JP2931538B2 - High strength aluminum alloy material for bumpers excellent in bending workability and method for producing the same - Google Patents

High strength aluminum alloy material for bumpers excellent in bending workability and method for producing the same

Info

Publication number
JP2931538B2
JP2931538B2 JP6192995A JP6192995A JP2931538B2 JP 2931538 B2 JP2931538 B2 JP 2931538B2 JP 6192995 A JP6192995 A JP 6192995A JP 6192995 A JP6192995 A JP 6192995A JP 2931538 B2 JP2931538 B2 JP 2931538B2
Authority
JP
Japan
Prior art keywords
aluminum alloy
bending workability
temperature
strength
alloy material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP6192995A
Other languages
Japanese (ja)
Other versions
JPH08232035A (en
Inventor
眞一 松田
英雄 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=13185353&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2931538(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP6192995A priority Critical patent/JP2931538B2/en
Publication of JPH08232035A publication Critical patent/JPH08232035A/en
Application granted granted Critical
Publication of JP2931538B2 publication Critical patent/JP2931538B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、曲げ加工性に優れたバ
ンパー用高強度アルミニウム合金材、すなわちバンパー
およびバンパー補強材として好適なアルミニウム合金
材、およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-strength aluminum alloy material for bumpers having excellent bending workability, that is, an aluminum alloy material suitable as a bumper and a bumper reinforcing material, and a method for producing the same.

【0002】[0002]

【従来の技術】バンパーおよびバンパー補強材として使
用されるアルミニウム合金としては、6063合金、6N01合
金、6061合金などがあるが、これらの合金はバンパー材
として強度が必ずしも十分でない。また延性にも問題が
あり、とくに曲げ半径の小さい曲げ加工を行った場合、
肌荒れや微細な亀裂などの欠陥が生じ易く、これらの欠
陥に起因して割れに至ることもしばしば経験されてい
る。
2. Description of the Related Art Aluminum alloys used as bumpers and bumper reinforcing materials include 6063 alloy, 6N01 alloy, 6061 alloy, and the like, but these alloys do not always have sufficient strength as bumper materials. There is also a problem with ductility, especially when bending with a small bending radius is performed.
Defects such as rough skin and fine cracks are liable to occur, and these defects often cause cracks.

【0003】バンパー材は、通常、ポートホール押出を
行って所定形状の形材としのち、焼入れ、焼戻し処理を
行うことにより製造されるが、ポートホール押出は高い
押出力を必要とするため、ビレットを500 ℃以上の温度
に加熱し、変形抵抗を下げて押出加工を行うことが多
く、押出加工中に再結晶して、押し出された形材の全体
あるいは形材の表層部の相当部分に再結晶粒組織が形成
され易い。
[0003] Bumper material is usually manufactured by extruding a porthole into a shape having a predetermined shape, and then performing quenching and tempering. However, porthole extrusion requires a high pressing force, and therefore a billet is required. In many cases, the extruded material is heated to a temperature of 500 ° C or higher to reduce the deformation resistance, and is extruded. A crystal grain structure is easily formed.

【0004】全体が再結晶したアルミニウム合金材で
は、焼入れ、焼戻し処理により強度を確保しようとする
と、延性が不十分となって曲げ加工において割れが生じ
易くなり、延性を確保した場合には強度が不十分とな
る。他方、表層部が再結晶した場合にも、表層部の相当
部分に粗大結晶組織が形成され、曲げ加工において割れ
発生の原因となる。
[0004] In an aluminum alloy material which has been entirely recrystallized, if the strength is to be ensured by quenching or tempering, the ductility becomes insufficient and cracks are likely to occur in bending, and if the ductility is ensured, the strength is reduced. Will be insufficient. On the other hand, even when the surface layer portion is recrystallized, a coarse crystal structure is formed in a considerable portion of the surface layer portion, which causes cracking in bending.

【0005】6000系アルミニウム合金材料における押出
加工中の再結晶を抑制するために、Zr、Mn、Crな
どを添加することが知られているが、バンパー材のよう
に薄肉で複雑な形状を有する形材では、その抑制効果が
必ずしも十分でない。とくにZrは、ポートホール押出
に先立って500 ℃以上の温度領域に加熱すると、析出し
ているAl3 Zr粒子がオストワルド成長により再固溶
または粗大化し、粗大化したAl3 Zr粒子は安定相と
なるため、再結晶抑制効果が小さくなる。
[0005] It is known to add Zr, Mn, Cr and the like to suppress recrystallization during extrusion processing of a 6000 series aluminum alloy material, but it has a thin and complicated shape like a bumper material. Shaped members do not always have a sufficient suppression effect. In particular, when Zr is heated to a temperature range of 500 ° C. or more prior to porthole extrusion, the precipitated Al 3 Zr particles are re-dissolved or coarsened by Ostwald ripening, and the coarsened Al 3 Zr particles become a stable phase. Therefore, the recrystallization suppressing effect is reduced.

【0006】[0006]

【発明が解決しようとする課題】本発明は、6000系アル
ミニウム合金バンパー材における従来の上記問題点を解
消し、とくにAl3 Zr粒子を再固溶または粗大化させ
ず適正量析出させることによりポートホール押出中にお
ける再結晶組織の形成を抑制し、且つ主要合金成分を十
分に再固溶させて、焼入れ、焼戻し処理によって優れた
強度および延性を得るために、合金組成、均質化処理条
件、押出条件、焼入れ、焼戻し処理条件の組み合わせに
ついて多角的に検討を加え、バンパー材として必要な特
性を得るためのAl3 Zr粒子の大きさと析出量の限
界、再結晶層の限界について解明した結果としてなされ
たものであり、その目的は、バンパーおよびバンパー補
強材として十分な強度特性、加工性をそなえた曲げ加工
性に優れたバンパー用高強度アルミニウム合金材および
その製造方法を提供することにある。
DISCLOSURE OF THE INVENTION The present invention solves the above-mentioned conventional problems in a 6000 series aluminum alloy bumper material, and in particular, deposits an appropriate amount of Al 3 Zr particles without re-dissolving or coarsening Al 3 Zr particles. In order to suppress the formation of a recrystallized structure during hole extrusion and sufficiently re-dissolve the main alloy components to obtain excellent strength and ductility by quenching and tempering, alloy composition, homogenization treatment conditions, extrusion The results of studying the combination of conditions, quenching and tempering treatment conditions from various angles, and elucidating the limits of the size and precipitation amount of Al 3 Zr particles and the limits of the recrystallized layer to obtain the characteristics required for the bumper material. Its purpose is to provide sufficient strength characteristics as a bumper and bumper reinforcing material, and to provide excellent bending workability with workability. An object of the present invention is to provide a high-strength aluminum alloy material and a method for manufacturing the same.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
めの本発明による曲げ加工性に優れた高強度アルミニウ
ム合金材は、Si:0.5〜1.5 %、Cu:0.2〜1.2 %、M
g:0.4〜1.5 %、Zr:0.05 〜0.25%を含有し、残部A
lおよび不可避的不純物からなるアルミニウム合金の押
出材であって、該押出材のマトリックス中に粒径10〜20
0nm のAl3 Zr粒子が1 μm3当たり200 個以上存在
し、押出材表層部の再結晶層が押出材表面から平均200
μm 以下の厚さで存在することを第1の特徴とする。
The high-strength aluminum alloy material excellent in bending workability according to the present invention for achieving the above object is as follows: Si: 0.5-1.5%, Cu: 0.2-1.2%, M
g: 0.4-1.5%, Zr: 0.05-0.25%, balance A
and an unavoidable impurity, comprising an aluminum alloy extruded material having a particle size of 10 to 20 in a matrix of the extruded material.
More than 200 Al 3 Zr particles of 0 nm exist per 1 μm 3 , and the recrystallized layer on the surface of the extruded material has an average of 200 mm from the surface of the extruded material.
The first feature resides in the presence of a thickness of not more than μm.

【0008】また、アルミニウム合金が、さらにMn:
0.05 〜1.0 %、Cr:0.02 〜0.35%、Ti:0.01 〜0.2
5%のうちの1種以上を含むことを第2の特徴とする。
Further, the aluminum alloy further comprises Mn:
0.05 to 1.0%, Cr: 0.02 to 0.35%, Ti: 0.01 to 0.2
A second feature is that it contains one or more of 5%.

【0009】本発明による曲げ加工性に優れたバンパー
用高強度アルミニウム合金材の製造方法は、上記組成の
アルミニウム合金の鋳塊を、350 ℃以上480 ℃未満の温
度で1 〜24時間均質化処理し、500 ℃以上の温度に加熱
して保持時間1 〜30分でポートホール押出加工を行うこ
とを第1の特徴とし、押出加工直後、60℃/分以上の速
度で冷却し、150 〜210 ℃の温度で1 〜24時間加熱する
焼戻し処理することを、および480 〜580 ℃の温度に加
熱して60℃/分以上の速度で冷却する焼入れ処理と上記
焼戻し処理を行うことを第2、第3の特徴とする。
The method for producing a high-strength aluminum alloy material for bumpers excellent in bending workability according to the present invention is a method for homogenizing an ingot of an aluminum alloy having the above composition at a temperature of 350 ° C. or more and less than 480 ° C. for 1 to 24 hours. The first feature is that the porthole is extruded at a temperature of 500 ° C. or more and a holding time of 1 to 30 minutes. Immediately after the extrusion, the product is cooled at a rate of 60 ° C./min or more and cooled to 150 to 210 minutes. Secondly, performing a tempering treatment by heating to a temperature of 480 to 580 ° C. and cooling at a rate of 60 ° C./min or more, and performing the above tempering treatment. This is the third feature.

【0010】本発明のアルミニウム合金材の合金成分の
意義および限定理由について説明すると、Siは、Mg
と共存してMg2 Si粒子を析出し、合金材の強度を向
上させる。好ましい含有範囲は0.5 〜1.5 %であり、0.
5 %未満ではその効果が十分でなく、1.5 %を越える
と、単体のSiが形成され、押出性を阻害し、伸びを低
下させる。
[0010] The significance of the alloy components of the aluminum alloy material of the present invention and the reasons for limitation will be described.
And coexist to precipitate Mg 2 Si particles to improve the strength of the alloy material. The preferred content range is 0.5 to 1.5%, and
If it is less than 5%, the effect is not sufficient, and if it exceeds 1.5%, simple Si is formed, which inhibits extrudability and lowers elongation.

【0011】Cuは、Mgと共存してAl−Cu−Mg
系の化合物粒子を析出し、強度を向上させる。Cuの好
ましい含有量は0.2 〜1.2 %の範囲であり、0.2 %未満
ではその効果が小さく、1.2 %を越えて含有されると押
出性がわるくなり、耐食性も低下する。
Cu is Al-Cu-Mg in the presence of Mg.
Precipitates compound particles of the system and improves strength. The preferred content of Cu is in the range of 0.2 to 1.2%. If the content is less than 0.2%, the effect is small. If the content is more than 1.2%, the extrudability becomes poor and the corrosion resistance is also reduced.

【0012】Mgは、Si、Cuと共存することによ
り、化合物粒子を析出して強度を向上させる。好ましい
含有範囲は0.4 〜1.5 %であり、0.4 %未満ではその効
果が十分でなく、1.5 %を越えると押出性が低下する。
Zrは、Al3 Zr粒子を析出させ、合金材の再結晶を
抑制する効果がある。Zrの好ましい含有量は0.05〜0.
3 %の範囲であり、0.05%未満ではその効果が小さく、
0.3 %を越えると巨大な不溶性金属間化合物が形成さ
れ、延性が低下する。
Mg coexists with Si and Cu to precipitate compound particles and improve the strength. The preferred content range is 0.4 to 1.5%. If the content is less than 0.4%, the effect is not sufficient, and if it exceeds 1.5%, the extrudability decreases.
Zr has an effect of precipitating Al 3 Zr particles and suppressing recrystallization of the alloy material. The preferred content of Zr is 0.05 to 0.
In the range of 3%, less than 0.05% the effect is small,
If it exceeds 0.3%, a huge insoluble intermetallic compound is formed, and the ductility decreases.

【0013】選択成分として添加されるMn、Cr、T
iは、マトリックス中に、それぞれAl−Mn(−S
i)系、AlCr系、Al−Ti系の微細化合物粒子を
析出させ、再結晶抑制効果を高める。好ましい含有範囲
は、Mn:0.05 〜1.0 %、Cr:0.02 〜0.35%、Ti:
0.01 〜0.25%であり、それぞれ下限未満では効果が小
さく、上限を越えると巨大な金属間化合物が形成され、
延性が害される。
Mn, Cr, T added as optional components
i represents Al-Mn (-S
i) Precipitating fine compound particles of the system, AlCr system and Al-Ti system to enhance the effect of suppressing recrystallization. The preferred content ranges are as follows: Mn: 0.05 to 1.0%, Cr: 0.02 to 0.35%, Ti:
When the content is less than the lower limit, the effect is small, and when the content exceeds the upper limit, a huge intermetallic compound is formed.
Ductility is impaired.

【0014】本発明において、Zrの添加により形成さ
れるAl3 Zr粒子は再結晶の抑制に有効に作用する
が、安定した効果を発揮させるためには、合金マトリッ
クス中に粒径が10〜200nm のAl3 Zr粒子を1 μm3
たり200 個以上析出させることが重要である。粒径範囲
が10〜200nm のAl3 Zr粒子は、加工により導入され
た転位のピン止め効果に最も有効に作用し、再結晶を効
果的に抑制する。
In the present invention, the Al 3 Zr particles formed by the addition of Zr effectively act to suppress recrystallization, but in order to exhibit a stable effect, the particle size in the alloy matrix is 10 to 200 nm. It is important to precipitate at least 200 Al 3 Zr particles per 1 μm 3 . Al 3 Zr particles having a particle size range of 10 to 200 nm most effectively act on the pinning effect of dislocations introduced by processing and effectively suppress recrystallization.

【0015】サイズが10nm未満では、押出加工前の加熱
によって再固溶され易く、再結晶抑制効果が小さくな
る。200nm を越えるサイズでは、粒子とマトリックスと
の 整合性が失われ易く、転位のピン止め効果が低下す
る。また、マトリックス内でのAl3 Zr粒子による転
位のピン止め効果の範囲は限界があるから、1 μm3当た
り200 個以上析出させる必要があり、200 個未満では、
転位をピン止めする効果が十分でなくなるため、再結晶
が生じ易くなる。
[0015] When the size is less than 10 nm, the solid solution is easily re-dissolved by heating before the extrusion process, and the effect of suppressing recrystallization is reduced. If the size exceeds 200 nm, the consistency between the particles and the matrix tends to be lost, and the dislocation pinning effect decreases. In addition, since the range of the pinning effect of dislocations due to Al 3 Zr particles in the matrix is limited, it is necessary to precipitate 200 or more per 1 μm 3 .
Since the effect of pinning dislocations is not sufficient, recrystallization is likely to occur.

【0016】また、押出材からなる本発明のアルミニウ
ム合金材においては、押出材表層部の粗大結晶粒からな
る再結晶層が押出材表面から平均 200μm 以下の厚さで
存在することが必要であり、押出材表層部の粗大結晶粒
層の厚さが平均200 μm を越えると、焼入れ、焼戻し処
理後の強度、伸びが不足し易く、曲げ加工における肌荒
れや微小亀裂発生の原因となる。
Further, in the aluminum alloy material of the present invention composed of an extruded material, it is necessary that the recrystallized layer composed of coarse crystal grains on the surface layer of the extruded material has an average thickness of 200 μm or less from the surface of the extruded material. On the other hand, when the thickness of the coarse crystal grain layer on the surface layer of the extruded material exceeds 200 μm on average, the strength and elongation after quenching and tempering are apt to be insufficient, and this may cause roughening of the surface during bending and micro cracks.

【0017】本発明のアルミニウム合金材の製造方法に
ついて説明すると、造塊されたビレットについて、まず
均質化処理を行う。均質化処理は、とくにAl3 Zr粒
子について所定範囲の析出を得るために必要であり、好
ましい均質化処理は350 ℃以上480 ℃未満の温度で1 〜
24時間加熱するという条件で行われる。加熱温度が350
℃未満あるいは加熱時間が1 時間未満では、Zr系化合
物の析出速度が遅くなるため、粒子の析出サイズが小さ
く析出数も少なくなり易い。加熱温度が480 ℃以上では
化合物粒子の粒径が大きくなり、また再固溶され易くな
る。
The method for producing an aluminum alloy material according to the present invention will be described. Homogenization is necessary to obtain a predetermined range of precipitation, especially for Al 3 Zr particles. Preferred homogenization is 1 to 350 ° C. to less than 480 ° C.
It is performed under the condition of heating for 24 hours. Heating temperature is 350
If the temperature is lower than 0 ° C. or the heating time is less than 1 hour, the deposition rate of the Zr-based compound becomes slow, so that the particle size is small and the number of particles is likely to be small. When the heating temperature is 480 ° C. or higher, the particle size of the compound particles becomes large, and the compound particles are easily dissolved again.

【0018】均質化処理されたビレットはポートホール
押出しされるが、押出加工に先立って500 ℃以上融点以
下の温度に加熱する。加熱後保持時間1 〜30分でポート
ホール押出を行い、所定の形状の形材とする。この条件
により、Al3 Zr粒子の分布を変化させることなくM
2 Siの固溶を促進させることができる。500 ℃未満
の加熱あるいは1 分未満の加熱では、Mg2 Siの固溶
が十分でなく強度が不足し易い。加熱時間が30分を越え
ると、Al3 Zr粒子が再固溶されて析出数が少なくな
り、また粒径も大きくなる。
The homogenized billet is extruded through a porthole, but is heated to a temperature of 500 ° C. or more and a melting point or less before extrusion. Porthole extrusion is performed for a holding time of 1 to 30 minutes after heating to obtain a shaped member having a predetermined shape. Under these conditions, M 3 can be obtained without changing the distribution of Al 3 Zr particles.
The solid solution of g 2 Si can be promoted. If the heating is performed at less than 500 ° C. or for less than 1 minute, the solid solution of Mg 2 Si is not sufficient, and the strength tends to be insufficient. If the heating time exceeds 30 minutes, the Al 3 Zr particles are re-dissolved to reduce the number of precipitates and the particle size increases.

【0019】得られたアルミニウム合金形材は、焼入
れ、焼戻し処理が施され、強度、延性が与えられる。好
ましい焼入れ温度は480 〜580 ℃の範囲であり、加熱後
60℃/分以上の速度で冷却する。加熱温度が480 ℃未満
では焼戻し後の強度が不足し、580 ℃を越えて加熱する
と部分的な融解が生じるおそれがある。焼入れ速度が60
℃/分未満では合金元素の固溶が不十分となり、また冷
却中に粒界に析出物が形成され伸びが低下する。なお、
押出前の加熱温度が500 ℃以上であることから、ポート
ホール押出時、押出機の出口で材料を60℃/分以上の速
度で冷却することにより、上記焼入れと同様の効果を得
ることができる。
The obtained aluminum alloy profile is subjected to a quenching and tempering treatment to give strength and ductility. The preferred quenching temperature is in the range of 480-580 ° C and after heating
Cool at a rate of 60 ° C / min or more. If the heating temperature is lower than 480 ° C., the strength after tempering becomes insufficient, and if the temperature exceeds 580 ° C., partial melting may occur. Hardening speed 60
If it is less than ℃ / minute, the solid solution of the alloy element becomes insufficient, and precipitates are formed at the grain boundaries during cooling, and the elongation is reduced. In addition,
Since the heating temperature before extrusion is 500 ° C. or higher, the same effect as the above-mentioned quenching can be obtained by cooling the material at the outlet of the extruder at a rate of 60 ° C./min or more during porthole extrusion. .

【0020】焼戻し処理は、150 〜210 ℃の温度範囲に
1 〜24時間加熱することにより行うのが好ましく、焼戻
し処理によって微細なMg2 Si、Al−Cu−Mg系
化合物が析出し、高強度が得られる。加熱温度が150 ℃
未満、加熱時間が1 時間未満では析出が十分でなく、加
熱温度が210 ℃を越えると微細析出物が得難く、強度が
不足する。
The tempering treatment is performed in a temperature range of 150 to 210 ° C.
It is preferable to carry out the heating by heating for 1 to 24 hours, and fine temperament treatment precipitates fine Mg 2 Si, Al—Cu—Mg-based compounds, and high strength is obtained. Heating temperature is 150 ° C
If the heating time is less than 1 hour, precipitation is not sufficient, and if the heating temperature exceeds 210 ° C., it is difficult to obtain fine precipitates and the strength is insufficient.

【0021】[0021]

【作用】本発明おいては、合金成分、均質化処理および
押出条件の組合わせにより、所定のAl3 Zr粒子の分
布が得られ、また押出材表層部の粗大再結晶粒層の厚さ
が限定されるとともに、合金元素の固溶も十分に行わ
れ、焼戻し処理、あるいは焼入れ、焼戻し処理によっ
て、バンパー材として十分な強度、延性、曲げ加工性を
得ることができる。
According to the present invention, a predetermined distribution of Al 3 Zr particles can be obtained by a combination of alloy components, homogenization treatment and extrusion conditions, and the thickness of the coarse recrystallized grain layer on the surface layer of the extruded material can be reduced. As well as being limited, the solid solution of the alloy element is sufficiently performed, and sufficient strength, ductility, and bending workability as a bumper material can be obtained by tempering, quenching, or tempering.

【0022】[0022]

【実施例】以下、本発明の実施例を比較例と対比して説
明する。 実施例1 表1に示す組成のアルミニウム合金を通常のDC鋳造で
造塊し、直径203mm のビレットを得た。ビレットを460
℃の温度で8h均質化処理し、550 ℃に加熱して5 分後に
ポートホール押出を行い、90mm角、肉厚1.5mm の中空形
材を製作した。押出後、この中空形材を520 ℃の温度で
溶体化処理後、100 ℃/分の速度で焼入れし、160 ℃で
80h 焼戻し処理した。得られたアルミニウム合金押出形
材を試験材として、押出加工後のAl3 Zr粒子の分布
および押出材表層部の再結晶層の厚さを測定し、引張試
験、および内側の曲げ半径が150mm で35°の曲げ試験を
行った。結果を表2に示す。表2にみられるように、本
発明に従う試験材はいずれもも耐力270MPa以上の優れた
機械的特性および曲げ加工性をそなえている。
Hereinafter, examples of the present invention will be described in comparison with comparative examples. Example 1 An aluminum alloy having the composition shown in Table 1 was formed by ordinary DC casting to obtain a billet having a diameter of 203 mm. Billet 460
The mixture was homogenized at a temperature of 8 ° C for 8 hours, heated to 550 ° C, and extruded after 5 minutes to produce a 90 mm square hollow member having a thickness of 1.5 mm. After extrusion, the hollow section was solution-treated at a temperature of 520 ° C, then quenched at a rate of 100 ° C / min.
80h Tempered. Using the obtained aluminum alloy extruded shape as a test material, the distribution of Al 3 Zr particles after extrusion and the thickness of the recrystallized layer on the surface of the extruded material were measured, and the tensile test was performed and the inner bending radius was 150 mm. A 35 ° bending test was performed. Table 2 shows the results. As can be seen from Table 2, the test materials according to the present invention all have excellent mechanical properties with a proof stress of 270 MPa or more and bending workability.

【0023】[0023]

【表1】 [Table 1]

【0024】[0024]

【表2】 《表注》曲げ加工性 ○:肌荒れなどがなく外観良好[Table 2] << Table Note >> Bendability ○: Good appearance without rough skin

【0025】比較例1 表3に示す組成のアルミニウム合金を、実施例1と同様
に造塊し、得られたビレットを実施例1と同じ条件で均
質化処理、ポートホール押出加工、焼入れ、焼み戻し処
理し、実施例1と同様、押出後のAl3 Zr粒子の分
布、押出材の表層部の再結晶層の厚さを測定し、引張試
験および曲げ試験を行った。結果を表4に示す。なお、
表3および表4において、本発明の条件を外れたものに
は下線を付した。
COMPARATIVE EXAMPLE 1 An aluminum alloy having the composition shown in Table 3 was formed into an ingot in the same manner as in Example 1, and the obtained billet was homogenized, extruded through a porthole, quenched, and quenched under the same conditions as in Example 1. After the exfoliation treatment, the distribution of Al 3 Zr particles after extrusion and the thickness of the recrystallized layer on the surface of the extruded material were measured in the same manner as in Example 1, and a tensile test and a bending test were performed. Table 4 shows the results. In addition,
In Tables 3 and 4, those outside the conditions of the present invention are underlined.

【0026】[0026]

【表3】 [Table 3]

【0027】[0027]

【表4】 《表注》再結晶層の厚さ 全面:全面再結晶 曲げ加工性 ×:割れ発生[Table 4] << Table Note >> Recrystallized layer thickness Entire surface: Recrystallized over entire surface Bendability ×: Cracking

【0028】表4に示されるように、試験材No.13 、N
o.14 、No.15 は、それぞれSi、Cu、Mgが下限未
満であるため強度が十分でない。試験材No.16 、No.17
、No.18 は、それぞれSi、Cu、Mgが上限を越え
ているため、押出性が低下し、押出加工時に押し詰まり
が生じて製品が作製できなかった。試験材No.19 はZr
量が下限未満であるため、全面再結晶を生じ、強度およ
び曲げ加工性が劣化した。試験材No.20 はZr量が上限
を越えているため、巨大な化合物が形成され、延性が低
下し、曲げ試験で割れが生じた。No.21 、No.22 、No.2
3 は、いずれも従来合金であり、成分が本発明と異なる
ため、強度が不足するとともに曲げ成形性が劣ってい
る。
As shown in Table 4, test materials No. 13 and N
o.14 and No.15 have insufficient strength because Si, Cu and Mg are less than the lower limits, respectively. Test materials No.16, No.17
In No. 18, Si, Cu, and Mg exceeded the upper limits, respectively, so that the extrudability was reduced, and the products could not be manufactured due to the occurrence of clogging during extrusion. Test material No.19 is Zr
Since the amount was less than the lower limit, recrystallization occurred over the entire surface, and the strength and bending workability deteriorated. In Test Material No. 20, since the Zr content exceeded the upper limit, a huge compound was formed, ductility was reduced, and cracking occurred in the bending test. No.21, No.22, No.2
No. 3 is a conventional alloy, and the components are different from those of the present invention, so that the strength is insufficient and the bending formability is poor.

【0029】実施例2、比較例2 Si:0.9%、Cu:0.5%、Mg:0.8%、Zr:0.15 %を
含有し、残部Alと不可避的不純物からなるアルミニウ
ム合金を通常のDC鋳造で造塊し、得られたビレットを
表5に示す条件で均質化処理、押出加工し、実施例1と
同一形状の形材とした。これらのアルミニウム合金押出
形材について、実施例1と同様、Al3Zr粒子の分
布、再結晶層の厚さを測定し、引張強さおよび曲げ試験
を行った。結果を表6に示す。なお、表5および表6に
おいて、本発明の条件を外れたものには下線を付した。
Example 2, Comparative Example 2 An aluminum alloy containing 0.9% of Si, 0.5% of Cu, 0.8% of Mg, and 0.15% of Zr with the balance being Al and unavoidable impurities was formed by ordinary DC casting. The billet was agglomerated, and the obtained billet was homogenized and extruded under the conditions shown in Table 5 to obtain a shaped material having the same shape as in Example 1. For these extruded aluminum alloy members, the distribution of Al 3 Zr particles and the thickness of the recrystallized layer were measured in the same manner as in Example 1, and tensile strength and bending tests were performed. Table 6 shows the results. In Tables 5 and 6, those outside the conditions of the present invention are underlined.

【0030】[0030]

【表5】 [Table 5]

【0031】[0031]

【表6】 [Table 6]

【0032】表6に示されるように、本発明の条件に従
う試験材は、いずれも耐力270MPa以上の優れた強度特性
および曲げ加工性をそなえているが、試験材No.31 、N
o.32は均質化処理温度が本発明の範囲を外れ、試験材N
o.33 は均質化処理の時間が短いため、耐力が不十分で
あり、曲げ加工性も劣っている。試験材No.34 は押出前
の加熱温度が低く、また試験材No.35 、No.36 は押出前
の加熱時間が本発明の範囲を外れているために、いずれ
も耐力が不足し、曲げ加工性が劣り曲げ加工において肌
荒れが生じた。
As shown in Table 6, all of the test materials conforming to the conditions of the present invention have excellent strength characteristics with a proof stress of 270 MPa or more and bending workability.
For o.32, the homogenization treatment temperature was out of the range of the present invention, and the test material N
In o.33, since the homogenization time is short, the yield strength is insufficient and the bending workability is also poor. Test material No. 34 has a low heating temperature before extrusion, and test materials No. 35 and No. 36 have insufficient proof stress because the heating time before extrusion is out of the range of the present invention. Poor workability resulted in rough skin during bending.

【0033】実施例3、比較例3 Si:0.9%、Cu:0.5%、Mg:0.8%、Zr:0.15 %を
含有し、残部Alと不可避的不純物からなるアルミニウ
ム合金を通常のDC鋳造で造塊し、得られたビレットを
450 ℃で10h 均質化処理し、540 ℃の温度に加熱後5 分
間保持して、ポートホール押出加工により100mm 角で肉
厚2.5mm の中空形材を作製した。押出後表7に示す条件
で焼入れ、焼戻し処理を行い、一部のものについては、
押出出口で強制冷却を行うダイクエンチ押出により表7
に示す条件で冷却したのち、焼戻し処理を行った。押出
後に測定した粒径10〜200nm のAl3 Zr粒子の1 μm3
当たりの数は1400個であり、押出材表層部における再結
晶層の平均厚さは80μm であった。焼戻し処理後、引張
試験、および内側の曲げ半径が135mm で35°の曲げ試験
を行い、強度特性および曲げ加工性を評価した。結果を
表7に示す。なお、表7において、本発明の条件を外れ
たものには下線を付した。
Example 3, Comparative Example 3 An aluminum alloy containing 0.9% of Si, 0.5% of Cu, 0.8% of Mg, and 0.15% of Zr, and composed of the balance of Al and unavoidable impurities, was produced by ordinary DC casting. Lump and the resulting billet
The mixture was homogenized at 450 ° C for 10 hours, heated to a temperature of 540 ° C, held for 5 minutes, and formed into a 100 mm square hollow 2.5 mm thick by porthole extrusion. After the extrusion, quenching and tempering were performed under the conditions shown in Table 7, and for some of them,
Table 7 shows the results of die quench extrusion with forced cooling at the extrusion outlet.
After cooling under the conditions shown in (1), a tempering treatment was performed. 1 μm 3 of Al 3 Zr particles having a particle size of 10 to 200 nm measured after extrusion.
The number per unit was 1,400, and the average thickness of the recrystallized layer in the surface layer of the extruded material was 80 μm. After the tempering treatment, a tensile test and a bending test at an inner bending radius of 135 mm and a bending angle of 35 ° were performed to evaluate the strength characteristics and bending workability. Table 7 shows the results. In Table 7, those out of the conditions of the present invention are underlined.

【0034】[0034]

【表7】 《表注》焼入れ温度 DQ: ダイクエンチ[Table 7] << Table Note >> Quenching temperature DQ: Die quench

【0035】表7にみられるように、本発明の条件に従
う試験材No.37 〜43は、いずれも270MPa以上の優れた耐
力、および曲げ加工性を示したが、試験材No.44 は焼入
れ温度が低いため、強度が不十分であり、試験材No.45
は焼入れ温度が高過ぎ、溶体化処理中に一部共晶融解が
生じた。No.46 は焼入れ後の冷却速度が小さいため、強
度、延性が不足し、曲げ試験において割れが発生した。
No.47 は焼戻し温度が低いため、十分な強度が得られ
ず、No.48 は焼戻し温度が高過ぎるため、強度、伸びと
もに不十分となり、曲げ試験において割れが生じた。N
o.49 は焼戻し時間が短いため十分な強度が得られず、
曲げ加工性も劣っている。試験材No.49 は押出後に強制
冷却を行わなかったため強度が不足している。
As can be seen from Table 7, the test materials Nos. 37 to 43 in accordance with the conditions of the present invention all exhibited excellent proof stress and bending workability of 270 MPa or more, while the test material No. 44 was hardened. Due to the low temperature, the strength was insufficient and the test material No. 45
The quenching temperature was too high, and some eutectic melting occurred during the solution treatment. In No. 46, since the cooling rate after quenching was low, the strength and ductility were insufficient, and cracks occurred in the bending test.
In No. 47, the tempering temperature was low, so that sufficient strength was not obtained. In No. 48, since the tempering temperature was too high, both strength and elongation were insufficient, and cracks occurred in the bending test. N
o.49 does not have sufficient strength due to short tempering time,
The bending workability is also poor. Test material No. 49 lacked strength because forced cooling was not performed after extrusion.

【0036】[0036]

【発明の効果】以上のとおり、本発明によれば、強度特
性および曲げ加工性に優れたアルミニウム合金材が提供
され、ポートホール押出しによりバンパー材およびバン
パー補強材として好適なアルミニウム合金形材が製造で
きる。
As described above, according to the present invention, an aluminum alloy material excellent in strength characteristics and bending workability is provided, and an aluminum alloy shape material suitable as a bumper material and a bumper reinforcing material is manufactured by porthole extrusion. it can.

フロントページの続き (58)調査した分野(Int.Cl.6,DB名) C22C 21/00 - 21/18 B60R 19/03 - 19/18 C22F 1/04 - 1/057 Continuation of the front page (58) Field surveyed (Int. Cl. 6 , DB name) C22C 21/00-21/18 B60R 19/03-19/18 C22F 1/04-1/057

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 Si:0.5〜1.5 %、Cu:0.2〜1.2 %、
Mg:0.4〜1.5 %、Zr:0.05 〜0.25%を含有し、残部
Alと不可避的不純物からなるアルミニウム合金の押出
材であって、該押出材のマトリックス中に粒径10〜200n
m のAl3 Zr粒子が1 μm3当たり200 個以上存在し、
押出材表層部の再結晶層が押出材表面から平均200 μm
以下の厚さで存在することを特徴とする曲げ加工性に優
れたバンパー用高強度アルミニウム合金材。
(1) Si: 0.5-1.5%, Cu: 0.2-1.2%,
An extruded material of an aluminum alloy containing 0.4 to 1.5% of Mg and 0.05 to 0.25% of Zr and the balance of Al and unavoidable impurities, and having a particle size of 10 to 200 n in a matrix of the extruded material.
m 3 or more Al 3 Zr particles exist per 1 μm 3 ,
The recrystallized layer on the surface of the extruded material is 200 μm on average from the surface of the extruded material
A high-strength aluminum alloy material for bumpers excellent in bending workability, characterized by being present in the following thickness.
【請求項2】 アルミニウム合金が、さらにMn:0.05
〜1.0 %、Cr:0.02 〜0.35%、Ti:0.01 〜0.25%の
うちの1種以上を含むことを特徴とする請求項1記載の
曲げ加工性に優れた高強度アルミニウム合金材。
2. An aluminum alloy further comprising Mn: 0.05
The high-strength aluminum alloy material excellent in bending workability according to claim 1, characterized in that it contains one or more of 1.0% to 1.0%, Cr: 0.02 to 0.35%, and Ti: 0.01 to 0.25%.
【請求項3】 Si:0.5〜1.5 %、Cu:0.2〜1.2 %、
Mg:0.4〜1.5 %、Zr:0.05 〜0.3 %を含有し、残部
Alおよび不可避的不純物からなるアルミニウム合金の
鋳塊を、350 ℃以上480 ℃未満の温度で1 〜24時間均質
化処理し、500 ℃以上の温度に加熱して保持時間1 〜30
分でポートホール押出を行うことを特徴とする曲げ加工
性に優れた高強度アルミニウム合金材の製造方法。
3. Si: 0.5-1.5%, Cu: 0.2-1.2%,
An ingot of an aluminum alloy containing 0.4 to 1.5% of Mg and 0.05 to 0.3% of Zr and the balance of Al and inevitable impurities is homogenized for 1 to 24 hours at a temperature of 350 ° C or more and less than 480 ° C, Heat to a temperature of 500 ° C or more and hold for 1 to 30 hours
A method for producing a high-strength aluminum alloy material having excellent bending workability, wherein porthole extrusion is performed in minutes.
【請求項4】 押出直後、60℃/ 分以上の速度で冷却
し、150 〜210 ℃の温度に1 〜24時間加熱する焼戻し処
理を行うことを特徴とする請求項3記載の曲げ加工性に
優れた高強度アルミニウム合金材の製造方法。
4. The bending workability according to claim 3, wherein immediately after the extrusion, a tempering treatment is performed by cooling at a rate of 60 ° C./min or more and heating to a temperature of 150 to 210 ° C. for 1 to 24 hours. Manufacturing method of excellent high strength aluminum alloy material.
【請求項5】 押出材を480 〜580 ℃の温度に加熱して
60℃/ 分以上の速度で冷却する焼入れ処理と、150 〜21
0 ℃の温度に1 〜24時間加熱する焼戻し処理を行うこと
を特徴とする請求項3記載の曲げ加工性に優れた高強度
アルミニウム合金材の製造方法。
5. Extruded material is heated to a temperature of 480 to 580 ° C.
Quenching at a rate of 60 ° C / min or more and 150 ~ 21
4. The method for producing a high-strength aluminum alloy material excellent in bending workability according to claim 3, wherein a tempering treatment is performed by heating at a temperature of 0 ° C. for 1 to 24 hours.
【請求項6】 アルミニウム合金が、さらにMn:0.
05〜1.0%、Cr:0.02〜0.35%、Ti:
0.01〜0.25%のうちの1種以上を含むことを特
徴とする請求項3〜5のいずれかに記載の曲げ加工性に
すぐれた高強度アルミニウム合金材の製造方法。
6. An aluminum alloy further comprising Mn: 0.1.
05 to 1.0%, Cr: 0.02 to 0.35%, Ti:
The method for producing a high-strength aluminum alloy material excellent in bending workability according to any one of claims 3 to 5, comprising at least one of 0.01 to 0.25%.
JP6192995A 1995-02-24 1995-02-24 High strength aluminum alloy material for bumpers excellent in bending workability and method for producing the same Expired - Lifetime JP2931538B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6192995A JP2931538B2 (en) 1995-02-24 1995-02-24 High strength aluminum alloy material for bumpers excellent in bending workability and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6192995A JP2931538B2 (en) 1995-02-24 1995-02-24 High strength aluminum alloy material for bumpers excellent in bending workability and method for producing the same

Publications (2)

Publication Number Publication Date
JPH08232035A JPH08232035A (en) 1996-09-10
JP2931538B2 true JP2931538B2 (en) 1999-08-09

Family

ID=13185353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6192995A Expired - Lifetime JP2931538B2 (en) 1995-02-24 1995-02-24 High strength aluminum alloy material for bumpers excellent in bending workability and method for producing the same

Country Status (1)

Country Link
JP (1) JP2931538B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020014287A1 (en) * 1998-10-27 2002-02-07 Shinji Yoshihara A1-mg-si based aluminum alloy extrusion
EP1059362B1 (en) * 1999-06-11 2009-12-30 Aleris Aluminum Koblenz GmbH Aluminium extrusion alloy
US6391129B1 (en) 1999-06-11 2002-05-21 Corus Aluminium N.V. Aluminium extrusion alloy
JP4757022B2 (en) * 2005-12-28 2011-08-24 住友軽金属工業株式会社 High strength and toughness aluminum alloy extruded material and forged material excellent in corrosion resistance, and method for producing the extruded material and forged material
US20090116999A1 (en) * 2006-02-17 2009-05-07 Norsk Hydro Asa Aluminium Alloy With Improved Crush Properties
JP6022882B2 (en) * 2012-10-05 2016-11-09 株式会社Uacj High strength aluminum alloy extruded material and manufacturing method thereof
WO2018165010A1 (en) * 2017-03-08 2018-09-13 NanoAL LLC High-performance 3000-series aluminum alloys
CN115927929A (en) * 2022-12-14 2023-04-07 马鞍山市新马精密铝业有限责任公司 Production method for improving bending performance of Al-Mg-Si series extruded aluminum alloy
CN116065108B (en) * 2023-04-06 2023-08-15 有研工程技术研究院有限公司 Homogenization heat treatment method for high Cu content ultra-high strength corrosion-resistant 7xxx series aluminum alloy

Also Published As

Publication number Publication date
JPH08232035A (en) 1996-09-10

Similar Documents

Publication Publication Date Title
JP3194742B2 (en) Improved lithium aluminum alloy system
CA2114285C (en) Superplastic aluminum alloy and process for producing same
US4021271A (en) Ultrafine grain Al-Mg alloy product
US4844750A (en) Aluminum-lithium alloys
JP5345056B2 (en) Heat-treatable high-strength aluminum alloy
EP0247181B1 (en) Aluminum-lithium alloys and method of making the same
EP0687743A1 (en) Aluminum alloy bumper-reinforcing material and method of producing the same
WO2011134486A1 (en) Damage tolerant aluminium material having a layered microstructure
EP0480402B1 (en) Process for manufacturing aluminium alloy material with excellent formability, shape fixability and bake hardenability
WO2019167469A1 (en) Al-mg-si system aluminum alloy material
JPH0713281B2 (en) Method for manufacturing aluminum-based alloy processed products
JP2004084058A (en) Method for producing aluminum alloy forging for transport structural material and aluminum alloy forging
EP0325937A1 (en) Aluminum-lithium alloys
JPH10219381A (en) High strength aluminum alloy excellent in intergranular corrosion resistance, and its production
JP2931538B2 (en) High strength aluminum alloy material for bumpers excellent in bending workability and method for producing the same
JP3681822B2 (en) Al-Zn-Mg alloy extruded material and method for producing the same
JPH086161B2 (en) Manufacturing method of high strength A1-Mg-Si alloy member
JPH08269652A (en) Production of aluminum alloy extruded shape having excellent bendability and high strength
JP3145904B2 (en) Aluminum alloy sheet excellent in high speed superplastic forming and its forming method
JP2663078B2 (en) Aluminum alloy for T6 treatment with stable artificial aging
JP3834076B2 (en) Extruded material manufacturing method
JPH0447019B2 (en)
JP2000087199A (en) Manufacture of rolled product of magnesium alloy, method of press working magnesium alloy, and press worked product
JPH05171328A (en) Thin hollow shape of aluminum alloy excellent in bendability and its production
JPH06212336A (en) Al alloy extruded material excellent in strength and bendability