化物、酸化物から選ばれる1種以上を含
有する焼結体の表面に酸化アルミニウムを主体とする厚
さ0.05〜5μmの被覆層および金属導体層を順次被覆形
成したことを特徴とする窒化アルミニウム質基板。
2. Ti, V, N mainly composed of aluminum nitride
b, the thickness of a sintered body containing at least one selected from the group consisting of simple substances of Mo, W, Co and Ni or carbides, nitrides, borides and oxides of the same, with a thickness of 0.05 to 5 μm mainly composed of aluminum oxide An aluminum nitride substrate, wherein a coating layer and a metal conductor layer are sequentially formed.
JP2061780A 1989-12-19 1990-03-13 Aluminum nitride substrate Expired - Lifetime JP2949296B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2061780A JP2949296B2 (en) 1990-03-13 1990-03-13 Aluminum nitride substrate
US08/597,349 US5830570A (en) 1989-12-19 1996-02-06 Aluminum nitride substrate and process for preparation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2061780A JP2949296B2 (en) 1990-03-13 1990-03-13 Aluminum nitride substrate

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2022979A Division JP2949294B2 (en) 1989-12-19 1990-01-31 Aluminum nitride substrate and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH03228873A JPH03228873A (en) 1991-10-09
JP2949296B2 true JP2949296B2 (en) 1999-09-13

Family

ID=13180951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2061780A Expired - Lifetime JP2949296B2 (en) 1989-12-19 1990-03-13 Aluminum nitride substrate

Country Status (1)

Country Link
JP (1) JP2949296B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3961113B2 (en) * 1998-04-28 2007-08-22 京セラ株式会社 Method for producing aluminum nitride sintered body
JP4145097B2 (en) * 2001-08-20 2008-09-03 日本碍子株式会社 Low dielectric loss tangent material and method for controlling dielectric loss tangent of silicon carbide sintered body
JP6107503B2 (en) * 2013-07-22 2017-04-05 住友電気工業株式会社 Aluminum nitride sintered body and method for producing the same

Also Published As

Publication number Publication date
JPH03228873A (en) 1991-10-09

Similar Documents

Publication Publication Date Title
JP3924406B2 (en) Alumina sintered body and manufacturing method thereof, wiring board and manufacturing method thereof
JP4768204B2 (en) Ceramic material and capacitor having the ceramic material
JP2949296B2 (en) Aluminum nitride substrate
JPH1095686A (en) Copper-metalizing composition and glass ceramic wiring substrate using the same
US6171988B1 (en) Low loss glass ceramic composition with modifiable dielectric constant
JPS61291480A (en) Surface treating composition for aluminum nitride base material
JP2949294B2 (en) Aluminum nitride substrate and method of manufacturing the same
JP3537648B2 (en) Aluminum nitride wiring board and method of manufacturing the same
JPH0576795B2 (en)
JP2563809B2 (en) Aluminum nitride substrate for semiconductors
JPH0712983B2 (en) Aluminum nitride sintered body having metal electrode and method for manufacturing the same
JPH0757709B2 (en) Aluminum nitride sintered body and manufacturing method thereof
JP2000114724A (en) Multilayer wiring board
US5830570A (en) Aluminum nitride substrate and process for preparation thereof
JPH0676268B2 (en) Aluminum nitride sintered body having metallized layer and method for producing the same
JPH09237957A (en) Alumina circuit board and manufacture thereof
JP2851712B2 (en) Aluminum nitride circuit board
JP2956791B2 (en) Reduction resistant high dielectric constant ceramic composition
JPH0738491B2 (en) Method of manufacturing circuit board and circuit board
JPH05221759A (en) Aluminum nitride substrate with metallizing layer and metallizing method
JP3778949B2 (en) Insulating paste and method for forming insulating layer using insulating paste
JPH0723273B2 (en) Method for metallizing aluminum nitride substrate
JP3628146B2 (en) Low temperature fired ceramic composition and low temperature fired ceramic
JP3470285B2 (en) Manufacturing method of multilayer ceramic capacitor
JP2763516B2 (en) Metallization method for aluminum nitride substrate