JP2935181B1 - Liquid leakage type gas diffusion electrode and method of manufacturing the same - Google Patents

Liquid leakage type gas diffusion electrode and method of manufacturing the same

Info

Publication number
JP2935181B1
JP2935181B1 JP10024723A JP2472398A JP2935181B1 JP 2935181 B1 JP2935181 B1 JP 2935181B1 JP 10024723 A JP10024723 A JP 10024723A JP 2472398 A JP2472398 A JP 2472398A JP 2935181 B1 JP2935181 B1 JP 2935181B1
Authority
JP
Japan
Prior art keywords
gas supply
diffusion electrode
supply layer
gas diffusion
linear body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10024723A
Other languages
Japanese (ja)
Other versions
JPH11222691A (en
Inventor
長一 古屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Toagosei Co Ltd
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Mitsui Chemicals Inc
Toagosei Co Ltd
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc, Toagosei Co Ltd, Kanegafuchi Chemical Industry Co Ltd filed Critical Mitsui Chemicals Inc
Priority to JP10024723A priority Critical patent/JP2935181B1/en
Application granted granted Critical
Publication of JP2935181B1 publication Critical patent/JP2935181B1/en
Publication of JPH11222691A publication Critical patent/JPH11222691A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

【要約】 【課題】 液の排出が円滑に行われると共に、ガスの供
給も阻害されることもなく、高い電極性能を維持し、集
電能力を向上して電解槽電圧を極限まで低くすることが
できる、長寿命の漏液型ガス拡散電極を提供する。 【解決手段】 反応層2とガス供給層3からなる漏液型
ガス拡散電極1において、少なくとも反応層と接触しガ
ス供給層を貫通する線状体4を有し、この線状体とガス
供給層との間に水又は電解液を透過させることのできる
間隙5を有することを特徴とするガス拡散電極。前記線
状体が金属発泡体であり、前記ガス供給層がフッ素樹脂
多孔体であることがよい。線状体の端部6は導電性フレ
ーム7に接続して給電することが好ましい。
An object of the present invention is to maintain a high electrode performance, improve current collection capability, and lower the voltage of an electrolytic cell to an extremely low level, while smoothly discharging a liquid and without inhibiting gas supply. To provide a liquid leakage type gas diffusion electrode having a long service life. SOLUTION: A leaky gas diffusion electrode 1 composed of a reaction layer 2 and a gas supply layer 3 has a linear body 4 which is in contact with at least the reaction layer and penetrates the gas supply layer. A gas diffusion electrode having a gap 5 through which water or an electrolytic solution can pass between the layers. Preferably, the linear body is a metal foam, and the gas supply layer is a fluororesin porous body. It is preferable that the end 6 of the linear body is connected to the conductive frame 7 to supply power.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電解液を反応層側
からガス供給層側へ漏液可能なガス拡散電極及びその製
造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas diffusion electrode capable of leaking an electrolytic solution from a reaction layer side to a gas supply layer side, and a method for producing the same.

【0002】[0002]

【従来の技術】従来のガス拡散電極は、反応層とガス供
給層から成り、ガス供給層は疎水性細孔のみから出来て
いるのでガス室側に電解液は漏れることがない。この電
極を食塩電解の陰極に用いると、電解槽構造は3室とな
る。すなわち、陽極室、陰極液室、酸素ガス室である。
この複雑な構造に起因する問題点を解決すべく、構造の
簡単な2室型の電解槽にするために、例えば特開平7−
126880号公報に記載されたような、ガス拡散電極
のガス供給層に液をも透過させる液透過型ガス拡散電極
が提案されている。
2. Description of the Related Art A conventional gas diffusion electrode comprises a reaction layer and a gas supply layer. Since the gas supply layer is made of only hydrophobic pores, the electrolyte does not leak into the gas chamber. When this electrode is used as a cathode for salt electrolysis, the electrolytic cell structure becomes three chambers. That is, an anode chamber, a catholyte chamber, and an oxygen gas chamber.
In order to solve the problems caused by this complicated structure, a two-chamber type electrolytic cell having a simple structure is disclosed in, for example,
A liquid-permeable gas diffusion electrode that allows liquid to pass through a gas supply layer of the gas diffusion electrode as described in 126880 has been proposed.

【0003】[0003]

【発明が解決しようとする課題】このような従来の液透
過型ガス拡散電極は、ガス供給層に液が透過できるよう
な口径0.1〜1mmの親水性貫通孔を設けたものであ
る。しかしながら、この孔は親水性であるが、その外側
が疎水性のため、液の排出が妨げられ、ガス供給層の表
面全面に排出された液滴が付着することにより、ガス供
給が妨げられるという欠点があった。そこで、特開平8
−302492号公報では、電解液を貫通孔に全量透過
させず、反応層表面に溝を形成して、電解液をその溝に
流下させるように改善している。
Such a conventional liquid-permeable gas diffusion electrode has a gas supply layer provided with a hydrophilic through-hole having a diameter of 0.1 to 1 mm so that liquid can pass therethrough. However, although this hole is hydrophilic, its outside is hydrophobic, so that the discharge of the liquid is hindered, and the gas supply is hindered by the adhered droplets discharged to the entire surface of the gas supply layer. There were drawbacks. Therefore, Japanese Patent Application Laid-Open
In JP-A-302492, a groove is formed on the surface of the reaction layer so that the entire amount of the electrolyte does not pass through the through-hole, and the electrolyte is made to flow down the groove.

【0004】液透過型ガス拡散電極は、このような欠点
があるため、それをイオン交換膜型食塩電解槽に酸素陰
極として設置した場合、30A/dm2 、80℃で2.
3Vという高い槽電圧となっている。本発明は、このよ
うな従来の課題に鑑みてなされたものであり、液の排出
が円滑に行われると共に、ガスの供給も阻害されること
がなく、高い電極性能を維持し、集電能力を向上して電
解槽電圧を極限まで低くすることができる、長寿命の漏
液型ガス拡散電極を提供することを目的とする。
[0004] Since the liquid-permeable gas diffusion electrode has such a drawback, when it is installed as an oxygen cathode in an ion-exchange membrane-type salt electrolytic cell, it is used at 30 A / dm 2 at 80 ° C.
The cell voltage is as high as 3V. The present invention has been made in view of such a conventional problem, and the liquid is smoothly discharged, the gas supply is not hindered, the high electrode performance is maintained, and the current collecting capability is maintained. It is an object of the present invention to provide a long-life leak-type gas diffusion electrode that can improve the electrolysis cell voltage and minimize the electrolytic cell voltage.

【0005】[0005]

【課題を解決するための手段】本発明者は、前記課題を
解決すべく鋭意研究した結果、反応層に接触するガス供
給層について、その中を電解液が透過できるとともに、
せれがガスの透過を阻害しない構造をもつガス拡散電極
を検討した結果、親水性の線状体をガス室側からガス供
給層を貫通させ、反応層と接触させるようにするとよい
ことがわかり、この線状体とガス供給層との間に間隙を
設けると、この間隙と親水性の線状体との間を通って、
反応層中にガスと共存する電解液が動き易くなることを
見出し、これを基礎として本発明を完成するに到った。
間隙は孔でもよいが、ここでは統一して「間隙」という
ことにする。
Means for Solving the Problems The present inventor has made intensive studies to solve the above-mentioned problems, and as a result, it has been found that a gas supply layer in contact with a reaction layer allows an electrolyte to pass therethrough.
Results ask were investigated a gas diffusion electrode having a structure that does not inhibit transmission of gas, the hydrophilicity of the linear member is passed through the gas supply layer from the gas chamber side, notice that may be so cause come in contact with the reaction layer When a gap is provided between the linear body and the gas supply layer, passing between the gap and the hydrophilic linear body,
The inventors have found that the electrolyte coexisting with the gas in the reaction layer is easy to move, and have completed the present invention based on this.
Although the gap may be a hole, it is collectively referred to as a “gap” here.

【0006】すなわち、本発明は、次の構成からなるも
のである。 (1)反応層とガス供給層からなる漏液型ガス拡散電極
において、反応層と接触しガス供給層を貫通する線状体
を多数有し、これらの線状体とガス供給層との間に水又
は電解液を透過させることのできる間隙を有することを
特徴とする漏液型ガス拡散電極。 (2)前記の線状体が金属発泡体あることを特徴とする
前記(1)記載の漏液型ガス拡散電極。 (3)前記のガス供給層がフッ素樹脂多孔体であること
を特徴とする前記(1)記載の漏液型ガス拡散電極。 (4)前記(1)の漏液型ガス拡散電極において、線状
体にガス供給層を充填後に無加圧下で熱処理することに
よりガス供給層と線状体の界面に間隙を形成することを
特徴とする漏液型ガス拡散電極の製造方法。
That is, the present invention has the following configuration. (1) reaction layer and the leakage consists of a gas supply layer-part gas diffusion electrode <br/> smell Te, in contact with the reaction layer has a large number of linear body that passes through the gas supply layer, these linear body and Gas A leaky gas diffusion electrode having a gap between the supply layer and water or an electrolyte. (2) The leaky gas diffusion electrode according to (1), wherein the linear body is a metal foam. (3) The leaky gas diffusion electrode according to the above (1), wherein the gas supply layer is a fluororesin porous body. (4) In the liquid leakage gas diffusion electrode of (1), a gap is formed at the interface between the gas supply layer and the linear body by performing heat treatment under no pressure after filling the linear body with the gas supply layer. A method for producing a liquid leakage type gas diffusion electrode.

【0007】本発明は、ガス拡散電極について、好まし
くは親水性である多数の線状体をガス室側からガス供給
層を貫通させ、反応層と接触させる構造を有している。
そして、この線状体とガス供給層との間に隙間を設け、
この隙間と親水性の線状体の間を通って、反応層中にガ
スと共存する電解液が漏液できる構造とした。ガス供給
層における漏液できるようした間隙は、無加圧化で熱
処理することで、フッ素樹脂と金属の膨張率との違い、
及びフッ素樹脂のシンター(焼結)による収縮を利用し
た間隙形成法により形成するのが良い。
[0007] The present invention, for a gas diffusion electrode, preferably a plurality of linear bodies are hydrophilic to penetrate the gas supply layer from the gas chamber side, has a structure that makes come in contact with the reaction layer.
And, a gap is provided between the linear body and the gas supply layer,
A structure was formed in which an electrolyte solution coexisting with a gas in the reaction layer could leak through the gap and the hydrophilic linear body. Gap and allow leakage in the gas supply layer, by a heat treatment with no pressurization, the difference between the fluororesin and the metal of the expansion rate,
It is preferable to form the gap by a gap forming method utilizing shrinkage of the fluororesin due to sintering (sintering).

【0008】[0008]

【発明の実施の形態】漏液型ガス拡散電極の機能と構造
の概要を、イオン交換法で食塩を電解する場合にこの漏
液型ガス拡散電極を酸素陰極として使用するを例として
説明する。通常イオン交換膜法電解は、陽イオン交換膜
であるイオン交換膜により陽極室と陰極室とに区画され
た電解槽で行われ、この電解槽の陽極を有する陽極室に
は塩化ナトリウム水溶液が、陰極を有する陰極部にはか
性ソ−ダ水溶液が入っているが、陰極としてガス拡散電
極を用いる形式のものでは、陰極部は、イオン交換膜と
ガス拡散電極の間のか性ソ−ダ水溶液が入っている陰極
液室と反応層、ガス供給層からなるガス拡散電極および
酸素ガス室からなっている。
BEST MODE FOR CARRYING OUT THE INVENTION The function and structure of a leak-type gas diffusion electrode will be outlined with reference to an example in which the leak-type gas diffusion electrode is used as an oxygen cathode when salt is electrolyzed by an ion exchange method. Usually, ion exchange membrane method electrolysis is performed in an electrolytic cell partitioned into an anode chamber and a cathode chamber by an ion exchange membrane which is a cation exchange membrane, and an aqueous solution of sodium chloride is placed in an anode chamber having an anode of this electrolytic cell. An aqueous solution of caustic soda is contained in the cathode portion having a cathode. In the case of a type using a gas diffusion electrode as the cathode, the cathode portion is formed of an aqueous solution of caustic soda between the ion exchange membrane and the gas diffusion electrode. And a gas diffusion electrode comprising a reaction layer, a gas supply layer, and an oxygen gas chamber.

【0009】すなわち、本発明の漏液型ガス拡散電極1
は、図1に示すように、反応層2を表面側に有し、反応
層2のガス室8側に親水性の金属製線状体4が多数接続
されていて、ガス室8に向かって延びており、また反応
層2に密着してガス供給層3がある。このガス供給層3
は前記線状体4との間に隙間5が開くように設けられて
おり、前記線状体4の他の端部6は、ガス室8内に設け
た導電性フレーム7に接続しており、この導電性フレー
ム7及び線状体4により給電される。給電体としては、
給電専用の導電性フレーム7を用いずに、例えば導電性
の金属製電極室枠で兼用することもできる。前記反応層
2は、親水性であり液が通り易いが、そのガス室側に親
水性の金属製線状体4が多数接続されていることによ
り、液が前記線状体4の親水性表面を伝わってくる。そ
の際、ガス供給層3は、疎水性の高いPTFEの多孔体
からなるが、線状体4との隙間5が開いていると、液が
線状体4の親水性表面を伝わることができて、液9がガ
ス室8側に漏れてくる。前記の隙間5がないと、PTF
Eの疎水性により液が線状体4の親水性表面を伝わるこ
とができなくなる。
That is, the liquid leakage type gas diffusion electrode 1 of the present invention
As shown in FIG. 1, a reaction layer 2 is provided on the surface side, and a large number of hydrophilic metal linear bodies 4 are connected to the gas chamber 8 side of the reaction layer 2. The gas supply layer 3 extends and is in close contact with the reaction layer 2. This gas supply layer 3
Is provided so that a gap 5 is opened between the linear body 4 and the other end 6 of the linear body 4 is connected to a conductive frame 7 provided in a gas chamber 8. Power is supplied by the conductive frame 7 and the linear body 4. As a power feeder,
Instead of using the conductive frame 7 dedicated to power supply, for example, a conductive metal electrode chamber frame can also be used. The reaction layer 2 is hydrophilic and liquid easily passes therethrough. However, since a large number of hydrophilic metal linear members 4 are connected to the gas chamber side, the liquid flows on the hydrophilic surface of the linear member 4. Is transmitted. At this time, the gas supply layer 3 is made of a porous body of PTFE having high hydrophobicity. However, if the gap 5 with the linear body 4 is open, the liquid can be transmitted along the hydrophilic surface of the linear body 4. Thus, the liquid 9 leaks to the gas chamber 8 side. Without the gap 5, the PTF
Due to the hydrophobicity of E, the liquid cannot travel on the hydrophilic surface of the linear body 4.

【0010】線状体4の親水性表面を伝わってきた液9
は、導電性フレーム7に達し、そこで上から導電性フレ
ーム7を伝わって流下してくる液10(か性ソーダ水溶
液)と合流して下に流れる。これにより、ガス室8の下
部でか性ソーダ水溶液を得ることができる。このガス拡
散電極では、線状体4を多数有するものを製作する必要
があるが、これは反応層2を製作する際に金網に線状体
4を多数植設したものを入れて、製作することなどによ
り、製造するようにしてもよい。この線状体4は、銀線
のような耐食性の高い金属線を用いてもよいが、多数の
細い金属線を多数密植することは技術的に困難であるの
で、導電性網状体に毛羽状に線が出た網や三次元網、さ
らに銀メッキ発泡体を使用することが、実用的である。
なお、図1に示す例では、イオン交換膜11との間をゼ
ロギャップとした電極の概念図を示している。
The liquid 9 transmitted on the hydrophilic surface of the linear body 4
Reaches the conductive frame 7, where it joins with the liquid 10 (caustic soda aqueous solution) flowing down the conductive frame 7 and flows downward. Thus, a caustic soda aqueous solution can be obtained in the lower part of the gas chamber 8. In this gas diffusion electrode, it is necessary to manufacture an electrode having a large number of linear members 4, and this is manufactured by inserting a large number of the linear members 4 implanted in a wire mesh when manufacturing the reaction layer 2. It may be manufactured in accordance with the situation. The wire 4 may be made of a highly corrosion-resistant metal wire such as a silver wire, but it is technically difficult to densely plant a large number of thin metal wires. It is practical to use a net or a three-dimensional net, or a silver-plated foam.
In the example shown in FIG. 1, a conceptual diagram of an electrode having a zero gap between the electrode and the ion exchange membrane 11 is shown.

【0011】さらに、この線状体4について詳しく説明
すると、具体的には、毛羽状に線が出た網、三次元網、
発泡体(三次元網と同様な構造のもの)が好ましく使用
され、その材質としては耐食性の高い金属が望ましい。
銀網、三次元網状の銀メッキ発泡ニッケルが好適であ
る。これらの表面の一部に親水性、液移動性を増すため
にNiCo2 4 等の耐食性の多孔質コ−テイング等の
表面処理をすることもできる。線状体を具体的に例示す
ると、例えば、線状である発泡ウレタンの骨格のみを残
し、それにニッケル微粉を付着し、焼成してウレタン部
分を分解除去し、ニッケルを焼結することにより形成し
たものであって、線の太さ0.15mm、孔径が0.5
〜0.6μmで、気孔率が95%と高い、三次元構造を
有しているものである。この発泡ニッケル線状体には、
耐食性を向上させるために5〜10μmの厚さの銀メッ
キを施したものである。このような「線状である発泡ウ
レタン」としては、ポリウレタン発泡体を例えば爆発処
理して前記発泡体の壁部を吹き飛ばすことにより、前記
発泡体の骨格のみとしたものであって、三次元網状体と
なっているものであり、その「線状」は直線状ではない
が、線状体となっており、これを基材とすることによ
り、反応層からの導電体として作用する線状体を形成す
ることができる。このため、前記の銀メッキ発泡ニッケ
ルを含めて「線状体」という。
Further, the linear member 4 will be described in detail. Specifically, a net having a fluffy line, a three-dimensional net,
A foam (having a structure similar to a three-dimensional net) is preferably used, and a metal having high corrosion resistance is desirable as the material.
Silver mesh and three-dimensional net-like silver-plated foamed nickel are preferred. Some of these surfaces may be subjected to a surface treatment such as a corrosion-resistant porous coating such as NiCo 2 O 4 in order to increase hydrophilicity and liquid mobility. When the linear body is specifically exemplified, for example, it is formed by leaving only the skeleton of the urethane foam which is linear, attaching nickel fine powder thereto, firing and decomposing and removing the urethane portion, and sintering nickel. Having a line thickness of 0.15 mm and a hole diameter of 0.5
It has a three-dimensional structure of about 0.6 μm and a high porosity of 95%. In this nickel foam linear body,
In order to improve corrosion resistance, silver plating having a thickness of 5 to 10 μm is applied. Such "linear urethane foam" is a polyurethane foam having a skeleton only by explosion treatment, for example, by explosion treatment and blowing off the wall of the foam. The "linear" is not linear, but it is a linear body. By using this as a base material, a linear body that acts as a conductor from the reaction layer Can be formed. For this reason, the term “linear body” includes the silver-plated foamed nickel.

【0012】また、反応層は、1ミクロン以下の銀微粒
子とポリテトラフルオロエチレン(PTFE)ディスパ
−ジョンの混合物をアルコ−ルで自己組織化し泥しょう
としたものを線状体の片面に層状に塗り込み、ガス供給
層はPTFEディスパ−ジョンをアルコ−ルで自己組織
化した泥しょうを他方から層状に塗り込むことにより形
成できる。このように、反応層原料とガス供給層原料を
それぞれ線状体に層状に充填し、乾燥し、界面活性剤を
抽出除去するだけでガス拡散電極を得ることができる。
常温で40kg/cm2 の圧力でプレスして反応層とガ
ス供給層の密度を高め、250℃程度で加熱を行うこと
が好ましい。常温プレスの圧力は10から50kg/c
2 以上が望ましく、これ以上の圧力でプレスすると反
応層、ガス供給層とも空孔率が低下して電極性能が低下
する。熱処理温度は200℃から310℃が好ましく、
フッ素樹脂の融点(327℃)以上で加熱を行うと、特
にガス供給層にフッ素樹脂の焼結が進行しすぎて、空孔
率が低下し、その結果電極性能が低下する。
The reaction layer is formed by self-assembling a mixture of silver fine particles of 1 micron or less and polytetrafluoroethylene (PTFE) dispersion with alcohol and forming a slurry on one surface of the linear body. The application and gas supply layer can be formed by applying the PTFE dispersion self-assembled with alcohol in a layer form from the other side. As described above, the gas diffusion electrode can be obtained only by filling the linear material with the reaction layer raw material and the gas supply layer raw material in layers, drying and extracting and removing the surfactant.
It is preferable to increase the density of the reaction layer and the gas supply layer by pressing at normal temperature at a pressure of 40 kg / cm 2 , and to heat at about 250 ° C. Room temperature press pressure is 10 to 50 kg / c
m 2 or more is desirable, and when pressed at a pressure higher than m 2, the porosity of both the reaction layer and the gas supply layer is reduced, and the electrode performance is reduced. The heat treatment temperature is preferably from 200 ° C to 310 ° C,
If the heating is performed at a temperature higher than the melting point of the fluororesin (327 ° C.), the sintering of the fluororesin proceeds particularly in the gas supply layer, and the porosity is reduced, and as a result, the electrode performance is reduced.

【0013】以上の操作で線状体とPTFE多孔体の間
に間隙ができる。その間隙は、フッ素樹脂スラリーの濃
度、熱処理温度などで変わるので、電解液が十分漏れる
が、漏れ過ぎない範囲になるように設定する。間隙は、
一般には1〜100μmの範囲であることが好ましい。
電解時にはこの間隙から電解液が十分漏れ出すが、PT
FE多孔体の表面は電解液に覆われることなくガスの供
給は十分為されるので、反応層表面に溝を付けずにイオ
ン交換膜と密着させることが出来る。その結果槽電圧を
極限の1.9Vまで低くすることが出来る。本発明の電
極で使用する線状体の径は0.03〜1mm、線状体を
設けるピッチは0.1〜2mm、隙間は0.1〜2mm
が好適である。また、反応層の厚さは0.01〜1m
m、ガス供給層の厚さは0.01〜1mmが好適であ
る。
By the above operation, a gap is formed between the linear body and the porous PTFE body. Since the gap varies depending on the concentration of the fluororesin slurry, the heat treatment temperature, and the like, the electrolyte is sufficiently leaked, but the gap is set so as not to be too leaky. The gap is
Generally, the thickness is preferably in the range of 1 to 100 μm.
At the time of electrolysis, the electrolyte leaks sufficiently from this gap.
Since the gas is sufficiently supplied without the surface of the porous FE being covered with the electrolytic solution, the FE porous body can be in close contact with the ion exchange membrane without forming a groove on the surface of the reaction layer. As a result, the cell voltage can be reduced to the limit of 1.9V. The diameter of the linear body used in the electrode of the present invention is 0.03 to 1 mm, the pitch at which the linear body is provided is 0.1 to 2 mm, and the gap is 0.1 to 2 mm.
Is preferred. The thickness of the reaction layer is 0.01 to 1 m.
m, the thickness of the gas supply layer is preferably 0.01 to 1 mm.

【0014】[0014]

【実施例】以下実施例により本発明を具体的に説明す
る。ただし本発明は、これらの実施例のみに限定される
ものではない。なお、全実施例を通じて、部は全て重量
部を意味する。
The present invention will be described in detail with reference to the following examples. However, the present invention is not limited to only these examples. Throughout the examples, all parts mean parts by weight.

【0015】実施例1 銀微粒子(三井金属鉱業製、Ag−3010、平均粒径
0.11ミクロン)5部(重量、以下同様)に、界面活
性剤トライトン1部、水9部を加え、超音波分散機で分
散させる。これにPTFEディスパージョンD−1(ダ
イキン工業社製)1部を加え、攪拌混合した後に、エタ
ノール2部を加え、攪拌することにより自己組織化させ
る。この沈殿物を孔径が1μmの濾紙で濾過し、スラリ
ーを銀メッキ発泡ニッケル(12×28cm角)上に
0.5mm厚さに塗り込み、10kg/cm2 の圧力で
プレスして内部に押し込むことにより、反応層を形成す
る。さらに、裏からD−1にエタノールを加えて糊状に
したものを押し込み、ガス供給層とする。なお、前記銀
メッキ発泡ニッケルは、発泡ウレタンを爆発処理してそ
の骨格のみを残した、三次元網状体である超多孔質発泡
ウレタンにニッケル微粉を付着し、ニッケルを焼結した
もので、線の太さ0.15mm、孔径が0.5〜0.6
μmで、気孔率が95%と高い、三次元構造を有してい
るものである。この発泡ニッケル線状体には、耐食性を
向上させるために5〜10μmの厚さの銀メッキを施し
たものである。
Example 1 To 5 parts (weight, the same applies hereinafter) of silver fine particles (manufactured by Mitsui Kinzoku Mining Co., Ltd., Ag-3010, average particle size: 0.11 micron), 1 part of surfactant Triton and 9 parts of water were added. Disperse with a sonic disperser. To this, 1 part of PTFE dispersion D-1 (manufactured by Daikin Industries, Ltd.) is added, and the mixture is stirred and mixed. Then, 2 parts of ethanol is added, and the mixture is self-organized by stirring. The precipitate is filtered with a filter paper having a pore size of 1 μm, and the slurry is applied on silver-plated nickel foam (12 × 28 cm square) to a thickness of 0.5 mm, and pressed into the inside by pressing at a pressure of 10 kg / cm 2. Thereby, a reaction layer is formed. Further, a paste formed by adding ethanol to D-1 from the back is pressed into a gas supply layer. The silver-plated nickel foam is obtained by attaching nickel fine powder to a superporous urethane foam, which is a three-dimensional network, and explosion-treating the urethane foam, leaving only its skeleton, and sintering the nickel. 0.15mm in thickness and 0.5-0.6 hole diameter
It has a three-dimensional structure with a high porosity of 95% in μm. This nickel foam linear body is plated with silver having a thickness of 5 to 10 μm in order to improve corrosion resistance.

【0016】これを80℃で3時間乾燥、界面活性剤を
エタノ−ルを用いた抽出器で除去した後、100℃で2
時間乾燥後、ガス供給層側にシリコン樹脂シ−トを重
ね、常温、40kg/cm2 の条件で、60秒間プレス
し、次いで無加圧で250℃、10分間熱処理し、引き
続き冷却して電極を得た。このときの銀微粒子の使用量
は630g/m2 であった。この電極とイオン交換膜の
間をゼロギャプとした食塩電解槽を組立て、連続運転し
た。その結果、電流密度30A/dm2 、温度90℃、
陰極液濃度32%NaOH、理論値の2倍量の酸素供給
で、1.95Vの電解槽電圧が得られた。50日間電圧
変動無く運転でき継続中である。イオン交換膜を透過し
た電解液はガス拡散電極を全量漏液するが、電極性能に
与える影響はほとんどないことが分った。
This was dried at 80 ° C. for 3 hours, and the surfactant was removed with an extractor using ethanol.
After drying for a period of time, a silicone resin sheet is overlaid on the gas supply layer side, pressed at room temperature and 40 kg / cm 2 for 60 seconds, then heat-treated at 250 ° C. without pressure for 10 minutes, and subsequently cooled to form an electrode. I got At this time, the usage amount of the silver fine particles was 630 g / m 2 . A salt electrolyzer with zero gap between the electrode and the ion exchange membrane was assembled and operated continuously. As a result, the current density was 30 A / dm 2 , the temperature was 90 ° C.,
An electrolytic cell voltage of 1.95 V was obtained with a catholyte concentration of 32% NaOH and an oxygen supply of twice the theoretical value. The operation has been continued for 50 days without voltage fluctuation. It has been found that the electrolyte permeating the ion exchange membrane leaks all of the gas diffusion electrode, but has little effect on the electrode performance.

【0017】実施例2 銀微粒子(三井金属鉱業製、Ag−3010、平均粒径
0.11ミクロン)5部に界面活性剤トライトン1部、
水9部を加え超音波分散機で分散させた。これにPTF
Eディスパ−ジョンD−1(ダイキン工業製)1部を加
え、攪拌混合した後にエタノ−ルを10部加え、攪拌し
て自己組織化させた。この沈殿物を細孔径0.8ミクロ
ンの濾紙で濾過しスラリーとした。このものを銀メッキ
発泡ニッケル(50ppI、厚さ1.5mm、12×2
8センチ角)上に0.4mm厚に塗り込み、10kg/
cm2 の圧力でプレスして内部に押し込むことにより反
応層を形成した。前記銀メッキ発泡ニッケルとしては、
実施例1で使用したものと同じものを用いた。
Example 2 5 parts of silver fine particles (manufactured by Mitsui Kinzoku Mining Co., Ltd., Ag-3010, average particle size 0.11 micron), 1 part of surfactant Triton,
9 parts of water was added and dispersed by an ultrasonic dispersing machine. This is PTF
One part of E-dispersion D-1 (manufactured by Daikin Industries, Ltd.) was added, and the mixture was stirred and mixed. Then, 10 parts of ethanol was added, and the mixture was stirred to be self-organized. This precipitate was filtered through a filter paper having a pore diameter of 0.8 μm to obtain a slurry. This was plated with silver-plated nickel foam (50 ppI, thickness 1.5 mm, 12 × 2
8cm square) and apply 0.4mm thickness
A reaction layer was formed by pressing with a pressure of cm 2 and pushing the inside. As the silver-plated nickel foam,
The same one used in Example 1 was used.

【0018】これを80℃で3時間乾燥し、界面活性剤
をエタノ−ルを用いた抽出器で除去した後、100℃で
2時間乾燥後、さらに裏からガス供給層を形成するため
にポリフロンファインパウダ−(ダイキン工業製)を均
一に撤布し発泡体中に入れた。その上からシリコン樹脂
シ−トを重ね、常温、40kg/cm2 、60秒間プレ
スして反応層とガス供給層を接合させた。無加圧で25
0℃、10分間熱処理し、次いで冷却して電極を得た。
このときの銀微粒子の使用量は420g/m2 であっ
た。この電極とイオン交換膜の間をゼロギャプとした食
塩電解槽を組立て、連続運転した。その結果、30A/
dm2 、90℃、32%NaOH、理論値の2倍量の酸
素供給で、1.97Vの電解槽電圧が得られた。30日
間電圧変動無く運転でき継続中である。イオン交換膜を
透過した電解液はガス拡散電極を全量漏液させても、さ
せなくても電解槽電圧に与える影響はほとんどなかっ
た。
After drying at 80 ° C. for 3 hours, the surfactant was removed by an extractor using ethanol, and then dried at 100 ° C. for 2 hours. CFC fine powder (manufactured by Daikin Industries, Ltd.) was uniformly removed and placed in a foam. A silicon resin sheet was overlaid thereon and pressed at room temperature at 40 kg / cm 2 for 60 seconds to join the reaction layer and the gas supply layer. 25 without pressure
Heat treatment was performed at 0 ° C. for 10 minutes, and then cooling was performed to obtain an electrode.
At this time, the usage amount of the silver fine particles was 420 g / m 2 . A salt electrolyzer with zero gap between the electrode and the ion exchange membrane was assembled and operated continuously. As a result, 30A /
By supplying dm 2 , 90 ° C., 32% NaOH and twice the theoretical amount of oxygen, an electrolytic cell voltage of 1.97 V was obtained. The operation has been continued for 30 days without voltage fluctuation. The electrolyte which permeated the ion-exchange membrane had almost no effect on the electrolytic cell voltage whether or not the entire gas diffusion electrode was leaked.

【0019】実施例3 銀微粒子(三井金属鉱業製、Ag−3010、平均粒径
0.11ミクロン)5部に界面活性剤トライトン1部、
水9部を加え超音波分散機で分散させた。これにPTF
Eディスパ−ジョンD−1(ダイキン工業製)1部を加
え、攪拌混合した後にエタノ−ルを10部加え、攪拌し
て自己組織化させた。この沈殿物を細孔径1ミクロンの
濾紙で濾過しスラリーとした。このスラリーをNiCo
2 4 被覆発泡ニッケル(50ppI、厚さ1.5m
m、12×28cm角、前記のNiCo2 4 被覆は、
それぞれの硝酸塩ブタノール溶液を塗布乾燥後、400
℃で熱分解して形成したもの)の上に0.4mm厚さに
塗り込み、10kg/cm2 の圧力でプレスして、内部
に押し込むことにより、反応層を形成した。前記銀メッ
キ発泡ニッケルとしては、実施例1で使用したものと同
じものを用いた。
Example 3 1 part of surfactant Triton was added to 5 parts of silver fine particles (manufactured by Mitsui Kinzoku Mining Co., Ltd., Ag-3010, average particle size 0.11 micron),
9 parts of water was added and dispersed by an ultrasonic dispersing machine. This is PTF
One part of E-dispersion D-1 (manufactured by Daikin Industries, Ltd.) was added, and the mixture was stirred and mixed. Then, 10 parts of ethanol was added, and the mixture was stirred to be self-organized. The precipitate was filtered through filter paper having a pore size of 1 micron to obtain a slurry. This slurry is converted to NiCo
2 O 4 coated nickel foam (50ppI, 1.5m thickness)
m, 12 × 28 cm square, the NiCo 2 O 4 coating was
After coating and drying each nitrate butanol solution, 400
The resultant was applied to a thickness of 0.4 mm, pressed at a pressure of 10 kg / cm 2 , and pressed into the inside to form a reaction layer. As the silver-plated foamed nickel, the same one as used in Example 1 was used.

【0020】これを、80℃で3時間乾燥し、界面活性
剤をエタノールを用いた抽出器で除去した後、100℃
で2時間乾燥した後、さらに裏からガス供給層を形成す
るために、ポリフロンファインパウダ−(ダイキン工業
製)を均一に撤布し発泡体中に入れた。その上からシリ
コン樹脂シ−トを重ね常温、40kg/cm2 、60秒
間プレスし反応層とガス供給層を接合させた。このとき
の銀微粒子の使用量は460g/m2 であった。この電
極とイオン交換膜の間をゼロギャプとした食塩電解槽を
組立て、連続運転した。その結果、電流密度30A/d
2 、温度90℃、陰極液濃度32%NaOH、理論値
の2倍量の酸素供給の条件で、2.03Vの電解槽電圧
が得られた。14日間電圧変動無く運転できた。他に比
べ槽電圧が高いのは接触、集電抵抗が高いことが原因で
あった。電解で生じたか性ソ−ダは、ガス拡散電極を全
量漏液する抵抗が最も小さかった。
This was dried at 80 ° C. for 3 hours, and the surfactant was removed with an extractor using ethanol.
After drying for 2 hours, polyflon fine powder (manufactured by Daikin Industries, Ltd.) was uniformly removed and placed in a foam to form a gas supply layer from the back. A silicon resin sheet was overlaid on the sheet and pressed at room temperature at 40 kg / cm 2 for 60 seconds to join the reaction layer and the gas supply layer. At this time, the used amount of the silver fine particles was 460 g / m 2 . A salt electrolyzer with zero gap between the electrode and the ion exchange membrane was assembled and operated continuously. As a result, the current density is 30 A / d
An electrolytic cell voltage of 2.03 V was obtained under the conditions of m 2 , a temperature of 90 ° C., a catholyte concentration of 32% NaOH, and an oxygen supply of twice the theoretical value. It was able to operate without voltage fluctuation for 14 days. The higher cell voltage than the others was due to the higher contact and current collection resistance. The caustic soda produced by electrolysis had the lowest resistance to leaking all the gas diffusion electrode.

【0021】実施例4 銀微粒子(三井金属鉱業製、Ag−3050、平均粒径
0.5ミクロン)5部に界面活性剤トライトン1部、水
9部を加え超音波分散機で分散させた。これにPTFE
ディスパ−ジョンD−1(ダイキン工業製)1部を加
え、攪拌混合した後にエタノ−ルを10部加え、攪拌し
て自己組織化させた。この沈殿物を細孔径1ミクロンの
濾紙で濾過し、スラリーを銀メッキ発泡ニッケル(12
×28センチ角)上に0.5mm厚に塗り込み、10k
g/cm2 の圧力でプレスして内部に押し込んで反応層
を形成した。前記銀メッキ発泡ニッケルとしては、実施
例1で使用したものと同じものを用いた。
Example 4 To 5 parts of silver fine particles (manufactured by Mitsui Kinzoku Mining Co., Ltd., Ag-3050, average particle size 0.5 micron), 1 part of surfactant Triton and 9 parts of water were added and dispersed by an ultrasonic disperser. This is PTFE
One part of Dispersion D-1 (manufactured by Daikin Industries, Ltd.) was added, and the mixture was stirred and mixed. Then, 10 parts of ethanol was added, and the mixture was stirred to be self-organized. This precipitate was filtered through filter paper having a pore size of 1 micron, and the slurry was subjected to silver-plated foamed nickel (12
× 28cm square) and apply 0.5mm thickness on top, 10k
The reaction layer was formed by pressing at a pressure of g / cm 2 and pressing the inside. As the silver-plated foamed nickel, the same one as used in Example 1 was used.

【0022】さらに、裏からD−1にエタノ−ルを加え
糊状にしたものを押し込み、ガス供給層とした。これを
80℃で3時間乾燥し、界面活性剤をエタノ−ルを用い
た抽出器で除去した後、100℃で2時間乾燥後、ガス
供給層側に2mm厚のシリコン樹脂シ−トを重ね常温、
40kg/cm2 、60秒間プレスし、続いて無加圧で
300℃、10分間熱処理し、次いで冷却して電極を得
た。このときの銀微粒子の使用量は480g/m2 であ
った。この電極とイオン交換膜の間をゼロギャプとした
食塩電解槽を組立て連続運転した。その結果電流密度3
0A/dm2 、温度90℃、陰極液濃度32%NaO
H、理論値の2部量の酸素供給で、1.98Vの電解槽
電圧が得られた。14日間電圧変動無く運転できた。イ
オン交換膜を透過した電解液はガス拡散電極を全量漏液
し、電流効率は95%であった。
Further, from the back, ethanol was added to D-1 to form a paste, which was pressed into a gas supply layer. This was dried at 80 ° C. for 3 hours, and the surfactant was removed by an extractor using ethanol. After drying at 100 ° C. for 2 hours, a 2 mm-thick silicon resin sheet was overlaid on the gas supply layer side. At normal temperature,
Pressing was performed at 40 kg / cm 2 for 60 seconds, followed by heat treatment at 300 ° C. without pressure for 10 minutes, and then cooling to obtain an electrode. At this time, the used amount of the silver fine particles was 480 g / m 2 . A salt electrolyzer with zero gap between the electrode and the ion exchange membrane was assembled and operated continuously. As a result, the current density 3
0 A / dm 2 , temperature 90 ° C., catholyte concentration 32% NaO
H, an electrolytic cell voltage of 1.98 V was obtained by supplying 2 parts of the theoretical value of oxygen. It was able to operate without voltage fluctuation for 14 days. The entire amount of the electrolyte passed through the ion exchange membrane leaked from the gas diffusion electrode, and the current efficiency was 95%.

【0023】実施例5 銀微粒子(三井金属鉱業製、Ag−3030、平均粒径
0.3ミクロン)5部に、PTFEディスパ−ジョンD
−1(ダイキン工業製)2部を加え、攪拌混合した後に
エタノ−ルを1部加え、攪拌して自己組織化させ、銀−
PTFEペーストを得た。この銀−PTFEペーストを
銀メッキ発泡ニッケル(12×28センチ角)上に0.
5mm厚に塗り込み、10kg/cm2 の圧力でプレス
して銀メッキ発泡ニッケル内部に押し込むことで反応層
を形成した。前記銀メッキ発泡ニッケルとしては、実施
例1で使用したものと同じものを用いた。
Example 5 PTFE dispersion D was added to 5 parts of silver fine particles (Ag-3030, manufactured by Mitsui Mining & Smelting, average particle size 0.3 micron).
-1 (manufactured by Daikin Industries, Ltd.) and stirring and mixing, and then 1 part of ethanol was added.
A PTFE paste was obtained. This silver-PTFE paste was placed on a silver-plated nickel foam (12 × 28 cm square) to a thickness of 0.1 mm.
It was applied to a thickness of 5 mm, pressed at a pressure of 10 kg / cm 2 , and pressed into the silver-plated nickel foam to form a reaction layer. As the silver-plated foamed nickel, the same one as used in Example 1 was used.

【0024】さらに、裏からD−1にエタノ−ルを加え
糊状にしたものを押し込み、ガス供給層とする。これを
80℃で3時間乾燥し、界面活性剤をエタノ−ルを用い
た抽出器で除去した後、100℃で2時間乾燥後、ガス
供給層側に2mm厚のシリコン樹脂シ−トを重ね常温、
40kg/cm2 、60秒間プレスし、無加圧で250
℃、10分間熱処理し、次いで冷却する事で電極を得
た。このときの銀微粒子の使用量は480g/m2 であ
った。この電極とイオン交換膜の間をゼロギャプとした
食塩電解槽を組立て連続運転した。その結果電流密度3
0A/dm2 、温度90℃、陰極液濃度32%NaO
H、理論値の2部量の酸素供給で、2.03Vの電解槽
電圧が得られた。40日間電圧変動無く運転できた。
Further, a paste formed by adding ethanol to D-1 from the back is pressed into a gas supply layer. This was dried at 80 ° C. for 3 hours, and the surfactant was removed by an extractor using ethanol. After drying at 100 ° C. for 2 hours, a 2 mm-thick silicon resin sheet was overlaid on the gas supply layer side. At normal temperature,
Press for 40 seconds at 40 kg / cm 2 , 250 without pressure
The electrode was obtained by performing a heat treatment at 10 ° C. for 10 minutes and then cooling. At this time, the used amount of the silver fine particles was 480 g / m 2 . A salt electrolyzer with zero gap between the electrode and the ion exchange membrane was assembled and operated continuously. As a result, the current density 3
0 A / dm 2 , temperature 90 ° C., catholyte concentration 32% NaO
H, an electrolytic cell voltage of 2.03 V was obtained by supplying 2 parts of theoretical oxygen. Operation was possible without voltage fluctuation for 40 days.

【0025】[0025]

【発明の効果】本発明の漏液型ガス拡散電極は、反応層
に接して線状体が設けられているから、この表面を伝わ
って電解液が漏れ出し、接触しているガス室(ガス供給
層)の親水性網に受け渡され、それを伝って流下する。
前記線状体が親水性のあるものは、液が線状体に伝わり
易く、ガス供給層の表面を液で塞ぐことが少ないので、
ガスの供給が円滑に行われる。ガス供給層は、フッ素樹
脂の多孔体であるから、漏液によってガスの供給が阻害
されることが無い。この結果、電極性能は低下せず、イ
オン交換膜型食塩電解槽に酸素陰極として用いると、電
流密度30A/dm2 、温度90℃、陰極液濃度32%
NaOHの条件で、電解槽電圧を1.95V以下とする
ことができる。同時に、ガス供給層はフッ素樹脂だけで
構成されているため腐食等の問題もなく、電極は長寿命
となる。線状体が金属の場合には給電体となり、ガス室
の金属多孔体から直接給電できる。
In the leaky gas diffusion electrode of the present invention, since the linear body is provided in contact with the reaction layer, the electrolyte leaks along this surface, and the gas chamber (gas It is delivered to the hydrophilic net of the supply layer) and flows down along the hydrophilic net.
If the linear body is hydrophilic, the liquid is easily transmitted to the linear body, and the surface of the gas supply layer is less likely to be closed with the liquid,
Gas supply is performed smoothly. Since the gas supply layer is a porous body made of a fluororesin, the gas supply is not hindered by the liquid leakage. As a result, the electrode performance did not decrease, and when used as an oxygen cathode in an ion-exchange membrane type saline electrolytic cell, the current density was 30 A / dm 2 , the temperature was 90 ° C., and the catholyte concentration was 32%.
Under the condition of NaOH, the electrolytic cell voltage can be set to 1.95 V or less. At the same time, since the gas supply layer is made of only the fluororesin, there is no problem such as corrosion and the electrode has a long life. When the linear body is metal, it becomes a power feeder, and power can be directly supplied from the porous metal body in the gas chamber.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の漏液型ガス拡散電極の一例を示す断面
説明図である。
FIG. 1 is an explanatory cross-sectional view showing an example of a liquid leakage type gas diffusion electrode of the present invention.

【符号の説明】[Explanation of symbols]

1 ガス拡散電極 2 反応層 3 ガス供給層 4 線状体 5 隙間 6 端部 7 導電性フレーム 8 ガス室 9 液 10 液 11 イオン交換膜 REFERENCE SIGNS LIST 1 gas diffusion electrode 2 reaction layer 3 gas supply layer 4 linear body 5 gap 6 end 7 conductive frame 8 gas chamber 9 liquid 10 liquid 11 ion exchange membrane

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭52−14496(JP,A) (58)調査した分野(Int.Cl.6,DB名) C25B 11/20 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-52-14496 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) C25B 11/20

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 反応層とガス供給層からなる漏液型ガス
拡散電極において、反応層と接触しガス供給層を貫通す
る線状体を多数有し、これらの線状体とガス供給層との
間に水又は電解液を透過させることのできる間隙を有す
ることを特徴とする漏液型ガス拡散電極。
1. A leakage liquid-type gas diffusion electrode comprises a reaction layer and a gas supply layer having a large number of linear body in contact with the anti応層through the gas supply layer, these linear body and a gas supply layer And a gap through which water or an electrolyte can pass.
【請求項2】 前記線状体が金属発泡体であることを特
徴とする請求項1記載の漏液型ガス拡散電極。
2. The leaky gas diffusion electrode according to claim 1, wherein said linear body is a metal foam.
【請求項3】 前記ガス供給層がフッ素樹脂多孔体であ
ることを特徴とする請求項1記載の漏液型ガス拡散電
極。
3. The leaky gas diffusion electrode according to claim 1, wherein said gas supply layer is a porous fluororesin.
【請求項4】 請求項1の漏液型ガス拡散電極におい
て、線状体にガス供給層を充填後に無加圧下で熱処理す
ることによりガス供給層と線状体の界面に間隙を形成す
ることを特徴とする漏液型ガス拡散電極の製造方法。
4. The leaky gas diffusion electrode according to claim 1, wherein a gap is formed at an interface between the gas supply layer and the linear body by performing a heat treatment under no pressure after filling the linear body with the gas supply layer. A method for producing a liquid leakage type gas diffusion electrode, comprising:
JP10024723A 1998-02-05 1998-02-05 Liquid leakage type gas diffusion electrode and method of manufacturing the same Expired - Fee Related JP2935181B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10024723A JP2935181B1 (en) 1998-02-05 1998-02-05 Liquid leakage type gas diffusion electrode and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10024723A JP2935181B1 (en) 1998-02-05 1998-02-05 Liquid leakage type gas diffusion electrode and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JP2935181B1 true JP2935181B1 (en) 1999-08-16
JPH11222691A JPH11222691A (en) 1999-08-17

Family

ID=12146091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10024723A Expired - Fee Related JP2935181B1 (en) 1998-02-05 1998-02-05 Liquid leakage type gas diffusion electrode and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2935181B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMI20060726A1 (en) * 2006-04-12 2007-10-13 De Nora Elettrodi S P A ELECTRIC DIFFUSION ELECTRODE FOR CELLS WITH ELECTROLYTE DISCHARGE
JP2008127660A (en) * 2006-11-22 2008-06-05 Univ Of Yamanashi Gas diffusion electrode having excellent electroconductivity

Also Published As

Publication number Publication date
JPH11222691A (en) 1999-08-17

Similar Documents

Publication Publication Date Title
US6368473B1 (en) Soda electrolytic cell provided with gas diffusion electrode
CA1179630A (en) Halide electrolysis in cell with catalytic electrode bonded to hydraulically permeable membrane
KR101081468B1 (en) Oxygen gas diffusion cathode for sodium chloride electrolysis
KR101399172B1 (en) Oxygen gas diffusion cathode, electrolytic cell employing same, method of producing chlorine gas and method of producing sodium hydroxide
WO2010009058A1 (en) Electrochemical devices, systems, and methods
CA2194753A1 (en) Electrochemical peroxide generator and process for making peroxide
JP2007242433A (en) Electrode catalyst for electrochemical reaction, manufacturing method of the same, and electrochemical electrode having the same
US4276146A (en) Cell having catalytic electrodes bonded to a membrane separator
JPH0125836B2 (en)
JPH07278864A (en) Gas diffusion electrode
US4749452A (en) Multi-layer electrode membrane-assembly and electrolysis process using same
KR20130032832A (en) - oxygen-consuming electrode and process for production thereof
JP2935181B1 (en) Liquid leakage type gas diffusion electrode and method of manufacturing the same
JPS58144488A (en) Multilayer structure for electrode-membrane assembly and electrolytic process thereby
JPH1081987A (en) Gas diffusion cathode and brine electrolyzing cell using this gas diffusion cathode
JPH08283979A (en) Gas diffusing electrode and electrolytic method using the electrode
EP0610946A1 (en) Activated cathode for chlor-alkali cells and method for preparing the same
CN105132940A (en) Oxygen-consuming electrode and method for its production
JP2805458B2 (en) Manufacturing method of gas diffusion electrode
JP3625633B2 (en) Gas diffusion electrode structure and manufacturing method thereof
JP3553781B2 (en) Electrolysis method using gas diffusion cathode
JP3420400B2 (en) Gas diffusion electrode for electrolysis and method for producing the same
JP2929437B1 (en) Gas diffusion electrode
JP3373140B2 (en) Gas diffusion electrode
JP2002206186A (en) Electrode structure and electrolysis method using this structure

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees