JP2933468B2 - Method of charging molded coke into blast furnace - Google Patents

Method of charging molded coke into blast furnace

Info

Publication number
JP2933468B2
JP2933468B2 JP17177693A JP17177693A JP2933468B2 JP 2933468 B2 JP2933468 B2 JP 2933468B2 JP 17177693 A JP17177693 A JP 17177693A JP 17177693 A JP17177693 A JP 17177693A JP 2933468 B2 JP2933468 B2 JP 2933468B2
Authority
JP
Japan
Prior art keywords
coke
furnace
blast furnace
charged
charging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17177693A
Other languages
Japanese (ja)
Other versions
JPH0681014A (en
Inventor
一田守政
山本哲也
奥野嘉雄
松永伸一
織田博史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP17177693A priority Critical patent/JP2933468B2/en
Publication of JPH0681014A publication Critical patent/JPH0681014A/en
Application granted granted Critical
Publication of JP2933468B2 publication Critical patent/JP2933468B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Iron (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は成型コークスの高炉への
装入方法に関し、高炉中心ガス流を確保すると同時に室
炉コークスの高炉炉壁近傍での粉化を抑制して高炉の安
定操業をはかるものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of charging molded coke into a blast furnace, and secures a blast furnace center gas flow and suppresses powdering of a room furnace coke near a blast furnace wall to stably operate the blast furnace. It is a measure.

【0002】[0002]

【従来の技術】高炉においては鉄原料とコークスとを交
互に炉頂部より装入し、羽口より高炉に空気を吹き込ん
でコークスを燃焼させる。コークスの燃焼によって発生
する還元ガス、さらには空気とともに羽口より吹き込ん
だ微粉炭等の燃焼による還元ガスは鉄原料を昇温・還元
し溶融滴下させる。したがって、鉄原料の還元・溶融の
点からは、還元ガスの半径方向分布を適正に制御するこ
とが重要となる。一般に還元材として使用される室炉コ
ークスは広い粒度分布を持つため、炉頂部より装入した
際に粗粒ほど高炉中心部ヘ流れ込み、細粒は高炉周辺部
ヘ堆積する傾向を持つ。
2. Description of the Related Art In a blast furnace, iron raw materials and coke are charged alternately from the furnace top, and air is blown into the blast furnace from tuyeres to burn the coke. The reducing gas generated by the combustion of coke, and the reducing gas by the combustion of pulverized coal and the like blown from the tuyere together with the air, raise the temperature of the iron raw material, reduce it, and cause it to melt and drop. Therefore, from the viewpoint of reducing and melting the iron raw material, it is important to appropriately control the radial distribution of the reducing gas. Since the furnace coke generally used as a reducing agent has a wide particle size distribution, when charged from the furnace top, coarser particles tend to flow into the center of the blast furnace, and fine particles tend to accumulate in the peripheral portion of the blast furnace.

【0003】中心部に装入された粗粒コークスは通気抵
抗を低下させる働きがあり、中心部の還元ガス流量を確
保する上で重要である。しかしながら室炉コークスの粒
度構成は常に変化しており、中心部へ装入される粗粒コ
ークスも変動することになる。このため中心部の還元ガ
ス流量が不安定となり、高炉炉芯部の温度が低下して炉
芯が肥大し、装入物降下領域の縮小による炉況不調が発
生する問題があった。さらに、今後の微粉炭多量吹込み
操業に伴う高O/C(高炉へ装入する1チャージあたり
の鉱石とコークスの重量比)化により、炉内の通気抵抗
は増加すると同時に、コークスより傾斜角の小さい鉱石
がより多く中心部へ流れこむために中心流の確保が困難
になることが予想されている。とくに微粉炭比(PC
R)150〜200kg/tに対応するO/Cのレベル
(O/C=5〜6)では通気抵抗の増大の問題と不十分
な中心流が顕在化して操業を不安定にすることが懸念さ
れている。この微粉炭多量吹込み時の中心流の確保が、
微粉炭多量吹込み操業の成否の鍵を握っていると考えら
れる。
[0003] Coarse coke charged in the center has a function of lowering air flow resistance, and is important in securing the flow rate of reducing gas in the center. However, the particle size composition of the furnace coke is constantly changing, and the coarse coke charged into the center also varies. As a result, the flow rate of the reducing gas in the central portion becomes unstable, the temperature of the blast furnace core decreases, the furnace core enlarges, and there is a problem that the furnace condition is deteriorated due to the reduction of the charge falling area. Furthermore, due to the increase in O / C (weight ratio of ore and coke per charge charged to the blast furnace) accompanying the operation of injecting a large amount of pulverized coal in the future, the ventilation resistance in the furnace increases, and at the same time, the inclination angle becomes smaller than that of coke. It is anticipated that it will be difficult to secure the central flow because more ore of small size flows into the center. Especially pulverized coal ratio (PC
R) At an O / C level corresponding to 150 to 200 kg / t (O / C = 5 to 6), there is a concern that the problem of increase in airflow resistance and insufficient central flow become apparent to make the operation unstable. Have been. Maintaining the central flow when injecting a large amount of pulverized coal,
It is thought that the key to the success of the pulverized coal injection operation.

【0004】上記の中心流確保の対策として実際操業で
は中心部のコークス層厚をできるだけ厚くして中心部の
通気抵抗を小さくする対策が実施されている。炉内側に
室炉コークスを装入する方法は中心流を確保するために
従来から実施されている技術である。炉壁側に成型コー
クスを装入する技術は国家主導の共同研究の中で新日本
製鐵(株)の戸畑4高炉ではじめて実機適用されている
(製銑第54委員会本委員会提出資料「戸畑第4高炉に
おける成型コークスの高炉使用試験結果」昭和62年7
月13日、日本学術振興会)。中心部に粗粒の成型コー
クスを装入する技術はないが、特開平l−65209号
では高炉の炉中心部に粒度の異なる2種類の良質のコー
クスを装入することにより、炉芯コークス層の通気性・
通液性を向上させる技術が開示されている。
[0004] As a countermeasure against the above-mentioned central flow, in actual operation, a countermeasure for reducing the ventilation resistance at the central portion by increasing the thickness of the coke layer at the central portion as much as possible is implemented. The method of charging the furnace coke inside the furnace is a technique that has been conventionally implemented to secure a central flow. The technology of charging molded coke on the furnace wall side has been applied for the first time to the actual plant at Nippon Steel Corporation's Tobata 4 blast furnace in a joint research led by the State of Japan. "Test Results of Blast Furnace Use of Molded Coke in Tobata No. 4 Blast Furnace" July 1987
March 13, Japan Society for the Promotion of Science). Although there is no technology for charging coarse shaped coke in the center, Japanese Patent Application Laid-Open No. 1-65209 discloses that two types of high-quality coke having different particle sizes are charged in the center of a blast furnace to form a core coke layer. Air permeability
A technique for improving liquid permeability is disclosed.

【0005】また、装入されたコークスは炉下部の直接
還元帯においてCOガスとのソリューションロス反応を
起こし、組織が脆弱化して機械的強度が低下する。この
ため、多量のコークス粉が発生して高炉内の通気抵抗値
が上昇したり、あるいは、コークス粉が高炉炉芯部に堆
積して炉芯温度が低下し、高炉操業が不安定になる問題
があった。コークス粒径が小さいほど反応劣化による粉
化が激しいため、高炉の安定操業にとっては周辺部に装
入される小塊コークスの反応劣化が特に問題であり、今
後の微粉炭多量吹込み操業に伴う高O/C(高炉へ装入
する1チャージあたりの鉱石とコークスの重量比)操業
下では特にこの問題が顕在化する可能性がある。
Further, the charged coke causes a solution loss reaction with CO gas in the direct reduction zone at the lower part of the furnace, weakening the structure and reducing the mechanical strength. For this reason, a large amount of coke powder is generated and the ventilation resistance value in the blast furnace increases, or the coke powder accumulates in the blast furnace core and the core temperature decreases, resulting in unstable blast furnace operation. was there. The smaller the coke particle size, the more severe the pulverization due to the reaction deterioration.Therefore, for the stable operation of the blast furnace, the reaction deterioration of the small lump coke charged in the surrounding area is a particular problem. This problem may be particularly apparent during high O / C (weight ratio of ore to coke per charge charged to the blast furnace) operation.

【0006】徒来、炉芯部に堆積したコークス粉を除去
して炉芯温度を確保する手段として、高炉燃料比を一時
的に上昇する方法がとられていた。この方法はクリーニ
ング操業と呼ばれるが、増加した燃料比のなかで炉芯温
度上昇に寄与する割合はわずかであり、エネルギー効率
が悪く、また、コークス粉の発生を防止するような根本
的な解決策ではない。
Until now, a method of temporarily increasing the blast furnace fuel ratio has been adopted as a means for removing coke powder deposited on the furnace core to secure the core temperature. Although this method is called a cleaning operation, only a small proportion of the increased fuel ratio contributes to the increase in the core temperature, resulting in poor energy efficiency and a fundamental solution to prevent the generation of coke powder. is not.

【0007】[0007]

【発明が解決しようとする課題】微粉炭比(PCR)1
50〜200kg/tの微粉炭多量吹込み時の高O/C
のレベル(O/C=5〜6)の操業で、傾斜角が室炉コ
ークスより小さく中心部ヘ流れ込みやすい成型コークス
を使用することは十分な中心流を確保するという意味で
はきわめて難しく、中心流を確保する別の対策が必要と
なってくる。
SUMMARY OF THE INVENTION Pulverized coal ratio (PCR) 1
High O / C when 50-200kg / t pulverized coal is injected in large quantities
It is extremely difficult to use a molded coke having an inclination angle smaller than that of the chamber furnace coke and easily flowing into the center in the operation at the level (O / C = 5-6). Another measure is needed to secure

【0008】炉内側に室炉コークスを装入する方法は中
心流を確保する方法として有効であるが、微粉炭多量吹
込み時のO/C=5〜6の高O/Cのレベルでは炉内側
ヘの室炉コークスの装入により半径方向全体のO/Cを
変化させるためガス流の変化幅が大きく、高炉操業を不
安定にする可能性が大きい。前記製銑第54委員会本委
員会提出資料に記載された炉壁側に成型コークスを装入
する技術は炉壁側のテラスまたは堰の面積に限界があ
り、中心への流れ込みがなく周辺に装入できる成型コー
クスの比率は全装入コークス量のたかだか30%であ
り、30%超では成型コークスの中心部への流れ込みに
より中心流の確保が困難になる。特開平1−65209
に記載された炉中心部に粒度の異なる2種類の良質のコ
ークスを装入する技術は炉芯の通気性・通液性を向上さ
せるが、本技術のように粒度の異なる2種類のコークス
を準備することは、製造上およびコスト上の問題があ
る。
The method of charging the coke inside the furnace is effective as a method for securing a central flow. However, at a high O / C level of O / C = 5-6 when a large amount of pulverized coal is injected, the furnace is not heated. Since the O / C of the entire radial direction is changed by charging the inside furnace coke into the inside, the range of change of the gas flow is large, and there is a large possibility that the blast furnace operation becomes unstable. The technique of charging molded coke on the furnace wall side described in the above-mentioned materials submitted by the Ironmaking Committee No. 54 Committee has a limit on the area of the terrace or weir on the furnace wall side, and there is no flow to the center and there is no The ratio of the molded coke that can be charged is at most 30% of the total charged coke amount. If it exceeds 30%, it becomes difficult to secure the central flow due to the flow of the molded coke into the center. JP-A-1-65209
Although the technology described in the above section for charging two types of high-quality coke with different particle sizes into the furnace center improves the air permeability and liquid permeability of the furnace core, two types of coke with different particle sizes as in this technology are used. Preparing has manufacturing and cost issues.

【0009】本発明は、高炉中心部の粗粒コークス割合
を一定にすることを可能とし、同時に周辺部の細粒コー
クスの粉化も抑制して、炉芯部の温度低下を未然に防ぐ
高炉操業法を提供することを目的とし、さらに微粉炭多
量吹込み時のO/C=5〜6の高O/Cのレベルでは十
分な中心流を確保するために実施する個々の方法が不十
分なため、炉芯部の温度低下による炉況不調になりやす
いという問題点を解消した高炉操業法を提供することを
目的とする。
The present invention makes it possible to make the ratio of coarse coke in the central part of the blast furnace constant, and at the same time, suppress the fine coke in the peripheral part from being powdered, thereby preventing the temperature of the furnace core from lowering. The purpose of the present invention is to provide an operation method, and at the high O / C level of 5 to 6 when pulverized coal is injected in a large amount, individual methods to be performed to secure a sufficient central flow are insufficient. Therefore, it is an object of the present invention to provide a blast furnace operating method which solves the problem that the furnace condition is liable to be deteriorated due to a decrease in the temperature of the furnace core.

【0010】[0010]

【課題を解決するための手段】本発明は上記課題を解決
するものであって、室炉コークスを炉内側に装入して炉
壁側にテラスまたは堰を形成させ、テラス上または堰と
炉壁の間に成型コークスを装入することにより、粒度偏
析により中心部に装入される粗粒の室炉コークスより粒
径の小さい成型コークスが中心部へ流れ込むのを防止す
ると同時に、中心部に一定量の粗粒成型コークスを装入
し、安定した中心流を確保することを特徴とする。同時
に、高炉周辺部の細粒コークスの粉化を抑制し、炉芯部
の温度低下を防止することを特徴とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and a room furnace coke is charged into a furnace inside to form a terrace or a weir on a furnace wall side. By inserting molding coke between the walls, it is possible to prevent molding coke with a smaller particle size from flowing into the center than the coarse furnace coke charged into the center due to particle size segregation, It is characterized by charging a fixed amount of coarse-grained coke and ensuring a stable central flow. At the same time, the present invention is characterized in that powdering of fine coke in the peripheral part of the blast furnace is suppressed, and the temperature of the furnace core is prevented from lowering.

【0011】すなわち、本発明の要旨とするところは、
(1)還元材として成型コークスを室炉コークスおよび
他の原料とともに高炉に装入する際に、成型コークスの
粒度を粗粒と細粒に区分して装入することを特徴とする
成型コークスの粒度別装入法、(2)粗粒を高炉の中心
部へ装入し、細粒を高炉の周辺部に装入することを特徴
とする前記(1)記載の成型コークスの粒度別装入法、
(3)微粉炭多量吹込み操業において、還元材として成
型コークスを室炉コークスおよび他の原料とともに高炉
に装入する際に、高炉の半径方向で炉中心〜半径の4/
5の範囲内に室炉コ一クスを装入して、高炉の半径方向
で炉壁〜半径の4/5の範囲にテラスまたは堰を形成し
てテラス上または堰と炉壁の間に成型コークスを装入
し、さらに高炉の半径方向で炉中心〜半径の1/5の範
囲に平均粒径が75mm以上の成型コークスを装入する
ことを特徴とする高炉への成型コークス装入方法、
(4)炉壁側のテラスまたは堰の上に平均粒径35mm
以下の成型コークスを装入することを特徴とする前記
(3)記載の高炉への成型コークス装入方法にある。
That is, the gist of the present invention is as follows.
(1) When charging a molded coke as a reducing agent into a blast furnace together with a room furnace coke and other raw materials, the granular size of the molded coke is divided into coarse particles and fine particles and charged. The charging method according to (1), wherein the coarse particles are charged into the center of the blast furnace and the fine particles are charged into the peripheral portion of the blast furnace. Law,
(3) In the operation of injecting a large amount of pulverized coal into the blast furnace together with the coke and other raw materials in the blast furnace as a reducing agent in a large amount of pulverized coal, when the coke is charged into the blast furnace in the radial direction of the blast furnace from the furnace center to a radius of 4 /
The furnace coke is charged in the range of 5 and a terrace or weir is formed in the range of the furnace wall to 4/5 of the radius in the radial direction of the blast furnace and formed on the terrace or between the weir and the furnace wall. Charging coke into the blast furnace, further comprising charging the formed coke having an average particle diameter of 75 mm or more in a range from the furnace center to 1/5 of the radius in the radial direction of the blast furnace,
(4) Average particle size 35 mm on the terrace or weir on the furnace wall side
The method of charging a molded coke into a blast furnace according to the above (3), wherein the following molded coke is charged.

【0012】ここで、室炉コークスとは石炭をとくに成
型しないで従来の室炉式コークス炉で製造されたコーク
スを意味し、成型コークスとは石炭を事前にある形状に
成型して向流移動層型の連続炉あるいは従来の室炉式コ
ークス炉で製造されたコークスを意味する。また、テラ
スとは図1の3に示すように炉壁近傍に形成された装入
物水平面と定義し、堰とは図1の4に示すように炉壁近
傍に形成された堰のような装入物面と定義する。
Here, the furnace coke refers to coke produced by a conventional chamber coke oven without particularly forming coal, and the formed coke is formed by preliminarily forming coal into a certain shape and moving countercurrently. It refers to coke produced in a continuous bed furnace or a conventional coke oven. In addition, the terrace is defined as a horizontal surface of the charge formed near the furnace wall as shown in 3 of FIG. 1, and a weir is similar to a weir formed near the furnace wall as shown in 4 of FIG. Defined as the charge surface.

【0013】[0013]

【作用】微粉の石炭を圧縮成型したのちに乾留して製造
される成型コークスは室炉コークスに比べて粒度がほぼ
均一で、CO2ガスとの反応性が高い。さらに気孔率が
低いことから反応劣化挙動も室炉コークスとは異なる。
本発明は成型コークスのこのような特徴に着目したもの
である。
[Action] Molded coke produced by compression-molding fine coal powder followed by dry distillation has a substantially uniform particle size as compared with a furnace coke, and has high reactivity with CO 2 gas. Furthermore, the reaction deterioration behavior is different from that of the room coke due to the low porosity.
The present invention focuses on such features of molded coke.

【0014】成型コークスの第一の特徴は粒度が均一な
ことである。したがって、粗粒の成型コークスを製造し
て高炉へ装入することで、高炉中心部の粗粒コークスの
割合を一定に保つことができる。このため、高炉中心部
の通気抵抗は低下し中心部の還元ガス流量を安定的に確
保することができる。
The first feature of molded coke is that the particle size is uniform. Therefore, by manufacturing and charging the coarse-grained molded coke into the blast furnace, the ratio of the coarse-grained coke in the center of the blast furnace can be kept constant. For this reason, the ventilation resistance in the central portion of the blast furnace is reduced, and the flow rate of the reducing gas in the central portion can be stably secured.

【0015】成型コークスの第2の特徴はCO2ガスと
の反応性が高いことであり、室炉コークスの場合よりも
約100℃も低い900℃程度から反応がはじまる。し
たがって、室炉コークスの炉壁近傍に成型コークスが存
在すれば、CO2ガスは成型コークスと優先的に反応す
るため、室炉コークスは反応から保護されて強度劣化を
起こすことが少ない。さらに、通常の室炉コークスにお
いては気孔率が高いため反応がコークス内部でも進行し
て体積粉化を起こすのに対し、成型コークスは気孔率が
低いため反応がコークス表面でしか起こらない。したが
って、CO2ガスとの反応によるコークス粉の発生量は
室炉コークスに比べて著しく少ない。高炉に装入される
コークスのうち最も粉化が問題となるのは高炉周辺部に
堆積する細粒コークスであるから、成型コークスを周辺
部に装入してCO2ガスと優先的に反応させることで細
粒室炉コークスの粉化を抑制し、高炉内でのコークス粉
発生量を著しく低減することができる。
The second characteristic of molded coke is that it has high reactivity with CO 2 gas, and the reaction starts at about 900 ° C., which is about 100 ° C. lower than that of room furnace coke. Therefore, if molded coke is present in the vicinity of the furnace wall of the furnace coke, the CO 2 gas reacts preferentially with the molded coke, so that the furnace coke is protected from the reaction and is less likely to deteriorate in strength. Further, in a normal room furnace coke, the reaction proceeds inside the coke due to a high porosity and causes volume pulverization, whereas the reaction occurs only on the surface of the coke due to the low porosity of the molded coke. Therefore, the amount of generated coke powder due to the reaction with CO 2 gas is significantly smaller than that of room furnace coke. Of the coke charged in the blast furnace, the finest coke that accumulates around the blast furnace is the most problematic, so the molded coke is charged into the periphery and preferentially reacts with CO 2 gas. This suppresses the pulverization of the coke in the fine-grained chamber furnace, and can significantly reduce the amount of coke powder generated in the blast furnace.

【0016】上述した成型コークスの粗粒および細粒は
それぞれ別々の成型機で製造してもよいし、一種類の成
型コークスを製造した後に分級して割れのない製品を粗
粒とし、割れて粒径が小さくなったものを細粒としても
よい。いずれかの方法で区分けした成型コークスの粗粒
を高炉中心部へ装入し、細粒を周辺部へ装入すること
で、中心ガス流量が確保されると同時にコークス粉の発
生量も低減される。
The coarse particles and fine particles of the above-described molded coke may be produced by separate molding machines, respectively, or after one type of molded coke is produced, the product is classified into coarse particles to obtain a product having no cracks. Fine particles having a small particle size may be used as fine particles. By charging the coarse particles of the molded coke separated by either method into the center of the blast furnace and charging the fine particles into the periphery, the center gas flow rate is secured and the amount of generated coke powder is reduced. You.

【0017】図1はべルレス高炉で本発明法を実施した
場合の鉱石と室炉コークス・成型コークスの堆積状態の
例を示す図である。炉頂に巻き上げられた鉱石とコーク
スは旋回シュ一卜1を介して炉内に装入される。まず室
炉コークス2を高炉の半径方向で炉中心〜半径の4/5
の範囲内に装入して、高炉の半径方向で炉壁〜半径の4
/5の範囲にテラス3または堰4を形成させる。そのテ
ラス3上または堰4と炉壁5との間に成型コークス6を
装入して、高炉の半径方向で炉壁〜半径の4/5の範囲
に堆積させる。つぎに、高炉の半径方向で炉中心〜半径
のl/5の範囲に平均粒径75mm以上の粗粒成型コー
クス7を装入し、中心部の通気抵抗の低下をはかる。平
均粒径が75mm未満の粗粒成型コークスでは中心部の
通気抵抗が大幅に低下せず、十分な中心流を確保できな
い可能性が大きい。さらに、鉱石8を炉内に装入する
が、高炉の半径方向で炉中心〜半径の1/5の範囲に装
入した粗粒成型コークス7により、160kg/tのよ
うな微粉炭多量吹込み条件の場合でも、中心部のガス流
速は十分に確保される。
FIG. 1 is a diagram showing an example of the state of deposit of ore and room furnace coke and formed coke when the method of the present invention is carried out in a bellless blast furnace. The ore and coke wound up at the furnace top are charged into the furnace through the swirl chamber 1. First, the chamber coke 2 is placed in the radial direction of the blast furnace in the radial direction of the blast furnace to 4/5 of the radius from the furnace center.
And the furnace wall to the radius of 4 in the radial direction of the blast furnace.
The terrace 3 or the weir 4 is formed in the range of / 5. The molded coke 6 is charged on the terrace 3 or between the weir 4 and the furnace wall 5, and is deposited in the radial direction of the blast furnace in a range from the furnace wall to 4/5 of the radius. Next, coarse coke 7 having an average particle size of 75 mm or more is charged in the range from the furnace center to 1/5 of the radius in the radial direction of the blast furnace, and the ventilation resistance at the center is reduced. In the case of coarse-grained coke having an average particle size of less than 75 mm, the ventilation resistance at the center does not significantly decrease, and there is a high possibility that a sufficient center flow cannot be secured. Further, the ore 8 is charged into the furnace, and a large amount of pulverized coal such as 160 kg / t is blown by the coarse-grained coke 7 charged from the center of the furnace to 1/5 of the radius in the radial direction of the blast furnace. Even in the case of the condition, the gas flow velocity in the central part is sufficiently ensured.

【0018】ここで、室炉コークスを高炉の半径方向で
炉中心〜半径の4/5の範囲内に装入するが、この目的
は中心流を確保すると同時に高炉の半径方向で炉壁〜半
径の4/5の範囲にテラスまたは堰を形成させることで
あり、中心部へ流れ込ませないで平均粒径35mm未満
の成型コークスを全装入コークス量の30%以上炉壁部
に装入するためには炉壁〜半径の4/5の範囲のテラス
あるいは堰の形成が最低の条件である。
Here, the furnace coke is charged in the radial direction of the blast furnace within a range of 4/5 of the radius from the center of the furnace to the center of the furnace. Is to form a terrace or weir in the area of 4/5 of the above. In order to charge the molded coke having an average particle size of less than 35 mm to the furnace wall without flowing into the center, the coke having an average particle diameter of less than 35 mm is at least 30% of the total charged coke amount. The minimum condition is the formation of a terrace or weir in the range from the furnace wall to 4/5 of the radius.

【0019】高炉の半径方向で炉中心〜半径の1/5の
範囲に、大塊の成型コークスを装入するが、この範囲を
炉中心〜半径の1/5の範囲に限定したのは炉中心〜半
径の1/5の範囲に装入されたコークスの大部分が炉芯
コークスと入れ替わるためであり、炉中心〜半径のl/
5の範囲を広げても炉芯更新に使用されるコークスとは
ならず、かえって中心流が過大に発達しすぎて、高炉操
業が不安定になる可能性が大きい。
In the radial direction of the blast furnace, a large lump of molded coke is charged in the range from the furnace center to 1/5 of the radius, but this range is limited to the range from the furnace center to 1/5 of the radius. This is because most of the coke charged in the range from the center to 1/5 of the radius is replaced with the core coke.
Even if the range of 5 is widened, it does not become coke used for furnace core renewal, but rather the central flow is excessively developed and the blast furnace operation is likely to be unstable.

【0020】炉壁〜半径の4/5の範囲のテラスあるい
は堰に装入する成型コークスの平均粒径を35mm以下
としたのは炉壁近傍を流れるガス流を抑制するためであ
り、成型コークスの平均粒径を35mm超にすると、周
辺流が発達しすぎて炉体熱負荷が上昇し、高炉操業が不
安定になる可能性が大きい。また、成型コークスの平均
粒径を35mm以下にしてCO2ガスとの反応を促進す
ることで細粒の室炉コークスの粉化を抑制し、高炉内で
の粉コークス発生量を低減できる。
The reason why the average particle size of the molded coke charged into the terrace or the weir in the range of 4/5 of the radius from the furnace wall is 35 mm or less is to suppress the gas flow flowing near the furnace wall. When the average particle diameter of the blast furnace exceeds 35 mm, the peripheral flow is excessively developed, the furnace body heat load is increased, and the blast furnace operation is likely to be unstable. In addition, by making the average particle size of the molded coke 35 mm or less and promoting the reaction with the CO 2 gas, powdering of fine-grained room furnace coke can be suppressed, and the amount of coke breeze generated in the blast furnace can be reduced.

【0021】[0021]

【実施例】【Example】

(実施例l)本発明の成型コークスの装入方法を内容積
4000立方メートルの高炉に適用し、従来操業と比較
した。従来操業期間では室炉コークスのみを使用した
が、その平均粒径は50mmであり、このうち75mm
以上の粗粒の重量割合は2%〜5%、30mm以下の細
粒の重量割合は5%〜10%の範囲で変動していた。ま
た、細粒成型コークスを周辺部に装入した期間では室炉
コークスと粒径25mmの細粒成型コークスを使用して
おり、使用割合は室炉コークスが85%、成型コークス
がl5%である。本法適用期間のコークス使用割合は7
5mmの粗粒成型コークス量が5%、25mmの細粒成
型コークスが15%、残りの80%が室炉コークスであ
り、粗粒成型コークスを中心部へ、細粒成型コークスを
周辺部へ装入した。図2に、本技術適用前後の炉頂ゾン
デの中心温度、炉芯部粉率、炉芯温度、スリップ回数の
推移を示す。従来期間に比ベて、細粒成型コークスを周
辺部へ装入した期間ではコークス粉発生量が減少したた
め炉芯部粉率が低下した。本法適用期間ではさらに中心
温度が800℃と高く変動も小さかった。この結果、炉
芯温度を高く維持できスリップ回数が減少して高炉の安
定操業が達成できた。 (実施例2)本発明の成型コークスの装入方法を内容積
4400立方メートルの高炉に適用した。プロフィルメ
ーターの測定により、当初の目標どおり、全コークス中
の40%の成型コークスを高炉の半径方向で炉壁〜半径
の4/5の範囲に形成させた堰またはテラスに堆積させ
ることができ、炉中心〜半径の1/5の範囲には平均粒
径が75mm以上の大塊成型コークスを装入できたこと
を確認した。図3に、本技術適用前後の炉頂ゾンデの中
心温度、炉芯部粉率、炉芯温度、スリップ回数の推移を
示す。この中心部への大塊成型コークスの装入により、
微粉炭比l60kg/t、O/C=5の操業レベルにお
いても、十分な中心流を確保することができ、炉頂ゾン
デの中心温度が上昇し、1ケ月後には炉芯部粉率が低下
して炉芯温度が上昇し、スリップ温度が低下した。さら
に、還元効率(シャフト効率)が向上し、安定した操業
を維持することができた。
(Example 1) The charging method of the molded coke of the present invention was applied to a blast furnace having an inner volume of 4000 cubic meters, and compared with a conventional operation. In the conventional operation period, only the furnace coke was used, but the average particle size was 50 mm, of which 75 mm
The weight ratio of the above coarse particles fluctuated in the range of 2% to 5%, and the weight ratio of the fine particles of 30 mm or less fluctuated in the range of 5% to 10%. During the period when the fine-grained coke was charged in the peripheral portion, the chamber furnace coke and the fine-grained coke having a particle size of 25 mm were used, and the use ratio was 85% for the furnace coke and 15% for the formed coke. . The coke usage ratio during the application period of this law is 7
The amount of 5 mm coarse-grained coke is 5%, the fine-grained coke of 25 mm is 15%, and the remaining 80% is room-furnace coke. Entered. FIG. 2 shows changes in the center temperature of the furnace top sonde, the core powder ratio, the core temperature, and the number of slips before and after the application of the present technology. Compared with the conventional period, the amount of generated coke powder was reduced during the period in which the fine-grained coke was charged into the peripheral portion, so that the furnace core powder ratio was reduced. In the application period of this method, the center temperature was as high as 800 ° C. and the fluctuation was small. As a result, the core temperature could be maintained high, the number of slips decreased, and stable operation of the blast furnace could be achieved. (Example 2) The charging method of the molded coke of the present invention was applied to a blast furnace having an inner volume of 4400 cubic meters. According to the measurement of the profile meter, 40% of the formed coke in the entire coke can be deposited on the weir or terrace formed in the range of the furnace wall to 4/5 of the radius in the radial direction of the blast furnace, as originally intended, It was confirmed that large-sized coke having an average particle diameter of 75 mm or more could be charged in the range from the furnace center to 1/5 of the radius. FIG. 3 shows changes in the center temperature of the furnace top sonde, the core fraction, the core temperature, and the number of slips before and after the application of the present technology. By charging large lump molding coke into this center,
Even at an operation level of pulverized coal ratio of 160 kg / t and O / C = 5, a sufficient central flow can be secured, the central temperature of the furnace top sonde rises, and after one month, the core powder ratio decreases. As a result, the core temperature increased, and the slip temperature decreased. Further, the reduction efficiency (shaft efficiency) was improved, and stable operation was maintained.

【0022】[0022]

【実施例3】実施例2と同様な方法で、全コークス中の
40%の平均粒径35mm以下の小塊の成型コークスを
高炉の半径方向で炉壁〜半径の4/5の範囲に形成させ
た堰またはテラスに堆積させることができ、炉中心〜半
径の1/5の範囲には平均粒径が75mm以上の大塊成
型コークスを装入できたことを確認した。図4に、本技
術適用前後の炉頂ゾンデの中心温度、炉芯部粉率、炉芯
温度、スリップ回数の推移を示す。その結果、微粉炭比
l60kg/t、O/C=5の操業レベルにおいても、
十分な中心流を確保することができ、炉頂ゾンデの中心
温度が上昇し、1ヶ月後には炉芯部粉率が低下して炉芯
温度が上昇し、スリップ温度が低下した。さらに、還元
効率(シャフト効率)が向上し、安定した操業を維持す
ることができた。
Example 3 In the same manner as in Example 2, 40% of the total coke formed a small coke having an average particle size of 35 mm or less in the radial direction of the blast furnace from the furnace wall to 4/5 of the radius. It was confirmed that large coke having an average particle size of 75 mm or more could be charged in the range from the center of the furnace to 1/5 of the radius from the piled weir or terrace. FIG. 4 shows changes in the center temperature of the furnace top sonde, the core powder ratio, the core temperature, and the number of slips before and after the application of the present technology. As a result, even at an operation level of pulverized coal ratio of 160 kg / t and O / C = 5,
A sufficient central flow could be secured, the central temperature of the top of the furnace increased, and one month later, the core powder ratio decreased, the core temperature increased, and the slip temperature decreased. Further, the reduction efficiency (shaft efficiency) was improved, and stable operation was maintained.

【0023】[0023]

【発明の効果】本発明は、粒度偏析により中心部に装入
される粗粒の室炉コークスより粒径の小さい成型コーク
スが中心部へ流れ込むのを防止すると同時に、中心部に
粗粒の成型コークスを装入することにより中心流を確保
してコークスの粉化を抑制することができる。この結
果、炉芯温度を高く維持できてスリップ回数も低下し、
さらに微粉炭多量吹込み操業においても、高炉の安定操
業を維持でき、還元効率も向上させることが可能であ
る。
According to the present invention, it is possible to prevent the molding coke having a smaller particle size from flowing into the central part than the chamber coke of coarse particles charged into the central part due to the particle size segregation, and at the same time to form the coarse particles in the central part. By charging coke, the central flow can be secured and powdering of coke can be suppressed. As a result, the core temperature can be maintained high, and the number of slips decreases,
Further, even in the operation of injecting a large amount of pulverized coal, the stable operation of the blast furnace can be maintained, and the reduction efficiency can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】ベルレス高炉で本発明法を実施した場合の鉱石
と室炉コークス・成型コークスの堆積状態を示す図。
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a diagram showing a state of deposit of ore and room-furnace coke / molded coke when the method of the present invention is performed in a bellless blast furnace.

【図2】本発明法を実施した前後の炉頂ゾンデの中心温
度、炉芯部粉率、炉芯温度、スリップ回数の推移を示す
図。
FIG. 2 is a graph showing changes in the center temperature of the furnace top sonde, the core powder ratio, the core temperature, and the number of slips before and after the method of the present invention was performed.

【図3】本発明法を実施した前後の炉頂ゾンデの中心温
度、炉芯部粉率、炉芯温度、スリップ回数、還元効率
(シャフト効率)の推移を示す図。
FIG. 3 is a graph showing changes in the center temperature of the furnace top sonde, the core powder ratio, the core temperature, the number of slips, and the reduction efficiency (shaft efficiency) before and after the method of the present invention was performed.

【図4】本発明法を実施した前後の炉頂ゾンデの中心温
度、炉芯部粉率、炉芯温度、スリップ回数、還元効率
(シャフト効率)の推移を示す図。
FIG. 4 is a diagram showing changes in the center temperature of the furnace top sonde, the furnace core powder ratio, the furnace core temperature, the number of slips, and the reduction efficiency (shaft efficiency) before and after the method of the present invention was performed.

【符号の説明】[Explanation of symbols]

1…旋回シュート 2…室炉コ
ークス 3…テラス 4…堰 5…炉壁 6…成型コ
ークス 7…粗粒成型コークス 8…鉱石
DESCRIPTION OF SYMBOLS 1 ... Revolving chute 2 ... Room furnace coke 3 ... Terrace 4 ... Weir 5 ... Furnace wall 6 ... Molded coke 7 ... Coarse grain coke 8 ... Ore

───────────────────────────────────────────────────── フロントページの続き (72)発明者 松永伸一 君津市君津1番地 新日本製鐵株式会社 君津製鐵所内 (72)発明者 織田博史 君津市君津1番地 新日本製鐵株式会社 君津製鐵所内 (58)調査した分野(Int.Cl.6,DB名) C21B 5/00 ──────────────────────────────────────────────────の Continued on the front page (72) Inventor Shinichi Matsunaga 1 Kimitsu, Kimitsu City Inside Nippon Steel Corporation Kimitsu Works (72) Inventor Hirofumi Oda 1 Kimitsu, Kimitsu City Nippon Steel Corporation Kimitsu Steel (58) Field surveyed (Int. Cl. 6 , DB name) C21B 5/00

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 還元材として成型コークスを室炉コーク
スおよび他の原料とともに高炉に装入する際に、成型コ
ークスの粒度を粗粒と細粒に区分して装入することを特
徴とする成型コークスの粒度別装入法。
1. A molding method characterized in that when charging molded coke as a reducing material together with a room furnace coke and other raw materials into a blast furnace, the molded coke is charged while being classified into coarse particles and fine particles. Coke particle size charging method.
【請求項2】 粗粒を高炉の中心部へ装入し、細粒を高
炉の周辺部に装入することを特徴とする請求項1記載の
成型コークスの粒度別装入法。
2. The method according to claim 1, wherein the coarse particles are charged into the central portion of the blast furnace, and the fine particles are charged into the peripheral portion of the blast furnace.
【請求項3】 微粉炭多量吹込み操業において、還元材
として成型コークスを室炉コークスおよび他の原料とと
もに高炉に装入する際に、高炉の半径方向で炉中心〜半
径の4/5の範囲内に室炉コークスを装入して、高炉の
半径方向で炉壁〜半径の4/5の範囲にテラスまたは堰
を形成してテラス上または堰と炉壁の間に成型コークス
を装入し、さらに高炉の半径方向で炉中心〜半径のl/
5の範囲に平均粒径75mm以上の成型コークスを装入
することを特徴とする高炉への成型コークス装入方法。
3. In a pulverized coal mass injection operation, when charging a molded coke as a reducing agent into a blast furnace together with a chamber furnace coke and other raw materials, a range from the center of the furnace to 4/5 of the radius in the radial direction of the blast furnace. Inside the furnace, coke is charged, and a terrace or weir is formed in a range of the furnace wall to 4/5 of the radius in the radial direction of the blast furnace, and molded coke is charged on the terrace or between the weir and the furnace wall. In the radial direction of the blast furnace and 1 /
5. A method of charging a molded coke into a blast furnace, comprising charging a molded coke having an average particle diameter of 75 mm or more into a range of 5.
【請求項4】 炉壁側のテラスまたは堰の上に平均粒径
35mm以下の成型コークスを装入することを特徴とす
る請求項3記載の高炉への成型コークス装入方法。
4. The method according to claim 3, wherein a molded coke having an average particle diameter of 35 mm or less is charged on a terrace or a weir on the furnace wall side.
JP17177693A 1992-07-13 1993-07-12 Method of charging molded coke into blast furnace Expired - Fee Related JP2933468B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17177693A JP2933468B2 (en) 1992-07-13 1993-07-12 Method of charging molded coke into blast furnace

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP4-185495 1992-07-13
JP18549592 1992-07-13
JP17177693A JP2933468B2 (en) 1992-07-13 1993-07-12 Method of charging molded coke into blast furnace

Publications (2)

Publication Number Publication Date
JPH0681014A JPH0681014A (en) 1994-03-22
JP2933468B2 true JP2933468B2 (en) 1999-08-16

Family

ID=26494386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17177693A Expired - Fee Related JP2933468B2 (en) 1992-07-13 1993-07-12 Method of charging molded coke into blast furnace

Country Status (1)

Country Link
JP (1) JP2933468B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100395141B1 (en) * 1999-12-24 2003-08-21 주식회사 포스코 Charging method of blast furnace

Also Published As

Publication number Publication date
JPH0681014A (en) 1994-03-22

Similar Documents

Publication Publication Date Title
JP5696814B2 (en) Raw material charging method for bell-less blast furnace
JP4899726B2 (en) Blast furnace operation method
JP2933468B2 (en) Method of charging molded coke into blast furnace
JPH0733528B2 (en) Blast furnace operation method
JP3841014B2 (en) Blast furnace operation method
JP6198649B2 (en) Raw material charging method for blast furnace
JPH08239705A (en) Method for suppressing formation of deposition in blast furnace
JP3603776B2 (en) Blast furnace operation method
KR100376480B1 (en) Burden distribution control method in blast furnace by using coke
JPH06220511A (en) Method for charging formed coke into blast furnace
JP2921374B2 (en) Blast furnace operation method
JPH06271906A (en) Method for charging briquetted coke into blast furnace
JP2921392B2 (en) Blast furnace operation method
JPH07305103A (en) Method for charging raw material into blast furnace
JP3485787B2 (en) How to charge raw materials for blast furnace
KR20030052726A (en) Method for charging of mixture of nut coke and ore
JPH11286705A (en) Operation of blast furnace
JP3522553B2 (en) Blast furnace raw material charging method
JPH09125112A (en) Method for mixing and charging ore and coke into ball-less blast furnace
JPS5920412A (en) Inside swiveling chute for top charger of bell-less furnace
JPH0641620A (en) Blast furnace operating method using small agglomerated coke
KR100800541B1 (en) Blast furnace lower part belly activation operation method of Stave cooling form
JP2955461B2 (en) How to charge coke to blast furnace
JP3478925B2 (en) Ore charging method for blast furnace
JPH08260008A (en) Operation of blast furnace

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990420

LAPS Cancellation because of no payment of annual fees