JP2934220B2 - Semi-solid and semi-solid casting - Google Patents

Semi-solid and semi-solid casting

Info

Publication number
JP2934220B2
JP2934220B2 JP2504098A JP2504098A JP2934220B2 JP 2934220 B2 JP2934220 B2 JP 2934220B2 JP 2504098 A JP2504098 A JP 2504098A JP 2504098 A JP2504098 A JP 2504098A JP 2934220 B2 JP2934220 B2 JP 2934220B2
Authority
JP
Japan
Prior art keywords
semi
solid
mold
ingot
molten metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2504098A
Other languages
Japanese (ja)
Other versions
JPH11207455A (en
Inventor
朗 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Motors Ltd
Original Assignee
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Jukogyo KK filed Critical Kawasaki Jukogyo KK
Priority to JP2504098A priority Critical patent/JP2934220B2/en
Publication of JPH11207455A publication Critical patent/JPH11207455A/en
Application granted granted Critical
Publication of JP2934220B2 publication Critical patent/JP2934220B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、内部に固相成分と
液相成分とが共存する半溶融、半凝固金属を鋳造する半
溶融・半凝固鋳造法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semi-molten and semi-solid casting method for casting a semi-molten and semi-solid metal in which a solid phase component and a liquid phase component coexist.

【0002】[0002]

【従来の技術】従来、この種の半溶融・半凝固鋳造法と
しては、例えば特開平1−313164号公報に記載さ
れているように、容器内の溶湯を温度制御して固液共存
状態とし、これを攪拌しつつ容器のノズルを介して鋳型
に鋳込む半溶融金属の鋳造方法において、前記ノズルの
溶湯通流路及び鋳型の溶湯注入領域を直通させ、鋳型の
溶湯注入領域を減圧して鋳造する半溶融金属の鋳造方法
が知られている。この半溶融金属の鋳造方法は、上記構
成により、半溶融状態の溶湯の鋳造速度を高めることが
できるので、ノズル詰まりを生じることがない。又、鋳
型の内圧を調節することにより、湯面レベルを制御する
ことができる。更に、鋳型内に溶湯を吸引するので、複
雑な形状の鋳塊を高精度に鋳造できる。更に又、溶湯酸
化及び温度低下を有効に防止できる、というものであ
る。
2. Description of the Related Art Conventionally, as a semi-solid / semi-solid casting method of this kind, for example, as described in JP-A-1-313164, the temperature of a molten metal in a container is controlled to a solid-liquid coexistence state. In a method of casting a semi-molten metal into a mold through a nozzle of a container while stirring this, the molten metal flow path of the nozzle and the molten metal injection area of the mold are directly passed, and the molten metal injection area of the mold is depressurized. 2. Description of the Related Art A method for casting a semi-molten metal to be cast is known. According to the method of casting a semi-molten metal, the above configuration can increase the casting speed of the molten metal in a semi-molten state, so that nozzle clogging does not occur. Also, the level of the molten metal can be controlled by adjusting the internal pressure of the mold. Further, since the molten metal is sucked into the mold, an ingot having a complicated shape can be cast with high precision. Furthermore, the oxidation of the molten metal and the decrease in temperature can be effectively prevented.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来の
半溶融・半凝固鋳造法では、鋳型の溶融注入領域、すな
わち型穴を減圧しているので、ある程度精度の高い鋳造
ができるものの、溶湯に掛けられる圧力差が最大で1気
圧であるため、収縮巣やポロシティの発生等の不具合が
ある。又、減圧されているとは言え、型穴内が酸化性雰
囲気であるため、溶湯の酸化が生ずる不具合がある。そ
こで、本発明は、酸化、収縮巣やポロシティの発生を防
止できると共に、製品の均質化と高密度化、凝固組織の
微細化をなし得る半溶融・半凝固鋳造法を提供すること
を目的とする。
However, in the conventional semi-molten / semi-solidified casting method, since the pressure in the melt injection region of the mold, that is, the mold hole is reduced, casting with a certain degree of accuracy can be achieved. Since the maximum pressure difference is 1 atm, there are problems such as the occurrence of shrinkage porosity and porosity. Further, although the pressure is reduced, there is a problem that the molten metal is oxidized because the inside of the mold cavity is an oxidizing atmosphere. Therefore, an object of the present invention is to provide a semi-molten / semi-solidified casting method capable of preventing the occurrence of oxidation, shrinkage cavities and porosity, homogenizing and densifying a product, and refining a solidified structure. I do.

【0004】[0004]

【課題を解決するための手段】前記課題を解決するた
め、本発明の半溶融・半凝固鋳造法は、半溶融又は半凝
固処理したインゴットを大きな押し湯部に入れた精密鋳
造鋳型を加圧型雰囲気加熱炉内において減圧又は常圧の
不活性ガス雰囲気において加熱し、かつインゴットを半
溶融状態の溶湯にして型穴に充填した後、不活性ガス雰
囲気を高圧に保持し、しかる後に減圧してガスファン冷
却により急冷することを特徴とする。
In order to solve the above-mentioned problems, a semi- solid / semi-solid casting method according to the present invention is directed to a precision casting mold in which a semi-molten or semi-solid treated ingot is placed in a large feeder. After heating in an inert gas atmosphere of reduced pressure or normal pressure in an atmosphere heating furnace , and filling the ingot with a molten metal in a semi-molten state in a mold hole, the inert gas atmosphere is maintained at a high pressure, and then the pressure is reduced. Gas fan cooling
It is characterized by quenching by cooling.

【0005】ここで、半溶融処理したインゴットとは、
金属(合金)材料を加熱し、その内部に固相成分と液相
成分を所要の割合で共存させたものを急冷凝固させて内
部構造を半溶融状態と同一に固定したインゴットをい
う。一方、半凝固処理したインゴットとは、溶融金属
(合金)材料を冷却しつつ機械的あるいは電磁的方法等
で攪拌し、溶湯と固相粒子とを分散混合したものを凝固
させ半凝固状態の内部組織を残存させたインゴットをい
う。精密鋳造鋳型とは、模型(原型)をワックス等でつ
くり、これをセラミックススラリー等を用いて埋没成形
し、乾燥し、次いで加熱によってワックスを流し出して
から焼成して鋳型とする、ロストワックス法等と同様に
して製作したものをいう。不活性ガスとしては、窒素ガ
ス、アルゴンガスその他の不活性ガスが用いられる。イ
ンゴットや精密鋳造鋳型の加熱や加圧、雰囲気調整に
は、加圧型雰囲気加熱炉が用いられる。又、急冷には、
ガスファン冷却が用いられる。
[0005] Here, the semi-melted ingot is
An ingot in which a metal (alloy) material is heated and a solid phase component and a liquid phase component coexist at a required ratio in the inside thereof are rapidly cooled and solidified to fix the internal structure in the same state as a semi-molten state. On the other hand, a semi-solidified ingot is a mixture of a molten metal (solid alloy) and solid phase particles that are dispersed and mixed by cooling and stirring the molten metal (alloy) material while cooling it. An ingot that has left the tissue. The precision casting mold is a lost wax method in which a model (original model) is made of wax or the like, buried and molded using a ceramic slurry or the like, dried, then poured out by heating, and then fired to form a mold. Refers to those manufactured in the same manner as above. As the inert gas, a nitrogen gas, an argon gas or another inert gas is used. A pressurized atmosphere heating furnace is used for heating, pressurizing, and adjusting the atmosphere of the ingot and the precision casting mold. Also, for quenching,
Gas fan cooling is used.

【0006】[0006]

【発明の実施の形態】以下、本発明の実施の形態につい
て図面を参照して説明する。図1〜図6は本発明に係る
半溶融・半凝固鋳造法の実施の形態の一例を示す各工程
の説明図である。先ず、図1に示すように、ロストワッ
クス法と同様にして精密鋳造鋳型1を造型すると共に、
その押し湯部1aを比較的大きく作り、この押し湯部1
aにアルミニウム合金を半溶融又は半凝固処理したイン
ゴット2の切断片を入れた。次に、図2に示すように、
精密鋳造鋳型1をヒーター3による加熱、真空ポンプ又
は高圧ポンプ(図示せず)による加圧や雰囲気調整可能
な加圧型雰囲気加熱炉4内にセットし、その中の雰囲気
を減圧又は常圧の不活性ガス(例えば窒素ガス)に置換
した後、図3に示すように、ヒーター3により精密鋳造
鋳型1と一緒にインゴット2を加熱し、インゴット2を
半溶融状態の溶湯5にして精密鋳造鋳型1の型穴1bに
充填した。上記インゴット2の半溶融状態の溶湯5への
溶融に際し、溶湯5の酸化が完全に防止され、又、溶湯
5の型穴1bへの充填は、重力によってなされた。次い
で、図4に示すように、加圧型雰囲気加熱炉4内の不活
性ガス雰囲気を9気圧程度の高圧とし約0.5時間保持
した後、加圧型雰囲気加熱炉4内を減圧してガスファン
冷却により急冷した。上記不活性ガス雰囲気の高圧保持
により、半溶融状態の溶湯5が酸化を防止されつつ溶湯
鍛造され、又、急冷により、結晶粒の粗大化が阻止され
た。次に、図5に示すように、精密鋳造鋳型1を加圧型
雰囲気加熱炉4から取り出した後、図6に示すように、
通常の型ばらしを行い、鋳造物6の切断、仕上げを行っ
て製品7を得た。得られた製品は、不活性ガス雰囲気に
おいて溶融、その溶湯鍛造及び急冷処理されたので、酸
化が完全に防止されると共に、収縮巣やポロシティの発
生が防止され、均質化と高密化、凝固組織が微細化され
ていた。又、精密、鋳造鋳型を使用するため、大型の製
品や中子を用いた複雑な形状の製品の製造が可能であっ
た。
Embodiments of the present invention will be described below with reference to the drawings. 1 to 6 are explanatory views of each step showing an example of an embodiment of a semi-solid / semi-solid casting method according to the present invention. First, as shown in FIG. 1, a precision casting mold 1 is formed in the same manner as the lost wax method,
The feeder 1a is made relatively large, and the feeder 1
The cut piece of the ingot 2 in which the aluminum alloy was semi-molten or semi-solidified was put into a. Next, as shown in FIG.
The precision casting mold 1 is set in a pressurized atmosphere heating furnace 4 which can be heated by a heater 3, pressurized by a vacuum pump or a high-pressure pump (not shown) or atmosphere can be adjusted. After replacing with an active gas (for example, nitrogen gas), as shown in FIG. 3 , the ingot 2 is heated together with the precision casting mold 1 by the heater 3 to convert the ingot 2 into a molten metal 5 in a semi-molten state. In the mold cavity 1b. When the ingot 2 was melted into the molten metal 5 in a semi-molten state, the oxidation of the molten metal 5 was completely prevented, and the filling of the molten metal 5 into the mold cavity 1b was performed by gravity. Next, as shown in FIG. 4, after the inert gas atmosphere in the pressurized atmosphere heating furnace 4 is maintained at a high pressure of about 9 atm and maintained for about 0.5 hour, the inside of the pressurized atmosphere heating furnace 4 is decompressed and a gas fan It was quenched by cooling. By maintaining the inert gas atmosphere at a high pressure, the molten metal 5 in a semi-molten state is forged while being prevented from being oxidized, and the rapid cooling prevents the crystal grains from becoming coarse. Next, as shown in FIG. 5, after removing the precision casting mold 1 from the pressurized atmosphere heating furnace 4, as shown in FIG.
A normal die was separated, and the casting 6 was cut and finished to obtain a product 7. The obtained product was melted in an inert gas atmosphere, melt-forged and quenched, so that oxidation was completely prevented, shrinkage cavities and porosity were prevented, and homogenization and densification were achieved. Had been miniaturized. In addition, since a precision and casting mold is used, it is possible to manufacture a large product or a product having a complicated shape using a core.

【0007】[0007]

【発明の効果】以上説明したように、本発明の半溶融・
半凝固鋳造法によれば、加圧型雰囲気加熱炉内における
不活性ガス雰囲気の下でのインゴットからの半溶融状態
の溶湯化、溶湯鍛造及び急冷処理がなされるので、酸化
を完全に防止できると共に、収縮巣やポロシティがな
く、均質化と高密化、凝固組織の微細化された製品を得
ることができると共に、インゴットを入れた大きな押し
湯部を有する精密鋳造鋳型を加圧型雰囲気加熱炉内にセ
ットし、この加圧型雰囲気加熱炉内でインゴットの溶
解、溶湯の型穴への充填、溶湯の加圧、減圧後の急冷の
全てを行っているので、特別な専用の溶解鋳造設備を必
要とするとなく、汎用の加熱炉を使用することができ
As described above, according to the present invention, semi-molten, the present invention
According to the semi-solid casting method, the semi-molten state from the ingot under the inert gas atmosphere in the pressurized atmosphere heating furnace
Melt of, since it is Gana melt forging and quenching treatment, the oxide can be completely prevented, shrinkage cavities and no porosity, homogenized and densified, with the product can be obtained which is finer solidification structure Big push with ingot
Place the precision casting mold with hot water in a pressurized atmosphere heating furnace.
And melt the ingot in this pressurized atmosphere heating furnace.
Dissolving, filling of molten metal into mold cavity, pressurizing molten metal, rapid cooling after decompression
Since everything is done, special dedicated melting and casting equipment is required.
It is not necessary to use a general-purpose heating furnace
You .

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る半溶融・半凝固鋳造法の実施の形
態の一例を示す精密鋳造鋳型に対するインゴット入れ工
程の説明図である。
FIG. 1 is an explanatory view of a step of placing an ingot in a precision casting mold, showing an example of an embodiment of a semi-solid / semi-solid casting method according to the present invention.

【図2】図1の精密鋳造鋳型の加圧型雰囲気加熱炉への
セット工程の説明図である。
FIG. 2 is an explanatory view of a step of setting the precision casting mold of FIG. 1 into a pressurized atmosphere heating furnace.

【図3】図2の加圧型雰囲気加熱炉の加熱工程の説明図
である。
FIG. 3 is an explanatory view of a heating step of the pressurized atmosphere heating furnace of FIG. 2;

【図4】図2の加圧型雰囲気加熱炉の雰囲気加圧と冷却
工程の説明図である。
FIG. 4 is an explanatory view of an atmosphere pressurizing and cooling step of the pressurized atmosphere heating furnace of FIG. 2;

【図5】図2の加圧型雰囲気加熱炉からの精密鋳造鋳型
の取り出し工程の説明図である。
FIG. 5 is an explanatory view of a step of taking out a precision casting mold from the pressurized atmosphere heating furnace of FIG. 2;

【図6】精密鋳造鋳型の型ばらし、切断、仕上げ工程の
説明図である。
FIG. 6 is an explanatory diagram of a mold releasing, cutting, and finishing process of a precision casting mold.

【符号の説明】[Explanation of symbols]

1 精密鋳造鋳型 1a 押し湯部 1b 型穴 2 インゴット 3 ヒーター 4 加圧型雰囲気加熱炉 5 溶湯 6 鋳造物 7 製品 DESCRIPTION OF SYMBOLS 1 Precision casting mold 1a Feeder part 1b Mold hole 2 Ingot 3 Heater 4 Pressurized atmosphere heating furnace 5 Molten metal 6 Casting 7 Product

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) B22D 27/13 B22D 23/00 B22D 27/04 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 6 , DB name) B22D 27/13 B22D 23/00 B22D 27/04

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 半溶融又は半凝固処理したインゴットを
大きな押し湯部に入れた精密鋳造鋳型を加圧型雰囲気加
熱炉内において減圧又は常圧の不活性ガス雰囲気の下で
加熱し、かつインゴットを半溶融状態の溶湯にして型穴
に充填した後、不活性ガス雰囲気を高圧に保持し、しか
る後に減圧してガスファン冷却により急冷することを特
徴とする半溶融・半凝固鋳造法。
1. A semi-molten or semi-solidified ingot is
A precision casting mold placed in a large riser is pressurized
After heating under reduced pressure or normal pressure inert gas atmosphere in a heat furnace , and filling the mold with the ingot as a molten metal in a semi-molten state, the inert gas atmosphere is maintained at a high pressure, A semi-solid / semi-solidified casting method characterized by reducing the pressure and then rapidly cooling by gas fan cooling .
JP2504098A 1998-01-22 1998-01-22 Semi-solid and semi-solid casting Expired - Lifetime JP2934220B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2504098A JP2934220B2 (en) 1998-01-22 1998-01-22 Semi-solid and semi-solid casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2504098A JP2934220B2 (en) 1998-01-22 1998-01-22 Semi-solid and semi-solid casting

Publications (2)

Publication Number Publication Date
JPH11207455A JPH11207455A (en) 1999-08-03
JP2934220B2 true JP2934220B2 (en) 1999-08-16

Family

ID=12154808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2504098A Expired - Lifetime JP2934220B2 (en) 1998-01-22 1998-01-22 Semi-solid and semi-solid casting

Country Status (1)

Country Link
JP (1) JP2934220B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2500407A (en) * 2012-03-20 2013-09-25 Honeywell Uk Ltd Method and apparatus for casting

Also Published As

Publication number Publication date
JPH11207455A (en) 1999-08-03

Similar Documents

Publication Publication Date Title
RU2126849C1 (en) Magnesium-beryllium alloys treated in semisolid state
JPH09509101A (en) Permanent mold casting of reactive melt
RU2081725C1 (en) Method of castings production using pressure die casting of light alloys and method of casting using pressure die casting of aluminum alloy
US7360579B2 (en) Method for the production of cast components
EP0904875B1 (en) Method of injection molding a light alloy
JP2934220B2 (en) Semi-solid and semi-solid casting
JP3487315B2 (en) Die casting method
JP2001509085A (en) Semi-solid metal forming method
WO2004101197A3 (en) Method for centrifugal casting
JPS58125328A (en) Manufacture of forging
JPH1099953A (en) Centrifugal casting method
JP2003126950A (en) Molding method of semi-molten metal
JPS5850167A (en) Prevention for clogging of sprue
JP3339333B2 (en) Method for forming molten metal
JP3473214B2 (en) Forming method of semi-molten metal
JPH01313164A (en) Casting method for semimolten metal
JP3310948B2 (en) How to cast supercooled metal
JPH05169193A (en) Method for casting semi-solidified metal
JP2654982B2 (en) Fe-Al-Si alloy and method for producing the same
JPS6344824B2 (en)
JP3219526B2 (en) Light alloy member having ductile part and method of manufacturing the same
RU2108200C1 (en) Casting mold for producing annular ingots
RU2034681C1 (en) Method to produce extended thin-walled castings
JPS608897B2 (en) Casting method for titanium castings made of pure titanium or alloys whose main component is titanium
JP2000015394A (en) Production of aluminum alloy casting