JP2932563B2 - Lithium iron sulfide battery - Google Patents

Lithium iron sulfide battery

Info

Publication number
JP2932563B2
JP2932563B2 JP2015769A JP1576990A JP2932563B2 JP 2932563 B2 JP2932563 B2 JP 2932563B2 JP 2015769 A JP2015769 A JP 2015769A JP 1576990 A JP1576990 A JP 1576990A JP 2932563 B2 JP2932563 B2 JP 2932563B2
Authority
JP
Japan
Prior art keywords
iron sulfide
positive electrode
battery
current collector
lithium iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015769A
Other languages
Japanese (ja)
Other versions
JPH03222258A (en
Inventor
芳典 小平
信博 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2015769A priority Critical patent/JP2932563B2/en
Publication of JPH03222258A publication Critical patent/JPH03222258A/en
Application granted granted Critical
Publication of JP2932563B2 publication Critical patent/JP2932563B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • Y02E60/12

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、チリウム硫化鉄電池特にその正極に関す
る。
Description: TECHNICAL FIELD The present invention relates to a thylium iron sulfide battery, and particularly to a positive electrode thereof.

〔発明の概要〕[Summary of the Invention]

本発明は、リチウム硫化鉄電池において、正極活物質
である硫化鉄をフッ素系ゴムをバインダーとして集電体
に塗布して正極を構成することにより、硫化鉄の集電体
からの剥離を防ぎ、渦巻式構造のリチウム硫化鉄電池の
実用化を可能にしたものである。
The present invention, in a lithium iron sulfide battery, by forming a positive electrode by applying a positive electrode active material iron sulfide to a current collector using a fluorine-based rubber as a binder to prevent peeling of the iron sulfide from the current collector, This makes it possible to commercialize a lithium iron sulfide battery having a spiral structure.

〔従来の技術〕[Conventional technology]

近年、ビデオカメラやヘッドフォンステレオ等の電子
機器の高性能化、小型化には目ざましいものがあり、こ
れらの電子機器の電源となる電池の重負荷特性の改善や
高容量化への要求も強まってきている。こうした小型電
子機器用電池としては、マンガン乾電池やアルカリマン
ガン乾電池が従来から用いられているが、最近はリチウ
ムを負極材料とし、硫化鉄を正極材料として用いたリチ
ウム硫化鉄電池が、保存性が良く且つ従来の電池とも電
圧の互換性のある1.5Vを示すとして着目さるようになっ
てきた。
In recent years, there has been a remarkable increase in the performance and miniaturization of electronic devices such as video cameras and headphone stereos, and demands for improved heavy load characteristics and higher capacity of batteries serving as power supplies for these electronic devices have been increasing. ing. Conventionally, manganese dry batteries and alkaline manganese dry batteries have been used as such batteries for small electronic devices.Recently, lithium iron sulfide batteries using lithium as a negative electrode material and iron sulfide as a positive electrode material have high storage stability. Attention has been paid to 1.5 V, which is compatible with conventional batteries.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

リチウムを負極材料とした電池は、一般に非水電解液
を使用しているために、水溶液系の電解液を使用してい
る電池と比べ、基本的に電池の内部抵抗が高く、重負荷
特性が悪い。これを補うためにリチウムマンガン電池等
は渦巻式構造が採用され効果を上げている。これは帯上
電極を渦巻型に多数回巻いて得られるもので、この方式
により電極の反応面積は大きくとれ、大電流での放電が
可能となっている。
Since batteries using lithium as the negative electrode material generally use a non-aqueous electrolyte, the internal resistance of the battery is basically higher and the heavy load characteristics are lower than those using an aqueous electrolyte. bad. To compensate for this, a spiral structure is adopted for lithium manganese batteries and the like, and the effect is improved. This is obtained by spirally winding the band-shaped electrode many times. With this method, a large reaction area of the electrode can be obtained, and discharge with a large current is possible.

しかしながら、この方式をリチウム硫化鉄電池に応用
しようとした場合、電極を渦巻状に巻きとるときに硫化
鉄が集電体から剥離してしまい、電池が良好に作れない
という問題があった。
However, when this method is applied to a lithium iron sulfide battery, there is a problem that when the electrode is spirally wound, the iron sulfide peels off from the current collector, and the battery cannot be made well.

本発明は、上述の点に鑑み、正極即ち硫化鉄の集電体
からの剥離を防ぎ実用可能にしたリチウム硫化鉄電池を
提供するものである。
The present invention has been made in view of the above points, and provides a lithium iron sulfide battery that can be practically used by preventing the positive electrode, that is, iron sulfide, from peeling off from a current collector.

〔課題を解決するための手段〕[Means for solving the problem]

本発明者らは、鋭意研究の結果、リチウム硫化鉄電池
の正極のバインダーとしてフッ素系ゴムを用いることに
より、正極が集電体から剥離するのを防げるとの知見を
得た。
The present inventors have earnestly studied and found that using a fluorine-based rubber as a binder for a positive electrode of a lithium iron sulfide battery can prevent the positive electrode from peeling off from the current collector.

そこで、本発明に係るリチウム硫化鉄電池は、正極活
物質である硫化鉄をフッ素系ゴムをバインダーとして集
電体に塗布してなる正極(1)を用いて構成する。
Therefore, the lithium iron sulfide battery according to the present invention is configured using a positive electrode (1) obtained by applying iron sulfide as a positive electrode active material to a current collector using a fluorine-based rubber as a binder.

フッ素系ゴムの配合比は硫化鉄の重量に対して3%以
上10%未満とする。フッ素系ゴムが3%より少ないと正
極即ち硫化鉄が集電体から剥離しやすくなり、10%以上
だと硫化鉄の充填量が減少し、電池容量が少なくなって
しまうので好ましくない。
The compounding ratio of the fluororubber is 3% or more and less than 10% based on the weight of iron sulfide. When the amount of the fluorine-based rubber is less than 3%, the positive electrode, that is, iron sulfide is easily peeled off from the current collector.

フッ素系ゴムは、フッ素原子を含有するゴム状物質の
ことであり、その代表的なものは、トリフルオロクロル
エチレンとフッ化ビニリデンの共重合体 或はヘキサフルオロプロピレンとフッ化ビニリデンの共
重合体 等が挙げられる。このゴムの弾性は構造に起因しており
網目状に分子がからんでいるのでゴム状となる。こうし
たフッ素系ゴムの添加剤としては一般に加硫剤としてポ
リアミン,ポリオール,ペルオキシド等が用いられてお
り、フッ素系ゴム100gに対して0.1〜5g程度添加され
る。
Fluorinated rubber is a rubber-like substance containing fluorine atoms, a typical example of which is a copolymer of trifluorochloroethylene and vinylidene fluoride. Or copolymer of hexafluoropropylene and vinylidene fluoride And the like. The elasticity of the rubber is due to its structure, and the molecules are entangled in a network, so that the rubber becomes rubber-like. Polyamines, polyols, peroxides, and the like are generally used as vulcanizing agents as additives for such fluorine-based rubber, and are added in an amount of about 0.1 to 5 g per 100 g of fluorine-based rubber.

〔作用〕[Action]

上述の構成のリチウム硫化鉄電池においては、硫化鉄
の重量に対して3%以上10%未満のフッ素系ゴムをバイ
ンダーとして配合した硫化鉄を集電体に塗布してなる正
極(1)を用いることにより、正極(1)を負極(2)
と共に渦巻状に巻回した場合にも硫化鉄が集電体から剥
離せず、正極としての信頼性が保持される。
In the lithium iron sulfide battery having the above-described configuration, a positive electrode (1) obtained by applying iron sulfide in which 3% or more and less than 10% of a fluorine-based rubber is blended as a binder with respect to the weight of iron sulfide to a current collector is used. Thus, the positive electrode (1) is replaced with the negative electrode (2)
Also, when wound spirally, the iron sulfide does not separate from the current collector, and the reliability as a positive electrode is maintained.

〔実施例〕〔Example〕

以下、第1図に従って実施例を説明する。 The embodiment will be described below with reference to FIG.

実施例 本実施例ではバインダーに用いるフッ素ゴムとして
は、ヘキサフルオロプロピレンとフッ化ビニリデンを主
体とした共重合体、 で平均分子量約60000のフッ素ゴムを用いた。
Example In this example, as a fluororubber used as a binder, a copolymer mainly composed of hexafluoropropylene and vinylidene fluoride, Fluorine rubber having an average molecular weight of about 60,000 was used.

フッ素ゴムの配合比が硫化鉄の重量に対して、それぞ
れ2%,3%,5%,7%,10%になるように硫化鉄とフッ素
ゴム水性塗料(フッ素ゴム50%含有)を混合し、これに
水を加えて集電体に塗布するのに適度な粘度を有するよ
うにした第1表に示す組成のペーストを作成した。これ
を正極集電体としての厚さ30μm,幅30mm,長さ170mmの帯
状のアルミニウム箔の両面に均一に塗布して、乾燥した
後、150℃で1時間熱して、これをローラープレス機に
より圧縮成型して帯状の正極(1)を作成した。この帯
状の正極(1)において、正極活物質は正極集電体の両
面に互いにほぼ同じ膜厚で形成してあり、正極(1)の
厚さとしては300μmであった。
Mix iron sulfide and fluororubber aqueous paint (containing 50% fluororubber) so that the compounding ratio of fluororubber is 2%, 3%, 5%, 7%, and 10%, respectively, based on the weight of iron sulfide. Then, water was added thereto to prepare a paste having a composition shown in Table 1 which had an appropriate viscosity to be applied to the current collector. This is uniformly applied to both sides of a strip-shaped aluminum foil having a thickness of 30 μm, a width of 30 mm and a length of 170 mm as a positive electrode current collector, dried, heated at 150 ° C. for 1 hour, and then pressed with a roller press. A band-shaped positive electrode (1) was formed by compression molding. In this strip-shaped positive electrode (1), the positive electrode active material was formed on both surfaces of the positive electrode current collector with substantially the same thickness as each other, and the thickness of the positive electrode (1) was 300 μm.

また、厚さ300μm,幅30mmのリチウムを長さ183mmに切
断して、負極(2)を作った。
A negative electrode (2) was prepared by cutting lithium having a thickness of 300 μm and a width of 30 mm into a length of 183 mm.

上記正極(1)及び負極(2)を用い、さらにセパレ
ータ(3)を一対用いて、これらを互に積層させてか
ら、多数回巻回することによって、渦巻型の巻回体
(4)を作った。このとき、第1表に示される5種類の
電極a〜eのうち、硫化鉄に対しフッ素ゴムの配合比が
2%の電極aは正極活物質である硫化鉄が正極集電体か
ら脱落してしまい、この巻回体(4)が作れなかった。
Using the positive electrode (1) and the negative electrode (2), further using a pair of separators (3), stacking these layers on each other, and then winding a number of times, a spiral-type wound body (4) is obtained. Had made. At this time, among the five types of electrodes a to e shown in Table 1, the electrode a in which the mixing ratio of fluororubber to iron sulfide was 2% was such that iron sulfide as the positive electrode active material was dropped from the positive electrode current collector. The wound body (4) could not be made.

残りの電極b,電極c,電極d,電極eを用いて作成した巻
回体(4)を、第1図に示すように、ニッケルめっきを
施した内径13.3mmの鉄製電池缶(5)に収納した。そし
て正極(1)の集電を行うためにアルミニウム製の正極
リード(6)を正極(1)に取付け、これを正極(1)
から導出して電池蓋を構成する中間蓋体(防爆弁)
(7)に溶接した。また負極(2)の集電を行うため
に、ニッケル製の負極リード(9)を負極(2)に取り
付け、これを負極(2)から導出して電池缶(5)に溶
接した。
The wound body (4) prepared using the remaining electrodes b, c, d, and e was placed on a nickel-plated 13.3 mm inner diameter iron battery can (5) as shown in FIG. Stowed. Then, in order to collect the current of the positive electrode (1), a positive electrode lead (6) made of aluminum is attached to the positive electrode (1), and this is connected to the positive electrode (1).
Cover (explosion-proof valve) that is derived from and constitutes the battery cover
(7) Welded. Further, in order to collect the current of the negative electrode (2), a negative electrode lead (9) made of nickel was attached to the negative electrode (2), led out from the negative electrode (2) and welded to the battery can (5).

この電池缶(5)の中に過塩素酸リチウムを1モル/
溶解した炭酸プロピレンと1,2−ジメトキシエタンと
を混合して得た電解液を注入した。巻回体(4)の上下
面に対向するように、電池缶(5)内に絶縁板(10A)
及び(10B)を配設した。
In this battery can (5), 1 mol /
An electrolytic solution obtained by mixing dissolved propylene carbonate and 1,2-dimethoxyethane was injected. Insulating plate (10A) in battery can (5) facing upper and lower surfaces of wound body (4)
And (10B).

また、この電池缶(5)と中間蓋体(7)及び閉塞蓋
体(8)からなる電池蓋(11)を絶縁封口ガスケット
(12)を介してかしめて、電池蓋(11)を封口した。以
上のようにして、直径13.8mm,高さ50mmの1.5V系の円筒
型渦巻式リチウム硫化鉄電池(13)を作成した。
Further, the battery can (5), the battery lid (11) including the intermediate lid (7) and the closing lid (8) were caulked via an insulating sealing gasket (12) to seal the battery lid (11). . As described above, a cylindrical spiral wound lithium iron sulfide battery (13) having a diameter of 13.8 mm and a height of 50 mm was produced.

電極b,電極c,電極d,電極eを用いて作った電池を160m
Aの定電流で終止電圧0.9Vまで放電させた。この時の放
電容量を第2図に示す。この図に示されるように、硫化
鉄に対しフッ素ゴムの配合比が多いものほど、硫化鉄の
充填量が少なくなるために容量が取り出せなくなる。硫
化鉄に対しフッ素ゴムの配合比が10%以上では、容量が
2.5AH以下になってしまった。
A battery made using electrode b, electrode c, electrode d, and electrode e
The battery was discharged to a final voltage of 0.9 V at a constant current of A. FIG. 2 shows the discharge capacity at this time. As shown in this figure, the larger the compounding ratio of the fluororubber with respect to the iron sulfide, the smaller the filling amount of the iron sulfide, so that the capacity cannot be taken out. When the mixing ratio of fluororubber to iron sulfide is 10% or more, the capacity is
2.5AH or less.

一方、比較例として渦巻式電極に広く用いられている
バインダー,ポリフッ化ビニリデンを用いて電池の作成
を試みた。
On the other hand, as a comparative example, an attempt was made to fabricate a battery using polyvinylidene fluoride, a binder widely used for spiral electrodes.

比較例 ボリフッ化ビニリデンの配合比が硫化鉄の重量に対し
て、それぞれ2%,3%,5%,7%,10%になるように、硫
化鉄とポリフッ化ビニリデンを混合し、これにN−メチ
ル2−ピロリドンを加えて集電体に塗布するのに適度な
粘度を有するようにした第2表に示す組成のペーストを
作成した。これを正極集電体としての厚さ30μm,幅30m
m,長さ170mmの帯状のアルミニウム箔の両面に均一に塗
布して乾燥した後、これをローラープレス機により圧縮
成型して帯状の正極(1)を作った。
Comparative Example Iron sulfide and polyvinylidene fluoride were mixed so that the compounding ratio of polyvinylidene fluoride was 2%, 3%, 5%, 7%, and 10% with respect to the weight of iron sulfide, respectively. A paste having the composition shown in Table 2 was prepared by adding -methyl 2-pyrrolidone so as to have an appropriate viscosity for application to the current collector. This is 30 μm thick and 30 m wide as a positive electrode current collector.
After uniformly coating and drying both sides of a strip-shaped aluminum foil having a length of 170 mm and a length of 170 mm, the strip-shaped aluminum foil was compression-molded with a roller press to form a strip-shaped positive electrode (1).

この帯状の正極(1)において、正極活物質は正極集
電体の両面に互いにほぼ同じ膜厚で形成してあり、正極
の厚さとしては300μmであった。
In this strip-shaped positive electrode (1), the positive electrode active material was formed on both surfaces of the positive electrode current collector with substantially the same film thickness, and the thickness of the positive electrode was 300 μm.

また、厚さ300μm,幅30mmのリチウムを長さ183mmに切
断して負極(2)を作った。
A negative electrode (2) was prepared by cutting lithium having a thickness of 300 μm and a width of 30 mm into a length of 183 mm.

上記正極(1)及び負極(2)を用い、さらにセパレ
ータ(3)を一対用いて、これらを互いに積層させてか
ら、多数回巻回したところ、第2表に示される5種類の
電極g,電極h,電極i,電極j,電極kは全て硫化鉄が集電体
から脱落してしまい、巻回体が作れなかった。
Using the positive electrode (1) and the negative electrode (2), and further using a pair of separators (3), laminating them, and then winding many times, the five types of electrodes g, As for the electrode h, the electrode i, the electrode j, and the electrode k, the iron sulfide was dropped from the current collector, and a wound body could not be formed.

上述の実施例によれば、リチウム硫化鉄電池の正極の
バインダーとしてフッ素系ゴムを用いることにより正極
活物質が集電体から剥離するのを防せぐことができる。
従って、これにより、重負荷放電に効果のある渦巻式構
造を有するリチウム硫化鉄電池の作成が可能となり、重
負荷特性に優れ、保存性がよく、かつ従来の電池とも電
圧の互換性のある電池を提供できる。
According to the above-described embodiment, by using a fluorine-based rubber as a binder of the positive electrode of the lithium iron sulfide battery, it is possible to prevent the positive electrode active material from peeling off from the current collector.
Therefore, this makes it possible to produce a lithium iron sulfide battery having a spiral structure which is effective for heavy load discharge, and has excellent heavy load characteristics, good storage stability, and voltage compatibility with conventional batteries. Can be provided.

〔発明の効果〕〔The invention's effect〕

本発明のリチウム硫化鉄電池によれば、正極のバイン
ダーとしてフッ素系ゴムを用いることにより、硫化鉄の
正極集電体からの剥離を防ぐことができる。従って、重
負荷放電に効果のある渦巻式構造を有するリチウム硫化
鉄電池の作成が可能となり、重負荷特性に優れ、保存性
が良く、かつ従来の電池とも電圧の互換性のあるリチウ
ム硫化鉄電池を提供でき、その工業的価値は大である。
According to the lithium iron sulfide battery of the present invention, peeling of iron sulfide from the positive electrode current collector can be prevented by using a fluorine-based rubber as a binder of the positive electrode. Therefore, it is possible to produce a lithium iron sulfide battery having a spiral structure which is effective for heavy load discharge. The lithium iron sulfide battery is excellent in heavy load characteristics, has good storage stability, and is compatible in voltage with conventional batteries. And its industrial value is great.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明に係るリチウム硫化鉄電池の一例を示す
断面図、第2図は硫化鉄に対するフッ素系ゴム配合比と
リチウム硫化鉄電池の放電容量の関係を示すグラフであ
る。 (1)は正極、(2)は負極、(3)はセパレータ、
(4)は巻回体、(5)は電池缶、(11)は電池蓋であ
る。
FIG. 1 is a cross-sectional view showing an example of a lithium iron sulfide battery according to the present invention, and FIG. 2 is a graph showing a relationship between a fluorine rubber compounding ratio to iron sulfide and a discharge capacity of the lithium iron sulfide battery. (1) is a positive electrode, (2) is a negative electrode, (3) is a separator,
(4) is a wound body, (5) is a battery can, and (11) is a battery lid.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) H01M 4/62 H01M 4/06 - 4/08 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int.Cl. 6 , DB name) H01M 4/62 H01M 4/06-4/08

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】硫化鉄の重量に対して3%以上10%未満の
フッ素系ゴムをバインダーとして配合した硫化鉄が、集
電体に塗布されてなる正極を有して成るリチウム硫化鉄
電池。
1. A lithium iron sulfide battery having a positive electrode obtained by applying iron sulfide blended as a binder with a fluorine-based rubber of 3% to less than 10% based on the weight of iron sulfide on a current collector.
JP2015769A 1990-01-25 1990-01-25 Lithium iron sulfide battery Expired - Fee Related JP2932563B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015769A JP2932563B2 (en) 1990-01-25 1990-01-25 Lithium iron sulfide battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015769A JP2932563B2 (en) 1990-01-25 1990-01-25 Lithium iron sulfide battery

Publications (2)

Publication Number Publication Date
JPH03222258A JPH03222258A (en) 1991-10-01
JP2932563B2 true JP2932563B2 (en) 1999-08-09

Family

ID=11898009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015769A Expired - Fee Related JP2932563B2 (en) 1990-01-25 1990-01-25 Lithium iron sulfide battery

Country Status (1)

Country Link
JP (1) JP2932563B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0633618B1 (en) * 1992-12-25 2000-03-22 TDK Corporation Lithium secondary cell
US5432030A (en) * 1993-12-02 1995-07-11 Eveready Battery Company, Inc. Li/FeS2 cell employing a solvent mixture of diox, DME and 3ME20X with a lithium-based solute
JP3995791B2 (en) * 1998-03-26 2007-10-24 Tdk株式会社 Method for producing electrode for non-aqueous electrolyte battery
US20080057403A1 (en) * 2006-09-06 2008-03-06 Issaev Nikolai N Lithium cell

Also Published As

Publication number Publication date
JPH03222258A (en) 1991-10-01

Similar Documents

Publication Publication Date Title
KR100711669B1 (en) Solid Electrolyte Battery
US6051343A (en) Polymeric solid electrolyte and lithium secondary cell using the same
US5262255A (en) Negative electrode for non-aqueous electrolyte secondary battery
US20120297611A1 (en) Nickel-zinc battery and manufacturing method thereof
JPH09213338A (en) Battery and lithium ion secondary battery
CN1267926A (en) Gel electrolyte and gel electrolytic cell
JP2005123047A (en) Lithium secondary battery and manufacturing method thereof
JP2003331825A (en) Nonaqueous secondary battery
JP3732455B2 (en) Flat non-aqueous electrolyte secondary battery
JP2006253157A (en) Lithium secondary battery and manufacturing method thereof
JP2002050405A (en) Polymer electrolyte cell
JPH1173943A (en) Nonaqueous electrolyte secondary battery
JP2932563B2 (en) Lithium iron sulfide battery
JP4199839B2 (en) Swirl type lithium ion battery electrode and spiral type lithium ion battery using the same
JP4086939B2 (en) Polymer solid electrolyte, lithium secondary battery and electric double layer capacitor using the same
JP3648540B2 (en) Nonaqueous electrolyte secondary battery
JP2005071640A (en) Flat nonaqueous electrolyte secondary battery
JP2002289257A (en) Flat nonaqueous electrolyte secondary battery
JP7313236B2 (en) Negative electrodes for all-solid-state batteries and all-solid-state batteries
JP2008027867A (en) Wound cell
JP4363558B2 (en) Flat non-aqueous electrolyte secondary battery
JP2002246027A (en) Lithium secondary battery
JPH0997611A (en) Electrode for battery, and secondary battery
JP2002359003A (en) Nonaqueous electrolyte secondary battery
JP3971181B2 (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees