JP2939422B2 - Fluorine-containing resin hydrophilic structure and method for producing the same - Google Patents

Fluorine-containing resin hydrophilic structure and method for producing the same

Info

Publication number
JP2939422B2
JP2939422B2 JP6232416A JP23241694A JP2939422B2 JP 2939422 B2 JP2939422 B2 JP 2939422B2 JP 6232416 A JP6232416 A JP 6232416A JP 23241694 A JP23241694 A JP 23241694A JP 2939422 B2 JP2939422 B2 JP 2939422B2
Authority
JP
Japan
Prior art keywords
fluorine
fluororesin
containing resin
layer
hydrophilic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP6232416A
Other languages
Japanese (ja)
Other versions
JPH0885186A (en
Inventor
卓三 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chemours Mitsui Fluoroproducts Co Ltd
Original Assignee
Du Pont Mitsui Fluorochemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Du Pont Mitsui Fluorochemicals Co Ltd filed Critical Du Pont Mitsui Fluorochemicals Co Ltd
Priority to JP6232416A priority Critical patent/JP2939422B2/en
Publication of JPH0885186A publication Critical patent/JPH0885186A/en
Application granted granted Critical
Publication of JP2939422B2 publication Critical patent/JP2939422B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は親水性を示す表面を持つ
含フッ素樹脂構造物及び上記構造物を安全且つ容易に製
造する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fluorine-containing resin structure having a hydrophilic surface and a method for safely and easily producing the structure.

【0002】[0002]

【従来の技術】含フッ素樹脂は、優れた耐熱性、耐薬品
性、耐候性を有し、且つ低摩擦、非粘着などのユニーク
な性質を有するため化学・機械・電気などの産業分野に
広く利用されている。しかし、その一方、含フッ素樹脂
はその加工において接着、塗装や印刷ができなかった
り、例えば膜構造材として用いられた場合に建物内部の
結露しやすい天井などで水滴が形成され易くそれが観客
の声援などの空気振動で下に落ちる等の欠点があり、使
用用途により樹脂表面全体または部分的に親水性を持つ
膜を被覆したり官能基を持たせる試みがなされている。
2. Description of the Related Art Fluorine-containing resins have excellent heat resistance, chemical resistance, and weather resistance, and have unique properties such as low friction and non-adhesion. It's being used. However, on the other hand, fluorine-containing resin cannot be bonded, painted or printed in its processing, or when used as a film structure material, water droplets are easily formed on the ceiling where dew condensation easily occurs inside the building, which is a problem for the audience. There are drawbacks such as falling down due to air vibration such as cheering, and attempts have been made to coat a hydrophilic film on the entire or partial surface of the resin or to have a functional group depending on the intended use.

【0003】例えばフィルターの効率化や接着等の目的
で含フッ素樹脂の表面を親水化する方法として (1) 金属ナトリウムとナフタリンのテトラヒドロフラン
溶液に浸漬して表面処理する。 (2) 水や親水基含有モノマーを含フッ素樹脂表面に接触
させてプラズマガスで処理する。 (3) フッ素樹脂多孔体の細孔内に親水性ポリマーを含浸
し紫外線照射により架橋して細孔内に固定する(特開昭
64-38448)。 (4) フッ素樹脂に紫外線を照射した後、重合性モノマー
(アクリル酸、メタクリル酸、スチレンスルホン酸、ア
クリルアミド等)と接触させて、グラフト共重合体を形
成させる(特開平3-281544)。 (5) 多孔性ポリテトラフルオロエチレン膜に親水性ポリ
マーの有機溶媒溶液を含浸させ複合化させる(特開平3-
137927)。等があげられる。
For example, as a method for hydrophilizing the surface of a fluorine-containing resin for the purpose of increasing the efficiency of a filter or bonding, (1) immersion in a tetrahydrofuran solution of sodium metal and naphthalene for surface treatment. (2) Water and a hydrophilic group-containing monomer are brought into contact with the surface of the fluororesin and treated with a plasma gas. (3) A hydrophilic polymer is impregnated in the pores of a fluororesin porous body, crosslinked by ultraviolet irradiation, and fixed in the pores (Japanese Patent Application Laid-Open No.
64-38448). (4) After irradiating the fluororesin with ultraviolet rays, the fluororesin is brought into contact with a polymerizable monomer (acrylic acid, methacrylic acid, styrenesulfonic acid, acrylamide, etc.) to form a graft copolymer (JP-A-3-281544). (5) A porous polytetrafluoroethylene membrane is impregnated with an organic solvent solution of a hydrophilic polymer to form a composite (Japanese Unexamined Patent Publication No.
137927). And the like.

【0004】しかし、上記方法にはそれぞれ (1) 処理液は、水分と接すると引火爆発するのでその取
扱いが面倒である。 (1〜5)いずれも親水化の効果が小さい (2,3,4) 膜構造材のように広い面積の処理が困難であ
る。 (3,4) 添加したモノマーの単独重合やポリマー同士の反
応を防止することが困難であり、目的とするフッ素樹脂
との架橋物あるいはグラフト共重合体の生成が不十分で
ある。 (5) ポリマーが溶出しやすく耐久性に乏しい。 などの欠点があり、含フッ素樹脂基材表面に対する従来
の親水化処理技術は、いずれも親水化の程度、持続性そ
して作業簡便性を満足し得るものはなかった。
However, in each of the above-mentioned methods, (1) the treatment liquid ignites and explodes when it comes into contact with moisture, so that its handling is troublesome. (1-5) All have little effect of hydrophilization. (2,3,4) It is difficult to treat a large area like a film structural material. (3,4) It is difficult to prevent homopolymerization of the added monomer or reaction between the polymers, and the formation of the desired crosslinked product or graft copolymer with the fluororesin is insufficient. (5) The polymer is easily eluted and has poor durability. However, none of the conventional hydrophilization treatment techniques for the surface of the fluororesin substrate can satisfy the degree of hydrophilicity, the durability, and the simplicity of operation.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は、耐熱
性、耐薬品性などの含フッ素樹脂としての性質を保持し
ながら、含フッ素樹脂基材表面に親水性を付与して基材
表面を水に濡れやすくして水膜を保持したり塗装や着色
を可能とし、かつその親水性が長期間にわたって安定的
に持続する含フッ素樹脂親水性構造物を提供することで
ある。また塗布や乾燥・焼成等の簡便な処理で樹脂表面
全体または部分的に親水性を持った含フッ素樹脂親水性
構造物を得ることができる製造方法を提供することにあ
る。
SUMMARY OF THE INVENTION An object of the present invention is to impart hydrophilicity to the surface of a fluororesin base material while maintaining the properties of the fluororesin such as heat resistance and chemical resistance. It is intended to provide a fluorine-containing resin hydrophilic structure which can be easily wetted by water, retain a water film, and can be painted or colored, and whose hydrophilicity is stably maintained for a long period of time. Another object of the present invention is to provide a manufacturing method capable of obtaining a fluororesin hydrophilic structure having hydrophilicity on the entire or partial surface of the resin by a simple treatment such as coating, drying and baking.

【0006】[0006]

【課題を解決するための手段】発明者は、上記の課題を
解決する方法について検討した結果、含フッ素樹脂基材
表面に特定の無機酸化物から形成されたゲル層を設ける
ことにより、親水性が改善された含フッ素樹脂親水性構
造物が得られることを見いだしたものである。
Means for Solving the Problems As a result of studying a method for solving the above-mentioned problems, the inventor has found that by providing a gel layer formed from a specific inorganic oxide on the surface of a fluororesin base material, the hydrophilic property is improved. It has been found that a fluorinated resin hydrophilic structure having an improved can be obtained.

【0007】即ち本発明は含フッ素樹脂基材表面に含フ
ッ素樹脂と平均粒子径10μm以下の珪素化合物の粉末
との混合物で、その容量比が90/10〜20/80で
ある融着層を設け、その上に無機酸化物コロイド溶液の
固化により形成されたゲル層を設けた含フッ素樹脂親水
性構造物である。ここに親水性とは基材表面に水を供給
した場合、水が水膜状となり、撥水による凹凸がないも
のをいい、後記する親水性評価試験で保持される水重量
が0.06g以上となるものである。
[0007] That is, in a mixture with the powder of the present invention is a fluorine-containing resin base material surface in a fluorine-containing resin and an average particle size 10μm or less of a silicon compound, the volume ratio of the bonding layer is 90 / 10-20 / 80 provided a fluororesin hydrophilic structure in which a gel layer formed by solidification of free machine colloidal oxide solution thereon. Here, hydrophilicity means that when water is supplied to the surface of the base material, the water forms a water film and has no unevenness due to water repellency, and the weight of water retained in a hydrophilicity evaluation test described later is 0.06 g or more. It is what becomes.

【0008】本発明はまた平均粒子径0. 05〜50μ
mの含フッ素樹脂粒子の分散液に平均粒子径10μm以
下の珪素化合物の粉末を均一に分散せしめ、含フッ素樹
脂と珪素化合物との容量比が90/10〜20/80で
あり、且つ上記分散質と分散媒との容量比が3/97〜
50/50の混合液とし、ついで該混合分散液を含フッ
素樹脂基材表面上に施し、含フッ素樹脂の融点以上、分
解温度以下の温度に加熱して上記分散質を融着させて融
着層を形成し冷却した後、該融着層上に無機酸化物コロ
イド溶液を塗布し該塗膜から含有する水分または有機溶
媒を乾燥除去して無機酸化物のゲル層を形成させること
により含フッ素樹脂親水性構造物を製造する方法を提供
するものである。
The present invention also provides an average particle size of 0.05 to 50 μm.
m, a silicon compound powder having an average particle diameter of 10 μm or less is uniformly dispersed in a dispersion liquid of the fluororesin particles, and the volume ratio between the fluororesin and the silicon compound is 90/10 to 20/80, and Volume ratio between the material and the dispersion medium is 3 / 97-
A 50/50 mixed solution is then applied to the surface of the fluororesin base material, and the mixture is heated to a temperature equal to or higher than the melting point of the fluororesin and equal to or lower than the decomposition temperature to fuse and disperse the above dispersoid. After a layer is formed and cooled, a colloidal solution of an inorganic oxide is applied onto the fusion layer, and the water or organic solvent contained in the coating is dried and removed to form a gel layer of the inorganic oxide, thereby forming a fluorine-containing layer. It is intended to provide a method for producing a resin hydrophilic structure.

【0009】(含フッ素樹脂基材)本発明の基材に使用
される含フッ素樹脂としては、例えばポリテトラフルオ
ロエチレン(PTFE)の他、テトラフルオロエチレン
/ヘキサフルオロプロピレン共重合体(FEP)、テト
ラフルオロエチレン/パーフルオロ(アルコキシビニル
エーテル)共重合体(PFA)、エチレン/テトラフル
オロエチレン共重合体(ETFE)、ポリフッ化ビニル
(PVF)、ポリフッ化ビニリデン(PVdF)等であ
る。
(Fluorine-Containing Resin Substrate) Examples of the fluorine-containing resin used for the substrate of the present invention include polytetrafluoroethylene (PTFE), tetrafluoroethylene / hexafluoropropylene copolymer (FEP), Examples thereof include a tetrafluoroethylene / perfluoro (alkoxy vinyl ether) copolymer (PFA), an ethylene / tetrafluoroethylene copolymer (ETFE), polyvinyl fluoride (PVF), and polyvinylidene fluoride (PVdF).

【0010】上記含フッ素樹脂基材としては、分散質を
基材上に融着する際に熱によって形状が変化しないよう
に例えばガラス、カーボン、金属などの耐熱性繊維、織
布などによって強化された含フッ素樹脂基材を使用する
ことが好ましい。
The above-mentioned fluororesin base material is reinforced by a heat-resistant fiber such as glass, carbon, metal, or woven cloth so that the shape does not change due to heat when the dispersoid is fused to the base material. It is preferable to use a fluorine-containing resin base material.

【0011】(無機酸化物コロイド粒子)含フッ素樹脂
基材表面にゲル層を形成させるために用いる無機酸化物
コロイド溶液は、水または有機溶媒を分散媒とするSi
2 、TiO2 、ZrO2 、Al23 などの無機酸化
物微粒子のコロイド溶液である。 その粒子の大きさと
しては、平均粒子径1μm以下が好ましく、より好まし
くは100mμ以下であり、粒子径が小さいのでコロイ
ド溶液(ゾル)を形成する。具体的にはコロイダルシリ
カ、アルミナゾルやジルコニアゾルが挙げられる。例え
ばコロイダルシリカで説明すると、負に帯電した無水珪
酸の超微粒子(粒径およそ10〜20mμ)を水中に分
散させたコロイド溶液であり、粒子の表面にはシラノー
ル基及び水酸基が存在し、アルカリイオンにより電気二
重層が形成され、粒子間の反発により安定化されてい
る。また酸化カリウムや酸化リチウムなどの金属酸化物
を無水珪酸に対してモル比で1/3〜1/4から含んだ
ような組成のものでもよい。アルカリ性の強い無機酸化
物コロイド溶液を用いると、水に対する溶解性があるた
め、耐水性が低下する場合がある。
(Inorganic Oxide Colloid Particles) The inorganic oxide colloid solution used to form a gel layer on the surface of the fluororesin base material is made of Si containing water or an organic solvent as a dispersion medium.
It is a colloid solution of inorganic oxide fine particles such as O 2 , TiO 2 , ZrO 2 , and Al 2 O 3 . The average size of the particles is preferably 1 μm or less, more preferably 100 μm or less. Since the particle size is small, a colloid solution (sol) is formed. Specific examples include colloidal silica, alumina sol and zirconia sol. For example, in the case of colloidal silica, it is a colloidal solution in which ultrafine particles of negatively charged silicic anhydride (particle diameter: about 10 to 20 μm) are dispersed in water. Forms an electric double layer, and is stabilized by repulsion between particles. Further, a composition containing a metal oxide such as potassium oxide or lithium oxide in a molar ratio of 1/3 to 1/4 with respect to silicic anhydride may be used. When an inorganic oxide colloid solution having strong alkalinity is used, water solubility may be reduced due to solubility in water.

【0012】(ゲル層)ゲルとは液体を分散媒とするコ
ロイド溶液が流動性を失って固化した状態で、分散相の
溶解度が低下し、互いに連結して網目構造をとって、そ
の中に分散媒が含まれたものと考えられる。そして分散
媒の水または有機溶媒を蒸発乾燥させることにより、分
散相の骨組みの間に水を含むヒドロゲル、水以外の液体
を含むリオゲルを経て乾燥ゲルが得られる。ゆるやかに
乾燥するほど、粒子が小さいほど強固な乾燥ゲルの膜が
形成される。
(Gel layer) A gel is a state in which a colloid solution containing a liquid as a dispersion medium loses fluidity and solidifies. The solubility of the dispersed phase is reduced, and the gel is connected to each other to form a network structure. It is considered that a dispersion medium was contained. The water or organic solvent of the dispersion medium is evaporated to dryness, whereby a dried gel is obtained through a hydrogel containing water and a lyogel containing a liquid other than water between the frameworks of the dispersed phase. The gentler the drying, the smaller the particles, the stronger the dried gel film is formed.

【0013】(融着層)本発明は含フッ素樹脂基材表面
に上記無機酸化物コロイド溶液の固化により形成された
ゲル層を設けたものであるが、一般に含フッ素樹脂は表
面接着性が悪いので、親水層を表面に設けるためには、
含フッ素樹脂基材表面に接着性の良好な中間層を設け、
あるいは接着性を改良するための表面処理を行ない、そ
の上に親水層を設ければ基材に強固に接着した含フッ素
樹脂親水性構造物が得られるのでより好ましい。
(Fused Layer) In the present invention, a gel layer formed by solidifying the above-mentioned inorganic oxide colloid solution is provided on the surface of the fluororesin base material. Generally, the fluororesin has poor surface adhesion. So, in order to provide a hydrophilic layer on the surface,
Provide an intermediate layer with good adhesiveness on the surface of the fluororesin base material,
Alternatively, it is more preferable to perform a surface treatment for improving the adhesiveness and to provide a hydrophilic layer thereon to obtain a fluorine-containing resin hydrophilic structure firmly adhered to the substrate.

【0014】このような中間層の形成、あるいは表面処
理法として、エキシマレーザーで粗面を形成させたり、
金属ナトリウムでの表面処理、プラズマによるエッチン
グ等の方法を用いることによってもできるが、発明者ら
は含フッ素樹脂基材表面への無機酸化物コロイド溶液の
固化により形成されたゲル層の接着を助けるための中間
層についても検討した結果、本発明出願人が先に提案し
た基材表面に含フッ素樹脂と珪素化合物粉末とからなる
融着層(特公昭56-5460 号公報)を設け、この融着層を
介してゲル層を設ける方法が最も有効であることを見出
した。すなわち本発明は含フッ素樹脂基材表面上に含フ
ッ素樹脂と平均粒子径10μm以下の珪素化合物の粉末
との混合物で、その容量比が90/10〜20/80で
ある融着層とその上に無機酸化物コロイド溶液の固化に
より形成されたゲル層を設けた含フッ素樹脂親水性構造
物である。
As a method of forming such an intermediate layer or a surface treatment, a rough surface is formed by an excimer laser,
Surface treatment with metallic sodium, although as possible out by the Mochiiruko method such as etching by plasma, we adhesive gel layer formed by solidification of the inorganic oxide colloidal solution to the fluorine-containing resin base material surface As a result of studying an intermediate layer for assisting the above, a fusion layer (Japanese Patent Publication No. 56-5460) composed of a fluorine-containing resin and a silicon compound powder was provided on the surface of the base material proposed by the present applicant. It has been found that a method of providing a gel layer via this fusion layer is most effective. That is, the present invention relates to a fused layer having a volume ratio of 90/10 to 20/80 and a mixture of a fluorine-containing resin and a powder of a silicon compound having an average particle diameter of 10 μm or less on the surface of the fluorine-containing resin substrate. Is a fluorine-containing resin hydrophilic structure provided with a gel layer formed by solidifying an inorganic oxide colloid solution.

【0015】(含フッ素樹脂)融着層の形成に使用され
る含フッ素樹脂としては、基材に使用される含フッ素樹
脂と同一樹脂または類似化学構造を有する樹脂を選択す
ることが好ましい。その理由は、同一樹脂同志または類
似化学構造を有する樹脂同志の融着は非類似化学構造を
有する樹脂間の融着にくらべてその融着強度が高いため
である。例えばPTFEの基材に対し、分散質としてE
TFEを選択するよりも、PTFEまたはPFAを選択
することが推賞される。
(Fluorine-Containing Resin) As the fluorine-containing resin used for forming the fusion layer, it is preferable to select a resin having the same or similar chemical structure as the fluorine-containing resin used for the base material. The reason is that the fusion strength between resins having the same or similar chemical structure is higher than the fusion strength between resins having dissimilar chemical structures. For example, for a PTFE substrate, E
It is recommended to select PTFE or PFA rather than selecting TFE.

【0016】上記含フッ素樹脂を分散質とする分散液
は、乳化重合によって得ることができ、また含フッ素樹
脂粉末を水又は有機液体に分散させることによっても得
ることができる。特に好ましい分散液は乳化重合によっ
て得られるものであり、該分散液に含まれる含フッ素樹
脂粒子の平均粒子径は0. 05〜0. 5μm程度であ
る。含フッ素樹脂粉末より分散液を製造する場合には、
含フッ素樹脂の水性分散液または含フッ素樹脂の微粉末
を該樹脂の融点以上の温度雰囲気を有する焼成室内に噴
霧することによって得られる平均粒子径0. 5〜50μ
mの球形粉末を使用することが推賞される。しかし、本
発明に使用される含フッ素樹脂粉末は上記例示の方法に
よって得られる粉末に限定されるものではなく、要する
に、平均粒子径0. 5〜50μmの分散性の良い含フッ
素樹脂粒子であればよい。平均粒子径が50μmを越え
る含フッ素樹脂粒子の使用は分散液の安定性が悪くなる
こと、不必要に厚い融着層が得られること及び分散質を
基材に融着する工程において余分な融着時間及び温度が
必要になるという面で好ましくない。
The dispersion containing the above-mentioned fluorine-containing resin as a dispersoid can be obtained by emulsion polymerization, or can be obtained by dispersing a fluorine-containing resin powder in water or an organic liquid. A particularly preferred dispersion is obtained by emulsion polymerization, and the average particle diameter of the fluororesin particles contained in the dispersion is about 0.05 to 0.5 μm. When manufacturing a dispersion from a fluororesin powder,
The average particle diameter obtained by spraying an aqueous dispersion of a fluorinated resin or fine powder of a fluorinated resin into a firing chamber having an atmosphere at a temperature equal to or higher than the melting point of the resin is 0.5 to 50 μm.
It is recommended to use m spherical powders. However, the fluororesin powder used in the present invention is not limited to the powder obtained by the above-described method, and in short, any fluororesin particles having an average particle diameter of 0.5 to 50 μm and having good dispersibility can be used. I just need. The use of fluorine-containing resin particles having an average particle diameter exceeding 50 μm results in poor stability of the dispersion, an unnecessarily thick fusion layer, and extra fusion in the step of fusing the dispersoid to the substrate. It is not preferable in terms of requiring the wearing time and temperature.

【0017】分散媒は分散質として使用される含フッ素
樹脂の融点以下の温度で蒸発・揮散せしめることが可能
な常温で液体のものである。水は無毒、不燃性であるこ
とから分散媒として好適である。また、分散液の安定性
を向上させるために、分散液中に少量の界面活性剤を添
加することが推賞される。
The dispersion medium is a liquid at room temperature which can be evaporated and volatilized at a temperature lower than the melting point of the fluororesin used as the dispersoid. Water is suitable as a dispersion medium because it is nontoxic and nonflammable. It is also advisable to add a small amount of a surfactant to the dispersion in order to improve the stability of the dispersion.

【0018】(珪素化合物)融着層を形成するもう一方
の成分として使用される珪素化合物は、平均粒子径が1
0μm以下の粉末であって、水または有機液体に溶解し
ないものであることが必要である。このような珪素化合
物粉末の例としては、微粒子状二酸化珪素、珪酸カルシ
ウム、珪酸アルミニュームなどのごとき通常ホワイトカ
ーボンと呼ばれる粉末、珪藻土、カオリンなど、耐熱性
の珪素化合物を好適なものとして挙げることが出来る。
特に好適なものとしてはフュームドシリカ(fumed silic
a)と呼ばれる平均粒子径5〜50mμの二酸化珪素及び
少量の酸化アルミニウムによって、変性された二酸化珪
素の粉末があげられる。該粉末は、およそ50〜400
2 /gの比表面積を持つこと及び該粉末の粒子の表面
に存在するシラノール基が100A2 当たりおよそ3個
程度であるものが好適である。
(Silicon Compound) The silicon compound used as the other component for forming the fusion layer has an average particle diameter of 1%.
It is necessary that the powder has a size of 0 μm or less and does not dissolve in water or an organic liquid. Examples of such silicon compound powders include fine particles of silicon dioxide, calcium silicate, powders usually called white carbon such as aluminum silicate, diatomaceous earth, and kaolin. I can do it.
Particularly preferred is fumed silicic acid (fumed silic
A powder of silicon dioxide modified by silicon dioxide having an average particle diameter of 5 to 50 μm and a small amount of aluminum oxide, which is referred to as a). The powder is approximately 50-400
It is preferable that the particles have a specific surface area of m 2 / g and that the number of silanol groups present on the surface of the particles of the powder is about 3 per 100 A 2 .

【0019】平均粒子径が10μmを越える珪素化合物
の粉末の使用は、該粉末を含フッ素樹脂分散液に添加し
て該粉末と含フッ素樹脂との混合分散液とした際に該粉
末粒子が分離沈降するため、基材上に均一な塗布を行い
にくく、且つ得られた構造物の接着性が低いという不都
合を招く。該粉末の含フッ素樹脂分散液への添加方法は
該粉末を直接分散液に添加しても、或いは水または有機
液体中に分散させたのち添加しても良く、使用される含
フッ素樹脂分散液の性質により適宜に判断して混合分散
液とすれば良い。
The use of a powder of a silicon compound having an average particle diameter of more than 10 μm may result in the separation of the powder particles when the powder is added to a fluororesin dispersion to form a mixed dispersion of the powder and the fluororesin. Due to the sedimentation, it is difficult to perform uniform coating on the substrate, and the resulting structure has a low adhesiveness. The method of adding the powder to the fluorine-containing resin dispersion may be such that the powder is directly added to the dispersion, or may be added after being dispersed in water or an organic liquid. The mixed dispersion may be appropriately determined according to the properties of the mixture.

【0020】(混合分散液)上記の如くして得られた混
合分散液において分散質である含フッ素樹脂粒子と珪素
化合物との容量比は90/10〜20/80であること
が必要である。該珪素化合物の量が10容量%未満であ
る場合には親水層との接着性が低くなり過ぎ、80容量
%を越える場合には融着層の強度が低くなり層が剥離す
る傾向がある。該化合物の好ましい添加量の範囲は粒径
によって左右され、粒径の大きいものほど好適添加量の
範囲はせまくなる傾向がみられる。例えば平均粒子径が
10mμ以下の超微粒子を使用した場合には、その好適
添加量はおよそ20〜80容量%であり、平均粒子径が
20〜50mμの微粒子を使用した場合には、その好適
添加量はおよそ30〜70容量%である。また、平均粒
子径が1μm前後及び5μm前後の粒子を使用した場合
には、その好適添加量はおよそ40〜70容量%及び5
0〜60容量%となる。
(Mixed Dispersion) In the mixed dispersion obtained as described above, the volume ratio between the fluororesin particles as the dispersoid and the silicon compound needs to be 90/10 to 20/80. . When the amount of the silicon compound is less than 10% by volume, the adhesiveness to the hydrophilic layer is too low, and when it exceeds 80% by volume, the strength of the fusion layer is low and the layer tends to peel. The preferred range of the addition amount of the compound depends on the particle size, and the larger the particle size, the narrower the range of the preferred addition amount is. For example, when ultrafine particles having an average particle diameter of 10 μm or less are used, the preferable addition amount is about 20 to 80% by volume, and when ultrafine particles having an average particle diameter of 20 to 50 μm are used, The amount is approximately 30-70% by volume. When particles having an average particle size of about 1 μm and about 5 μm are used, the preferable addition amount is about 40 to 70% by volume and 5 to 50% by volume.
0 to 60% by volume.

【0021】殊に、分散質として平均粒子径が0. 05
〜0. 5μmの含フッ素樹脂粒子と平均粒子径が0. 5
μm以下より好ましくは0. 1μm以下の該珪素化合物
とを使用した場合には、混合分散液の安定性が良く、更
に、仕上がった親水性構造物の親水化層との接着強度が
高く、親水層表面も良好である。分散質と分散媒の容量
比は粒子の粒径、形状などにもよるが、およそ3/97
〜50/50程度であることが望ましい。分散質が3容
量%未満では経済性が劣り、また50容量%を越える場
合にはしばしば分散液が不安定となり、凝集物が生じた
り、流動性が悪く取扱いが困難になるなどの欠点が生ず
る。
In particular, the average particle diameter of the dispersoid is 0.05.
Fluorine-containing resin particles having an average particle diameter of 0.5 to 0.5 μm.
When the silicon compound having a thickness of 0.1 μm or less, and more preferably 0.1 μm or less, is used, the stability of the mixed dispersion is good, and the adhesive strength of the finished hydrophilic structure to the hydrophilic layer is high. The layer surface is also good. The volume ratio of the dispersoid to the dispersion medium depends on the particle size and shape of the particles, but is about 3/97.
It is desirably about 50/50. If the dispersoid content is less than 3% by volume, the economic efficiency is inferior. If the dispersoid content is more than 50% by volume, the dispersion often becomes unstable, resulting in agglomerates and poor handling properties due to poor fluidity. .

【0022】かくして得られた融着層は基材表面に無機
酸化物コロイド溶液の固化により形成されたゲル層を保
持させるための有効な手段であるが、この融着層は含フ
ッ素樹脂を必須成分として含有し、それ自体で本発明の
目的とする親水層を構成するものではない。
The fusion layer thus obtained is an effective means for retaining the gel layer formed by solidifying the inorganic oxide colloid solution on the surface of the substrate, but this fusion layer is essentially made of a fluorine-containing resin. It is contained as a component and does not constitute the hydrophilic layer intended in the present invention by itself.

【0023】(製造方法)本発明において、含フッ素樹
脂と珪素化合物とからなる融着層を介してゲル層を設け
た含フッ素樹脂親水性構造物は、平均粒子径0. 05〜
50μmの含フッ素樹脂粒子の分散液に平均粒子径10
μm以下の珪素化合物の粉末を均一に分散せしめ、含フ
ッ素樹脂と珪素化合物との容量比が90/10〜20/
80であり、且つ上記分散質と分散媒との容量比が3/
97〜50/50の混合液とし、ついで該混合分散液を
含フッ素樹脂基材表面上に施し、含フッ素樹脂の融点以
上、分解温度以下の温度に加熱して上記分散質を融着さ
せて融着層を形成し冷却した後、該融着層上に無機酸化
物コロイド溶液を塗布し該塗膜から含有する水分または
有機溶媒を乾燥除去することにより製造される。
(Production method) In the present invention, the fluorine-containing resin hydrophilic structure provided with a gel layer via a fusion layer made of a fluorine-containing resin and a silicon compound has an average particle diameter of 0.05 to 0.05.
The dispersion of 50 μm fluororesin particles has an average particle diameter of 10 μm.
μm or less of a silicon compound powder is uniformly dispersed, and the volume ratio of the fluorine-containing resin to the silicon compound is 90/10 to 20 /
80, and the volume ratio between the dispersoid and the dispersion medium is 3 /
97 to 50/50, and then apply the mixed dispersion on the surface of the fluororesin base material, and heat the fluororesin to a temperature not lower than the melting point and not higher than the decomposition temperature to fuse the dispersoid. After the fusion layer is formed and cooled, it is produced by applying an inorganic oxide colloid solution on the fusion layer and drying and removing the contained water or organic solvent from the coating film.

【0024】分散液を基材に施す方法は、流しかけ、浸
漬あるいは吹付けなど通常塗装に使用されている方法が
有利に使用される。分散液を施された基材は分散媒を除
去するため乾燥され、ついで含フッ素樹脂の融点以上、
分解温度以下の温度に加熱される。この加熱により分散
質は基材上に融着する。好ましい融着温度は樹脂によっ
て異なるが、例えばPTFEの場合には350〜390
℃、FEP及びPFAの場合には310〜370℃、E
TFEの場合には290〜340℃程度である。ついで
該基材は冷却され、融着された分散質は融着層を形成
し、該層の表面が親水層との接着面として使用される。
As a method of applying the dispersion to the substrate, a method usually used for coating, such as pouring, dipping or spraying, is advantageously used. The substrate to which the dispersion has been applied is dried to remove the dispersion medium, and then the melting point of the fluorine-containing resin or higher,
Heated to a temperature below the decomposition temperature. This heating causes the dispersoid to fuse to the substrate. The preferred fusing temperature varies depending on the resin.
° C, 310-370 ° C for FEP and PFA, E
In the case of TFE, the temperature is about 290 to 340 ° C. The substrate is then cooled and the fused dispersoid forms a fused layer, the surface of which is used as an adhesive surface with the hydrophilic layer.

【0025】含フッ素樹脂基材表面上の融着層に無機酸
化物コロイド溶液を塗布するには該表面張力が50ダイ
ン/cm以下であることが望ましく、表面張力が50ダ
イン/cm以上では無機酸化物コロイド溶液が含フッ素
樹脂表面で弾かれて塗布することが困難である。表面張
力を50ダイン/cm以下にするには、界面活性剤やエ
タノール等の低界面張力の有機溶剤を該粒子液に添加し
たり融着層に塗布したりすることが必要である。有機溶
剤を添加する場合は無機酸化物コロイド溶液が凝集しな
いものを選択することが必要である。
In order to apply the inorganic oxide colloid solution to the fusion layer on the surface of the fluorine-containing resin substrate, the surface tension is desirably 50 dynes / cm or less. It is difficult to apply the colloidal oxide solution by flipping it on the surface of the fluororesin. In order to reduce the surface tension to 50 dynes / cm or less, it is necessary to add a surfactant or an organic solvent having a low interfacial tension, such as ethanol, to the particle liquid or apply it to the fusion layer. When an organic solvent is added, it is necessary to select one that does not cause aggregation of the inorganic oxide colloid solution.

【0026】無機酸化物コロイド溶液を融着層に塗布す
る方法は、ロール塗り、流しかけ、浸漬あるいは吹付け
など通常塗装に使用されている方法が可能である。塗布
された無機酸化物コロイド溶液から水または有機溶媒の
分散媒を乾燥除去する方法及び温度は特に限定されず基
材の含フッ素樹脂が熱分解されない温度であれば良い。
分散媒の乾燥除去が不足すると後記する耐水性に劣るも
のとなる。
The method of applying the inorganic oxide colloid solution to the fusion layer can be a method commonly used for coating, such as roll coating, pouring, dipping or spraying. The method and temperature for drying and removing the dispersion medium of water or the organic solvent from the applied inorganic oxide colloid solution are not particularly limited as long as the fluororesin of the substrate is not thermally decomposed.
Insufficient drying and removal of the dispersion medium results in poor water resistance as described below.

【0027】(親水層)このようにして得られた含フッ
素樹脂親水性構造物は含フッ素樹脂基材の表面上に含フ
ッ素樹脂と平均粒子径10μm以下の珪素化合物粒子と
からなる融着層を有し、該融着層の表面に無機酸化物コ
ロイド溶液に使用された無機酸化物が表面の平滑な親水
性の膜を形成し一面を覆っているものである。
(Hydrophilic layer) The fluororesin hydrophilic structure thus obtained is a fusion layer comprising a fluororesin and silicon compound particles having an average particle diameter of 10 μm or less on the surface of a fluororesin substrate. Wherein the inorganic oxide used in the inorganic oxide colloid solution forms a smooth hydrophilic film on the surface of the fusion layer and covers one surface.

【0028】膜構造材に形成される親水層の厚みは、お
よそ0. 1〜30μmが好ましく、より好ましくは0.
5〜10μmである。0. 1μmより親水層厚みが薄い
と親水化の効果が少なく、30μm以上では膜の剥離や
欠落が起こりやすくなる。無機酸化物コロイド溶液から
形成された親水層は、水に親和性を示すとともに保水性
を有しているため帯電防止能をしめす。
The thickness of the hydrophilic layer formed on the membrane structural material is preferably about 0.1 to 30 μm, and more preferably about 0.1 to 30 μm.
5 to 10 μm. If the thickness of the hydrophilic layer is less than 0.1 μm, the effect of hydrophilization is small. The hydrophilic layer formed from the inorganic oxide colloid solution has an affinity for water and has water retention, and thus exhibits an antistatic ability.

【0029】[0029]

【実施例】以下実施例を挙げて本発明を具体的に説明す
る。なお実施例で含フッ素樹脂基材の種類、融着層、親
水層の形成方法、親水層の表面物性評価方法等は以下の
とおりである。
The present invention will be specifically described below with reference to examples. In Examples, the type of the fluororesin base material, the method for forming the fusion layer and the hydrophilic layer, the method for evaluating the surface properties of the hydrophilic layer, and the like are as follows.

【0030】(1)含フッ素樹脂基材 (1) テント膜:中興化成工業株式会社製 FGT- 60
0(縦100 mm×横100 mm) (2) PTFE切削フィルム:三井・ デュポンフロロケミ
カル(株)製、7A-J(縦100 mm×横100 mm×厚み50μ
m)
(1) Fluorine-containing resin substrate (1) Tent film: FGT-60 manufactured by Chuko Kasei Kogyo Co., Ltd.
0 (100 mm × 100 mm) (2) PTFE cutting film: 7A-J (Mitsui / Dupont Fluorochemicals Co., Ltd.), 100 mm × 100 mm × 50 μm
m)

【0031】(2)融着層の形成(比較例6を除く) 超微粒子状無水シリカ粉末(日本アエロジル株式会社製
アエロジルMOX80、平均粒子径30mμ)をノニ
オン界面活性剤(Rohme & Hass Co.製 トライトンX-
100)の8%水溶液に分散し、PFA水性分散液(三
井・ デュポンフロロケミカル株式会社製:固形分28w
t%、平均粒子径0. 17μm)と混合して、珪素化合
物との容量比が80/20であり、且つ上記分散質と分
散媒との容量比が12/88の混合液を得た。これをP
TFEをコーティングしたテント膜またはPTFE切削
フィルムに流しかけ、ついで乾燥後380℃で20分間
焼成して該分散質をテント膜またはフィルム上に融着せ
しめ、冷却して融着層を形成させる。
(2) Formation of fused layer (except for Comparative Example 6) Ultrafine anhydrous silica powder (Aerosil MOX80, manufactured by Nippon Aerosil Co., Ltd., average particle size: 30 mμ) was added to a nonionic surfactant (manufactured by Rohme & Hass Co.). Triton X-
100) in an 8% aqueous solution, and a PFA aqueous dispersion (manufactured by Mitsui / Dupont Fluorochemical Co., Ltd .: solid content 28w)
% and an average particle diameter of 0.17 μm) to obtain a mixed solution having a volume ratio of 80/20 with the silicon compound and a volume ratio of the above-mentioned dispersoid and dispersion medium of 12/88. This is P
It is poured on a tent membrane or PTFE cutting film coated with TFE, then dried and baked at 380 ° C. for 20 minutes to fuse the dispersoid on the tent membrane or film, and then cooled to form a fusion layer.

【0032】(3)親水層の形成 界面活性剤またはエタノールで塗布しやすい表面張力に
調節した固形分5〜10wt%の無機酸化物コロイド液
を上記融着層が形成されたテント膜またはフィルムにロ
ールで塗装する。これを乾燥機に入れて水分を除去し塗
膜を形成する。
(3) Formation of Hydrophilic Layer An inorganic oxide colloid solution having a solid content of 5 to 10% by weight adjusted to a surface tension which can be easily applied with a surfactant or ethanol is applied to the tent film or film on which the above-mentioned fused layer is formed. Paint with a roll. This is put into a dryer to remove water and form a coating film.

【0033】(4)親水層の耐水性評価法 1. 5mの高さから園芸用散水器(トヨックス製ノズル
孔直径0. 3mmx445個)にて12〜20℃の水を
100mm/分の降水量で10分間降らせた後風乾し、
シャワー前後の重量変化から塗膜の残存重量%を算出し
親水層の耐水性として評価した。
(4) Evaluation method of water resistance of hydrophilic layer 1.5-m height of water at 12-20 ° C. with a horticultural water sprinkler (Toyox nozzle hole diameter: 0.3 mm × 445) at a height of 1.5 m at 100 mm / min. And let it air-dry for 10 minutes
The remaining weight% of the coating film was calculated from the weight change before and after the shower, and evaluated as the water resistance of the hydrophilic layer.

【0034】(5)親水性評価法 1Lガラスビーカーに入った純水に、耐水性をテストし
た後のテント膜またはフィルムを下端より80mmまで
浸し、60秒間静置する。この膜を5mm/secの速
度で引き上げて親水層の裏側の水分を拭き取り、親水層
に保持された水の重量(g)を測定する。
(5) Hydrophilicity evaluation method The tent film or film after the water resistance test is immersed in pure water in a 1 L glass beaker to 80 mm from the lower end, and allowed to stand for 60 seconds. The film is pulled up at a speed of 5 mm / sec to wipe off moisture on the back side of the hydrophilic layer, and the weight (g) of water retained in the hydrophilic layer is measured.

【0035】(6)濡れ性評価法 親水性を評価した親水層面を観察して、下記の3段階に
て含フッ素樹脂構造物表面の水に対する親和力を評価し
た。 ドライ :膜表面に水が殆ど付着していないもの 半親水性:水滴が平滑な水膜状となる部分と、撥水によ
り水滴が凹凸状に濡れている部分があるもの 親水性 :水が平滑な水膜状となり撥水による凹凸がな
いもの
(6) Method for Evaluating Wettability The surface of the hydrophilic layer for which the hydrophilicity was evaluated was observed, and the affinity of the surface of the fluorine-containing resin structure for water was evaluated in the following three steps. Dry: Water hardly adheres to the film surface Semi-hydrophilic: Water droplets are formed into a smooth water film and water-repellent water droplets are unevenly wetted Hydrophilic: Water is smooth Water-repellent and water-repellent

【0036】[実施例1]PTFEコーティングしたテ
ント膜に上記(2)の方法で融着層を形成し、この融着
層上に0. 5wt%のトライトン水溶液で固形分を10
wt%に希釈したコロイダルシリカ(日産化学工業製
スノーテックスN:SiO2 固形分20wt%、平均粒
子径10〜20mμ)をローラ塗りし、180 ℃×20分間
熱処理して親水層を形成させ、親水性評価及び親水層の
耐久性を評価した。結果を表1に示す。
Example 1 A fusion layer was formed on the PTFE-coated tent film by the method (2), and a solid content of 10% with a 0.5 wt% triton aqueous solution was formed on the fusion layer.
wt% diluted colloidal silica (Nissan Chemical Industries
(Snowtex N: SiO 2 solid content: 20 wt%, average particle size: 10 to 20 mμ) was applied by a roller and heat-treated at 180 ° C. for 20 minutes to form a hydrophilic layer, and the hydrophilicity and durability of the hydrophilic layer were evaluated. Table 1 shows the results.

【0037】[実施例2]PTFE切削フィルムに融着
層を形成し、この融着層上にエタノールで固形分を5w
t%に希釈したコロイダルシリカ(日産化学工業製 ス
ノーテックスN:SiO2 固形分20wt%)をローラ
塗りし、50℃×20分間熱処理して親水層を形成させ、親
水性評価及び親水層の耐久性を評価した。結果を表1に
示す。
Example 2 A fused layer was formed on a PTFE cut film, and a solid content of 5 w
Roll coating with colloidal silica diluted to t% (Snowtex N, manufactured by Nissan Chemical Industries: 20 wt% of SiO 2 solid content), and heat treatment at 50 ° C. for 20 minutes to form a hydrophilic layer, evaluation of hydrophilicity and durability of the hydrophilic layer The sex was evaluated. Table 1 shows the results.

【0038】[実施例3]PTFEコーティングテント
膜に融着層を形成し、この融着層上に0. 5wt%のト
ライトン水溶液で固形分を10wt%に希釈したコロイ
ダルシリカ(日産化学工業製 スノーテックスK:全固
形分28wt%、SiO2 /K2 Oモル比3. 3〜4.
0)をローラ塗りし、50℃×20分間熱処理して親水層を
形成させ、親水性評価及び親水層の耐久性を評価した。
結果を表1に示す。
Example 3 A fusion layer was formed on a PTFE-coated tent film, and colloidal silica (Snow by Nissan Chemical Industry Co., Ltd.) having a solid content of 10 wt% diluted with a 0.5 wt% triton aqueous solution was formed on the fusion layer. Tex K: total solids 28wt%, SiO 2 / K 2 O molar ratio from 3.3 to 4.
0) was applied by a roller and heat treated at 50 ° C. for 20 minutes to form a hydrophilic layer, and the hydrophilicity was evaluated and the durability of the hydrophilic layer was evaluated.
Table 1 shows the results.

【0039】[実施例4]コロイド溶液としてスノーテ
ックスKの代わりに、0. 5wt%のトライトン水溶液
で固形分を10wt%に希釈したリチウムシリケート
(日産化学工業製LSS−75:SiO2 固形分20〜
21wt%、SiO2 /Li2 Oモル比7. 5)を用い
た以外は実施例3と同様にして、PTFEコーティング
テント膜上に融着層を介して親水層を形成し、親水性評
価及び親水層の耐久性を評価した。結果を表1に示す。
た。
Example 4 Instead of Snowtex K as a colloidal solution, lithium silicate (LSS-75 manufactured by Nissan Chemical Industries, Ltd .: SiO 2 solid content 20) diluted to a solid content of 10 wt% with a 0.5 wt% aqueous solution of Triton was used. ~
A hydrophilic layer was formed on a PTFE-coated tent film via a fusion layer in the same manner as in Example 3 except that 21 wt% and a SiO 2 / Li 2 O molar ratio of 7.5) were used. The durability of the hydrophilic layer was evaluated. Table 1 shows the results.
Was.

【0040】[実施例5]コロイド溶液としてスノーテ
ックスKの代わりに、0. 5wt%のトライトン水溶液
で固形分を10wt%に希釈したジルコニアゾル(日産
化学工業製 NZS−20A:ZrO2 固形分20. 1
wt%)を用いた以外は実施例3と同様にして、PTF
Eコーティングテント膜上に融着層を介して親水層を形
成し、親水性評価及び親水層の耐久性を評価した。結果
を表1に示す。
Example 5 Instead of Snowtex K as a colloid solution, a zirconia sol having a solid content of 10 wt% diluted with a 0.5 wt% aqueous solution of Triton (Nissan Chemical Industries NZS-20A: ZrO 2 solid content 20) .1
wt%), except that PTF was used.
A hydrophilic layer was formed on the E-coated tent film via a fusion layer, and the hydrophilicity and the durability of the hydrophilic layer were evaluated. Table 1 shows the results.

【0041】[実施例6]PTFEコーティングテント
膜に融着層を形成し、この融着層上に0. 5wt%のト
ライトン水溶液で固形分を5wt%に希釈したアルミナ
ゾル(日産化学工業製 アルミナゾル- 200:Al2
3 固形分10〜11wt%、粒子の平均の大きさ10
0mμ〜10mμ)をローラ塗りし 250℃×30分間熱処
理して親水層を形成させ、親水性評価及び親水層の耐久
性を評価した。結果を表1に示す。
Example 6 A fused layer was formed on a PTFE-coated tent film, and an alumina sol (alumina sol manufactured by Nissan Chemical Industry Co., Ltd.) having a solid content diluted to 5 wt% with a 0.5 wt% triton aqueous solution was formed on the fused layer. 200: Al 2
O 3 solid content 10-11 wt%, average particle size 10
(0 μm to 10 μm) was applied with a roller and heat-treated at 250 ° C. for 30 minutes to form a hydrophilic layer, and the hydrophilicity was evaluated and the durability of the hydrophilic layer was evaluated. Table 1 shows the results.

【0042】[比較例1〜3]ガラス板及び実施例で含
フッ素樹脂基材として用いたPTFEコーティングした
テント膜とPTFE切削フィルムをそれぞれ親水性処理
を行わず、そのままで親水性を評価した。各基材表面の
親水性評価及び親水層の耐久性評価結果は、表1に示す
とおりであった。
[Comparative Examples 1 to 3] The PTFE-coated tent film and the PTFE cut film used as the fluorine-containing resin base material in the glass plate and the examples were each subjected to hydrophilic treatment without hydrophilic treatment, and the hydrophilicity was evaluated as it was. The results of the hydrophilicity evaluation of the surface of each base material and the durability evaluation of the hydrophilic layer are as shown in Table 1.

【0043】[比較例4〜5]実施例で含フッ素樹脂基
材として用いたPTFEコーティングしたテント膜及び
PTFE切削フィルムに実施例で用いた融着層のみを設
け、親水性処理を行わず、そのままで親水性を評価し
た。親水性評価及び親水層の耐久性評価結果は、表1に
示すとおりであった。
[Comparative Examples 4 and 5] The PTFE-coated tent film and PTFE cut film used as the fluororesin base material in the examples were provided with only the fusion layer used in the examples, and were not subjected to hydrophilic treatment. The hydrophilicity was evaluated as it was. The results of the hydrophilicity evaluation and the durability evaluation of the hydrophilic layer were as shown in Table 1.

【0044】[比較例6〜8]比較例4の融着層の形成
において、PFA水性分散液をPTFE水性分散液(三
井・ デュポンフロロケミカル株式会社製:固形分28w
t%、平均粒子径0.17μm)に代え、比較例4と同
様にトライトンX- 100)の8%水溶液に分散したア
エロジルMOX80(平均粒子径30mμ)と混合し
て、珪素化合物との容量比がそれぞれ60/40、40
/60及び20/80であり、且つ上記分散質と分散媒
との容量比が5/95の混合液を得た。これを比較例4
と同様にPTFEをコーティングしたテント膜に流しか
け、ついで乾燥後380℃で20分間焼成して該分散質
をテント膜上に融着せしめ、冷却して融着層を形成させ
た。この融着層に親水性処理を行わず、そのままで親水
性を評価した。結果を表1に示す。融着層のPTFE含
量が少なくなると層自体の耐水性が低下して融着層をテ
ント膜に保持できなくなる。
[Comparative Examples 6 to 8] In the formation of the fused layer of Comparative Example 4, the aqueous PFA dispersion was replaced with an aqueous PTFE dispersion (manufactured by DuPont-Mitsui Fluorochemicals Co., Ltd .: solid content 28w).
%, average particle size 0.17 μm), and mixed with Aerosil MOX80 (average particle size 30 mμ) dispersed in an 8% aqueous solution of Triton X-100) in the same manner as in Comparative Example 4 to obtain a volume ratio with the silicon compound. Are 60/40 and 40 respectively
/ 60 and 20/80, and the volume ratio of the dispersoid to the dispersion medium was 5/95. This was compared with Comparative Example 4
The tent film coated with PTFE was poured in the same manner as described above, then dried and baked at 380 ° C. for 20 minutes to fuse the dispersoid on the tent film, and cooled to form a fused layer. The hydrophilicity was evaluated as it was without performing the hydrophilic treatment on the fused layer. Table 1 shows the results. When the PTFE content of the fusion layer is low, the water resistance of the layer itself is reduced, and the fusion layer cannot be held on the tent film.

【0045】[0045]

【表1】 [Table 1]

【0046】[0046]

【発明の効果】本発明の含フッ素樹脂親水性構造物は、
表面に無機酸化物コロイド溶液の固化により形成された
ゲル層を持つため帯電防止能を示すとともに、基材表面
に凝縮した水分が薄い水膜となって保持されたり、基材
に沿って水膜として流れ落ちることができるので膜構造
材とした時に天井からの水滴落下を防止することがで
き、また表面状態が親水性でかつ平滑であるので水性ペ
イントによる塗装や印刷インクによるプリントが可能と
なる。
The fluorine-containing resin hydrophilic structure of the present invention comprises:
Having a gel layer formed by solidification of the inorganic oxide colloid solution on the surface, it exhibits antistatic properties, and the water condensed on the surface of the base material is held as a thin water film, or the water film along the base material As a result, it is possible to prevent water droplets from falling from the ceiling when the film structure material is used, and since the surface state is hydrophilic and smooth, painting with an aqueous paint or printing with a printing ink becomes possible.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 含フッ素樹脂基材表面上に含フッ素樹脂
と平均粒子径10μm以下の珪素化合物の粉末との混合
物で、その容量比が90/10〜20/80である融着
層を設け、その上に無機酸化物コロイド溶液の固化によ
り形成されたゲル層を設けた含フッ素樹脂親水性構造
物。
1. A fusion layer having a volume ratio of 90/10 to 20/80 which is a mixture of a fluororesin and a powder of a silicon compound having an average particle diameter of 10 μm or less is provided on a surface of a fluororesin base material. And a fluorine- containing resin hydrophilic structure provided thereon with a gel layer formed by solidifying an inorganic oxide colloid solution.
【請求項2】 平均粒子径0. 05〜50μmの含フッ
素樹脂粒子の分散液に平均粒子径10μm以下の珪素化
合物の粉末を均一に分散せしめ、含フッ素樹脂と珪素化
合物との容量比が90/10〜20/80であり、且つ
上記分散質と分散媒との容量比が3/97〜50/50
の混合液とし、ついで該混合分散液を含フッ素樹脂基材
表面上に施し、含フッ素樹脂の融点以上、分解温度以下
の温度に加熱して上記分散質を融着させて融着層を形成
し冷却した後、該融着層上に無機酸化物コロイド溶液を
塗布し該塗膜から含有する水分または有機溶媒を乾燥除
去し固化することを特徴とする請求項記載の含フッ素
樹脂親水性構造物の製造方法。
2. A powder of a silicon compound having an average particle diameter of 10 μm or less is uniformly dispersed in a dispersion of fluorine-containing resin particles having an average particle diameter of 0.05 to 50 μm, and the volume ratio of the fluorine-containing resin to the silicon compound is 90%. / 10 to 20/80, and the volume ratio between the dispersoid and the dispersion medium is 3/97 to 50/50.
And then apply the mixed dispersion to the surface of the fluororesin base material and heat the fluororesin to a temperature not lower than the melting point and not higher than the decomposition temperature to fuse the dispersoid and form a fusion layer. after cooling, fluororesin hydrophilic according to claim 1, characterized in that the water or organic solvent containing the coating inorganic oxide colloidal solution to said fusing layer coating film dried to remove solidified The method of manufacturing the structure.
【請求項3】 含フッ素樹脂粒子と珪素化合物の混合分
散液に界面活性剤又は低界面張力の有機溶剤を添加し
て、含フッ素樹脂基材表面上に施すことを特徴とする請
求項記載の含フッ素樹脂親水性構造物の製造方法。
Wherein by adding an organic solvent of a surfactant or a low interfacial tension in a mixed dispersion of the fluorine-containing resin particles and a silicon compound, according to claim 2, characterized in that applied to the fluororesin substrate surface The method for producing a fluorine-containing resin hydrophilic structure of the above.
JP6232416A 1994-07-19 1994-09-01 Fluorine-containing resin hydrophilic structure and method for producing the same Expired - Fee Related JP2939422B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6232416A JP2939422B2 (en) 1994-07-19 1994-09-01 Fluorine-containing resin hydrophilic structure and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP18791194 1994-07-19
JP6-187911 1994-07-19
JP6232416A JP2939422B2 (en) 1994-07-19 1994-09-01 Fluorine-containing resin hydrophilic structure and method for producing the same

Publications (2)

Publication Number Publication Date
JPH0885186A JPH0885186A (en) 1996-04-02
JP2939422B2 true JP2939422B2 (en) 1999-08-25

Family

ID=26504634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6232416A Expired - Fee Related JP2939422B2 (en) 1994-07-19 1994-09-01 Fluorine-containing resin hydrophilic structure and method for producing the same

Country Status (1)

Country Link
JP (1) JP2939422B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100341565B1 (en) * 1998-11-11 2002-06-22 김윤 Fluorinated resins having a surface with high wettability
JP2002079625A (en) * 2000-09-05 2002-03-19 Daikin Ind Ltd Fluorine-containing water and oil repelling coating film
WO2006059697A1 (en) 2004-12-03 2006-06-08 Asahi Glass Company, Limited Ethylene-tetrafluoroethylene copolymer molding and process for producing the same
WO2008053632A1 (en) * 2006-11-02 2008-05-08 Asahi Glass Company, Limited Ethylene-tetrafluoroethylene copolymer molded product and method for producing the same
JP2010142573A (en) * 2008-12-22 2010-07-01 Coki Engineering Inc Gasket for syringe, method for manufacturing the same, and prefilled syringe using the gasket
JP6110104B2 (en) * 2012-11-01 2017-04-05 中興化成工業株式会社 Complex
JP6277297B2 (en) * 2017-03-09 2018-02-07 中興化成工業株式会社 Membrane structure
CN114474799A (en) * 2021-12-31 2022-05-13 脉通医疗科技(嘉兴)有限公司 Medical hollow tube and preparation method thereof

Also Published As

Publication number Publication date
JPH0885186A (en) 1996-04-02

Similar Documents

Publication Publication Date Title
US5968642A (en) Article having a water-repellent fluororesin surface, and method for manufacturing the same
JP2500149B2 (en) Water- and oil-repellent coating and method for producing the same
JPH03501131A (en) Polytetrafluoroethylene coating on polymer surface
JP5677144B2 (en) Water repellent member, manufacturing method thereof, and air conditioner outdoor unit
JP2939422B2 (en) Fluorine-containing resin hydrophilic structure and method for producing the same
JP2010527321A (en) Super hydrophobic water repellent powder
JP2009521552A (en) Method for preparing superhydrophobic coating
JPWO2008087877A1 (en) COATING COMPOSITION AND METHOD FOR PRODUCING THE SAME, HEAT EXCHANGER, AND AIR CONDITIONER
JPH11514395A (en) Method of forming a thin, durable coating of perfluorocarbon ionomer on various support materials
JPH01221856A (en) Filter for exhaust plug of lead-acid battery
TWI610716B (en) Composite porous film for separating fluid
JPH08113756A (en) Production of article having surface of water-repellent fluorine-containing resin
JP6338702B2 (en) Coating material, manufacturing method thereof, and surface structure
JPH04239633A (en) Water and repelling film and manufacture thereof
JP3430482B2 (en) Heat exchange material
JP3176740B2 (en) Surface modification method of fluororesin using ultraviolet laser light
JP3818882B2 (en) Method for producing hydrophilic silica coating
JP2001040287A (en) Antimicrobial coating film and substrate with the same
JP3274078B2 (en) Fluorine-containing resin hydrophilic architectural membrane material and method for producing the same
JPH07329251A (en) Film structural material and production thereof
JPH08259851A (en) Water-repelling coating film, water-repelling coating material and fin for heat-exchanger
JP2006045370A (en) Super hydrophilic coating composition and coating and super hydrophilic colored steel plate
JP3426284B2 (en) Water repellent glass and method for producing the same
JP3147251B2 (en) Hydrophilic coating and method for forming the coating
JPH08151232A (en) Sol-gel film and its formation

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090611

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090611

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090611

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100611

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100611

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110611

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110611

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120611

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120611

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees