JP2937495B2 - Sealing treatment of anodized film - Google Patents

Sealing treatment of anodized film

Info

Publication number
JP2937495B2
JP2937495B2 JP41792590A JP41792590A JP2937495B2 JP 2937495 B2 JP2937495 B2 JP 2937495B2 JP 41792590 A JP41792590 A JP 41792590A JP 41792590 A JP41792590 A JP 41792590A JP 2937495 B2 JP2937495 B2 JP 2937495B2
Authority
JP
Japan
Prior art keywords
sealing
film
water
hot water
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP41792590A
Other languages
Japanese (ja)
Other versions
JPH04218694A (en
Inventor
長蔵 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SAWA METSUKI KOGYO KK
Original Assignee
SAWA METSUKI KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SAWA METSUKI KOGYO KK filed Critical SAWA METSUKI KOGYO KK
Priority to JP41792590A priority Critical patent/JP2937495B2/en
Publication of JPH04218694A publication Critical patent/JPH04218694A/en
Application granted granted Critical
Publication of JP2937495B2 publication Critical patent/JP2937495B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、陽極酸化皮膜に対し水
和処理法により封孔処理を行う際の改良方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improved method for sealing a anodic oxide film by a hydration method.

【0002】[0002]

【従来の技術】[Prior art]

【0003】 背景 アルミニウム又はその合金のような酸化皮膜形成性金属
を適当な電解質溶液中で陽極酸化すると、その表面にγ
−Al等を主成分とする硬い皮膜が生成する。こ
の皮膜は、電解条件により規則正しい微孔が表面に存在
しているが、本質的に多孔質であるから、そのままでは
該微孔より腐食が進行し寿命が短くなる。そこで一般に
水和反応を利用した封孔処理法が採用され、具体的に
は、被処理陽極酸化済みのアルミニウム等を沸騰水中に
浸漬するか又は4気圧程度の熱水蒸気中に数十分間放置
する方法が多用され日本工業規格にも規定されている。
因に、これら水和反応による封孔の原理は、アルミニウ
ムの場合、その表面に陽極酸化皮膜として形成されたγ
−アルミナが水和して生じたγ−Al・XH
の体積が、もとの無水γ−アルミナに比し膨張すること
によるものである。しかしこの水和法によれば、皮膜の
硬度が低下すると共に、酸及びアルカリに対する耐食性
が低下するのが欠点である。
BACKGROUND When an oxide film forming metal such as aluminum or its alloy is anodized in a suitable electrolyte solution, γ
Hard film composed mainly of -al 2 O 3 or the like is generated. This film has regular micropores on its surface depending on electrolysis conditions, but since it is essentially porous, corrosion proceeds from the micropores and the life is shortened as it is. Therefore, a sealing method using a hydration reaction is generally employed. Specifically, anodized aluminum or the like to be treated is immersed in boiling water or left in hot steam of about 4 atm for several tens minutes. This method is frequently used and is specified in Japanese Industrial Standards.
Incidentally, the principle of sealing by these hydration reactions is that, in the case of aluminum, γ
-Γ-Al 2 O 3 .XH 2 O produced by hydration of alumina
Is expanded as compared with the original anhydrous γ-alumina. However, this hydration method has disadvantages in that the hardness of the film decreases and the corrosion resistance to acids and alkalis decreases.

【0004】 従来技術の間題点 そこで、常温封孔とか低温封孔とか称する化学薬品によ
る封孔が提案されている。それに使用される封孔剤は、
主としてフッ化ニッケルを主体とするもので、低温(常
温)で孔中にフッ化アルミニウム化合物が生成、沈着し
て封孔効果を生じるものと考えられている。しかしこの
封孔処理法は、処理液管理の繁雑さに加え、皮膜にニッ
ケル又はニッケル化合物が付着する可能性が考えられる
点で、未だ日本工業規格には指定されていない。
[0004] Therefore, sealing using a chemical called "normal temperature sealing" or "low temperature sealing" has been proposed. The sealing agent used for it is
It is mainly composed mainly of nickel fluoride, and it is considered that an aluminum fluoride compound is generated and deposited in pores at a low temperature (normal temperature) to produce a sealing effect. However, this sealing method has not yet been specified in Japanese Industrial Standards in that in addition to complicated treatment liquid management, there is a possibility that nickel or a nickel compound adheres to the film.

【0005】[0005]

【発明が解決しようとする課題】そこで本発明が解決し
ようとする課題は、基本的に周知の熱水封孔処理法を踏
襲しつつ、該法の欠点である皮膜硬度や耐食性等の物性
低下といった欠点を改善した封孔処理法を開発すること
である。なお、本発明は、従来の熱水封孔法に比し所要
処理時間の短縮化を図ることを付加的な目的とする。
The problem to be solved by the present invention is to basically follow the well-known hot water sealing method and to reduce the physical properties such as film hardness and corrosion resistance, which are disadvantages of the method. It is an object of the present invention to develop a sealing treatment method in which such disadvantages are improved. It is an additional object of the present invention to reduce the required processing time as compared with the conventional hot water sealing method.

【0006】[0006]

【課題を解決するための手段】[Means for Solving the Problems]

【0007】 概要 以上の課題を解決するための手段として、本発明は、陽
極酸化皮膜の熱水による封孔処理に際し、該熱水中に、
金属、金属酸化物、ケイ酸塩若しくはその複合酸化物、
炭素、金属炭化物及び比重1.00以上のプラスチック
スからなる群から選択された水に不溶性又は離溶性の直
径0.5mm以下の粉粒体を添加することを特徴とする
陽極酸化皮膜の封孔硬化処理法を要旨とするものであ
る。以下、発明を構成する諸要素等につき項分けして説
明する。
SUMMARY As a means for solving the above-mentioned problems, the present invention provides a method for sealing an anodic oxide film with hot water.
Metal, metal oxide, silicate or composite oxide thereof,
Sealing of an anodic oxide film characterized by adding insoluble or soluble powder particles having a diameter of 0.5 mm or less to water selected from the group consisting of carbon, metal carbide and plastics having a specific gravity of 1.00 or more. The gist is a curing treatment method. Hereinafter, the various elements constituting the present invention will be described separately.

【0008】 対象金属 本発明による封孔処理の対象となる金属は、陽極酸化の
可能な金属、即ち、非鉄金属中「バブル金属」と通称さ
れるもの、即ち、アルミニウム、アンチモン、ベリリウ
ム、ビスマス、ゲルマニウム、ハフニウム、マグネシウ
ム、ニオブ、シリコーン、タンタル、錫、チタン、タン
グステン、ウラン、バナジウム、ジルコニウム及び合金
としてステンレス鋼を挙げることができるが、実用的に
はアルミニウム、チタン、マグネシウム及びステンレス
鋼が望ましく、特にアルミニウム及びその合金が最も実
用的である。
Target Metal The metal to be subjected to the sealing treatment according to the present invention is a metal that can be anodized, that is, a metal commonly called “bubble metal” in non-ferrous metals, that is, aluminum, antimony, beryllium, bismuth, Germanium, hafnium, magnesium, niobium, silicone, tantalum, tin, titanium, tungsten, uranium, vanadium, zirconium and alloys can include stainless steel, but practically, aluminum, titanium, magnesium and stainless steel are desirable, In particular, aluminum and its alloys are the most practical.

【0009】 化成条件 本発明における陽極酸化皮膜自体の化成条件は従来の陽
極酸化皮膜の化成条件と全く同様でよい。即ち、電解浴
を構成する電解質液としては、硫酸、クロム酸、シュウ
酸、ホウ酸、スルファミン酸、リン酸や各種アルカリ溶
液等が利用されるが、一般的には硫酸及びシュウ酸が普
通である。
Chemical Conversion Conditions The chemical conversion conditions of the anodic oxide film itself in the present invention may be exactly the same as the chemical conversion conditions of the conventional anodic oxide film. That is, as the electrolyte solution constituting the electrolytic bath, sulfuric acid, chromic acid, oxalic acid, boric acid, sulfamic acid, phosphoric acid, various alkali solutions, and the like are used, but generally, sulfuric acid and oxalic acid are common. is there.

【0010】硫酸としては5から30%までの程度の濃
度範囲のものが利用される。硫酸を主体とする電解浴
は、特に後処理による皮膜の着色などとして適当であ
る。またシュウ酸を主とする電解浴は、耐摩耗性に優れ
た皮膜を化成させるのに適する。ここに使用されるシュ
ウ酸濃度は、1〜20%程度である。
Sulfuric acid having a concentration range of about 5 to 30% is used. An electrolytic bath mainly containing sulfuric acid is particularly suitable for coloring a film by post-treatment. An electrolytic bath mainly containing oxalic acid is suitable for forming a film having excellent wear resistance. The oxalic acid concentration used here is about 1 to 20%.

【0011】使用電圧及び電流密度としては、電圧10
〜60V、電流密度1.5〜10A/dm未満程度の
条件が採用されるが本発明者の別途発明に係る間欠的大
電流通電法を利用すれば、10A/dm以上、好まし
くは60A/dmまでの電流密度の直流電流を間欠的
に通電することにより、通常の電解時間及び所要電力の
以下の時間及び電力で生産性の高い陽極酸化を行
うことができる。
The operating voltage and the current density are as follows.
~60V, by utilizing an intermittent large current methods but current density 1.5~10A / dm 2 below about conditions are employed according to the separate aspect of the present inventors, 10A / dm 2 or more, preferably 60A / Dm 2 by intermittently supplying a DC current having a current density of up to
1/2 or less can be performed with high anodized productive time and power.

【0012】電解液の浴温は、普通10〜30℃に保た
れるのがよい。液温を10℃以下にすると、一般に硬質
皮膜と称される硬い皮膜が得られる。
The bath temperature of the electrolytic solution is usually preferably maintained at 10 to 30 ° C. When the liquid temperature is 10 ° C. or lower, a hard film generally called a hard film is obtained.

【0013】 粉粒体 本発明方法の特色は、水和反応を利用する封孔処理に際
し、水中に特定の粉粒体を添加することである。ここに
添加される粉粒体としては、金属、金属酸化物、ケイ酸
塩若しくはその複合酸化物、炭素、金属炭化物及び比重
1.00以上の有機化合物からなる群から選択された水
に不溶性又は離溶性の直径0.5mm以下のものであ
る。適当な粉粒体例としては、例えばステンレス鋼粉、
酸化マグネシウム、酸化アルミニウム、酸化亜鉛、酸化
銅、酸化チタン、酸化鉄、四三酸化鉄、酸化スズ、酸化
クロム、二酸化クロム、無水ケイ酸、無機固溶体(例え
ばガラス球)、タルク、アルミノケイ酸ナトリウム、結
晶形又は無定形炭素、炭化ケイ素、炭化チタン、炭化タ
ングステンなどを例示できる。これらは、処理用熱水に
対し1〜20%、好ましくは2〜10%の
範囲内で添加されればよい。
[0013] Granules [0013] A feature of the method of the present invention is that specific granules are added to water at the time of sealing treatment using a hydration reaction. The powder added here may be insoluble in water selected from the group consisting of metals, metal oxides, silicates or composite oxides thereof, carbon, metal carbides, and organic compounds having a specific gravity of 1.00 or more. The extruder has a diameter of 0.5 mm or less. Examples of suitable powders include stainless steel powder,
Magnesium oxide, aluminum oxide, zinc oxide, copper oxide, titanium oxide, iron oxide, triiron tetroxide, tin oxide, chromium oxide, chromium dioxide, silicic acid, inorganic solid solution (eg, glass spheres), talc, sodium aluminosilicate, Examples thereof include crystalline or amorphous carbon, silicon carbide, titanium carbide, and tungsten carbide. These may be added in the range of 1 to 20 w / V %, preferably 2 to 10 w / V % based on the hot water for treatment.

【0014】[0014]

【作用】本発明の方法により皮膜の硬度が上昇する機構
を明確に述べるのは困難であるが、恐らく熱水中で起こ
る水流により粉粒体が皮膜の表面を摺擦する結果、該皮
膜の表面が平滑化されることによると想像される。な
お、予想外の結果である封孔所要時間の短縮は、粉粒体
との接触により水和反応が加速されることに因るものと
推定される。
Although it is difficult to clearly describe the mechanism by which the hardness of the coating is increased by the method of the present invention, it is probable that the powder and particles rub the surface of the coating due to the water flow generated in the hot water, and as a result, It is assumed that the surface is smoothed. In addition, it is presumed that the shortening of the required sealing time, which is an unexpected result, is caused by the acceleration of the hydration reaction due to the contact with the granular material.

【0015】[0015]

【実施例】以下、実施例により発明実施の態様を説明す
るが、例示は単に説明用のもので、発明思想の制眼又は
限定を意昧するものではない。実施例1及び比較例1 10〜15%硫酸液を電解浴として、電流密度2A/d
(直流)、浴温20℃、電解時間30分の条件下
に、陽極とした99%純アルミニウム(材質A105
0)上に約16μmの厚さの陽極酸化皮膜を有する試料
が得られた。
The embodiments of the present invention will be described below with reference to examples, but the examples are merely for explanation and do not imply any limitation or limitation of the inventive idea. Example 1 and Comparative Example 1 A 10-15% sulfuric acid solution was used as an electrolytic bath, and the current density was 2 A / d.
m 2 (DC), a bath temperature of 20 ° C., and an electrolysis time of 30 minutes, 99% pure aluminum as an anode (material A105
0) A sample having an anodized film with a thickness of about 16 μm on it was obtained.

【0016】以上の試料を、常法に従い100℃の沸騰
水中で30分間封孔処理したものは、硬度約300〜3
20Hであった。
The above sample, which was sealed in boiling water at 100 ° C. for 30 minutes according to a conventional method, had a hardness of about 300 to 3
It was 20H V.

【0017】これに反し、本発明に従い熱水中に5
%の酸化銅(粒径100μm以下の市販品)を添加し
て15分間処理した試料の硬度は約400〜420H
であり、封孔の程度は対照と同じであった。
In contrast, according to the present invention, 5 w /
The hardness of the V% of copper oxide sample treated by adding (particle size 100μm following commercially available) in 15 minutes to about 400~420H V
And the degree of sealing was the same as the control.

【0018】実施例2及び比較例2 実施例1の実験において、浴温を約5℃に変更して陽極
酸化及び封孔処理を行い、硬質皮膜を得た。得られた硬
質皮膜の硬度は約600以上であった。これに反し、封
孔処理に際し酸化銅を添加しなかった比較例2における
皮膜の硬度は約450Hであった。
Example 2 and Comparative Example 2 In the experiment of Example 1, the bath temperature was changed to about 5 ° C., and anodic oxidation and sealing treatment were performed to obtain a hard coating. The hardness of the obtained hard coating was about 600 or more. Contrary to this, the hardness of the film in Comparative Example 2 was not added copper oxide upon sealing treatment was about 450H V.

【0019】実施例3及び比較例3 実施例1及び2のアルミニウム材料を、電解質としてシ
ュウ酸5%、浴温15℃、直流2A/dm、30分の
電解条件で約20μmの皮膜が形成された。この試料
を、粉粒体として酸化銅粉末5%を添加した熱水
浴中1時間封孔処理を行うと、皮膜の硬度は約550H
となった。これに反し、酸化銅を添加しないで同様に
封孔処理したものの硬度は約400Hであった。
Example 3 and Comparative Example 3 A film of about 20 μm was formed from the aluminum material of Examples 1 and 2 under the electrolytic conditions of oxalic acid 5%, a bath temperature of 15 ° C., a direct current of 2 A / dm 2 and 30 minutes as an electrolyte. Was done. When this sample was subjected to sealing treatment for 1 hour in a hot water bath to which 5 w / V % of copper oxide powder was added as a powder, the hardness of the film was about 550H.
V. Contrary to this, the hardness Despite his sealing treatment in the same manner without adding copper oxide was about 400H V.

【0020】[0020]

【発明の効果】以上説明したように、本発明は、基本的
に周知の熱水封孔処理法を踏襲しつつ、該法の欠点であ
る皮膜硬度や耐食性等の物性低下といった欠点を改善す
ると共に、所要封孔処理時間を短縮しえた封孔処理法を
開発できたことにより、関連産業の合理化及び発展に貢
献しうる。
As described above, the present invention basically follows the well-known hot water sealing method and improves the disadvantages of the method, such as deterioration of physical properties such as film hardness and corrosion resistance. In addition, the development of a sealing method capable of reducing the required sealing time can contribute to rationalization and development of related industries.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 陽極酸化皮膜の熱水による封孔処理に際
し、該熱水中に、金属、金属酸化物、ケイ酸塩若しくは
その複合酸化物、炭素、金属炭化物及び比重1.00以
上のプラスチックスからなる群から選択された水に不溶
性又は離溶性の直径0.5mm以下の粉粒体を添加する
ことを特徴とする陽極酸化皮膜の封孔硬化処理法。
1. A metal, metal oxide, silicate or a composite oxide thereof, carbon, metal carbide, and a plastic having a specific gravity of 1.00 or more in the hot water when sealing the anodic oxide film with hot water. A method for sealing and hardening a hole in an anodized film, characterized by adding a powder having a diameter of 0.5 mm or less, which is insoluble or soluble in water, selected from the group consisting of water and water.
【請求項2】 熱水に対する水に不溶性又は離溶性の直
径0.5mm以下の粉粒体の添加量が、熱水に対し1〜
20%である請求項1記載の封孔硬化処理法。
2. The addition amount of a powder having a diameter of 0.5 mm or less that is insoluble or soluble in water with respect to hot water is 1 to 1 with respect to hot water.
The method according to claim 1, wherein the amount is 20 w / V %.
【請求項3】 陽極酸化皮膜が、アルミニウム又はその
合金に対して施されたものである請求項1記載の封孔硬
化処理法。
3. The method according to claim 1, wherein the anodic oxide film is applied to aluminum or an alloy thereof.
JP41792590A 1990-12-17 1990-12-17 Sealing treatment of anodized film Expired - Lifetime JP2937495B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP41792590A JP2937495B2 (en) 1990-12-17 1990-12-17 Sealing treatment of anodized film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP41792590A JP2937495B2 (en) 1990-12-17 1990-12-17 Sealing treatment of anodized film

Publications (2)

Publication Number Publication Date
JPH04218694A JPH04218694A (en) 1992-08-10
JP2937495B2 true JP2937495B2 (en) 1999-08-23

Family

ID=18525923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP41792590A Expired - Lifetime JP2937495B2 (en) 1990-12-17 1990-12-17 Sealing treatment of anodized film

Country Status (1)

Country Link
JP (1) JP2937495B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4994668B2 (en) * 2006-01-13 2012-08-08 株式会社神戸製鋼所 Hydration method of anodized film of Al or Al alloy
US8529694B2 (en) * 2006-10-26 2013-09-10 Air Products And Chemicals, Inc. Powdered acetylenic surfactants and compositions containing them
US11312107B2 (en) * 2018-09-27 2022-04-26 Apple Inc. Plugging anodic oxides for increased corrosion resistance

Also Published As

Publication number Publication date
JPH04218694A (en) 1992-08-10

Similar Documents

Publication Publication Date Title
JP6004181B2 (en) Anodized film and method for producing the same
CN103173795B (en) A kind of electric plating method
Senderoff Electrodeposition of refractory metals
CN100507044C (en) Pressure cast aluminium alloy and its application
JP2937495B2 (en) Sealing treatment of anodized film
Fernández-López et al. Corrosion and tribocorrosion protection of novel PEO coatings on a secondary cast Al-Si alloy: Influence of polishing and sol-gel sealing
Sáez et al. Lead dioxide film sonoelectrodeposition in acidic media: Preparation and performance of stable practical anodes
US3728238A (en) Decreasing hexavalent chromium content of liquids by an electrochemical technique
García-Gabaldón et al. Electrochemical recovery of tin from the activating solutions of the electroless plating of polymers: Galvanostatic operation
Hoare et al. Current efficiency during the electrochemical machining of iron and nickel
US2936268A (en) Preparation of metal borides and silicides
Yerokhin et al. Anodising of light alloys
Ito et al. Novel molten salt electrochemical processes for industrial applications
JP2009270190A (en) Surface treatment method capable of embodying coloring and luster on magnesium-based metallic member
Jun et al. Electrochemical reduction and electrocrystallization process of B (III) in the LiF-NaF-KF-KBF4 molten salt
GB1194437A (en) Improvements in Silicided Molybdenum Surfaces
JPH0673596A (en) Highly corrosion resistant mg or mg alloy material
US546328A (en) Carl hoepfner
Łosiewicz et al. Characterization of Composite Coatings Obtained by Electrodeposition
Menon et al. Design and Development of Packed Bed Electrochemical Reactors (PBER's) Using Scrap Lead Dioxide as Novel Electrodes
JP2018188702A (en) Removal method of oxide film on surface of metal material
JPH04193998A (en) High-speed anodization method by repeated instantaneous current application
Iztleuov et al. SYNTHESIS OF TITANIUM (III) SULFATE BY ELECTROCHEMICAL METHOD
Shtefan et al. Electrodeposition of chromoxide coatings from electrolytes modified with SiO₂· nH₂O
JPH0633487B2 (en) Method of manufacturing cathode