JP2929933B2 - Rust-resistant non-magnetic steel - Google Patents

Rust-resistant non-magnetic steel

Info

Publication number
JP2929933B2
JP2929933B2 JP3821994A JP3821994A JP2929933B2 JP 2929933 B2 JP2929933 B2 JP 2929933B2 JP 3821994 A JP3821994 A JP 3821994A JP 3821994 A JP3821994 A JP 3821994A JP 2929933 B2 JP2929933 B2 JP 2929933B2
Authority
JP
Japan
Prior art keywords
steel
less
content
machinability
rust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3821994A
Other languages
Japanese (ja)
Other versions
JPH07243001A (en
Inventor
泰康 横山
定弘 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP3821994A priority Critical patent/JP2929933B2/en
Publication of JPH07243001A publication Critical patent/JPH07243001A/en
Application granted granted Critical
Publication of JP2929933B2 publication Critical patent/JP2929933B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Soft Magnetic Materials (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は特にリニアモーターカー
等超伝導を応用した磁気推進装置の構造部材に有効で、
冷間加工されても安定な非磁性を維持し、かつ屋外で用
いられるため耐銹性を要求される非磁性鋼に関する。
The present invention is particularly effective for structural members of a magnetic propulsion device utilizing superconductivity such as a linear motor car,
The present invention relates to a non-magnetic steel that maintains stable non-magnetic properties even when cold worked and is required to have rust resistance because it is used outdoors.

【0002】[0002]

【従来の技術】超伝導を応用した磁気推進装置の構造部
材には、磁力線に晒されても磁性を示さず、そのうえ強
度の高い非磁性鋼が必要とされる。その要求特性を具体
的に表わすと以下のとおりである。
2. Description of the Related Art Structural members of a magnetic propulsion device to which superconductivity is applied require nonmagnetic steel which does not exhibit magnetism even when exposed to lines of magnetic force and has high strength. The required characteristics are specifically described below.

【0003】透磁率 ………… 1.010以下 強度 ………… 0.2%耐力300MPa以上 その他 ………… 低廉、被削性が良好、溶接性が良
好、銹び難いこと 既存の非磁性鋼としてはSUS304LNオーステナイ
ト系ステンレス鋼がある。これは、溶接性、耐銹性およ
び冷間加工しない時点での透磁率は良好であるが、強
度、価格、被削性、冷間加工後の透磁率に問題があっ
た。とりわけ、Niを多量に含有するため高価であるこ
と、冷間加工するとオーステナイトの一部が加工誘起変
態によりマルテンサイトに変化して透磁率が2.0以上
になること、という点が致命的である。これらを解決す
るため高価なNiのかわりにMn,Nを多量に含有させ
てオーステナイトの安定化をはかった非磁性鋼として特
開昭54−130428、特開昭57−155350が
提案されている。
[0003] Permeability ... 1.010 or less Strength ... 0.2% proof stress 300 MPa or more Others ... low cost, good machinability, good weldability, low rust resistance As the magnetic steel, there is SUS304LN austenitic stainless steel. This has good weldability, rust resistance, and magnetic permeability before cold working, but has problems in strength, price, machinability, and magnetic permeability after cold working. In particular, it is fatal that it is expensive because it contains a large amount of Ni, and that a part of austenite changes to martensite due to work-induced transformation when cold worked and the magnetic permeability becomes 2.0 or more. is there. To solve these problems, JP-A-54-130428 and JP-A-57-155350 have been proposed as nonmagnetic steels which stabilize austenite by containing a large amount of Mn and N instead of expensive Ni.

【0004】これらは共に強度、価格、冷間加工後の透
磁率の改善に成功しているが、反面、溶接性に関しては
特開昭54−130428はCを0.5ないし1.5
%、特開昭57−155350はCを最大0.4%含有
するため溶接時に溶接熱影響部が著しく硬化してその部
分に割れが発生しやすく、溶接が極めて難しいという問
題点があった。また、Mn,Nを多量に含有しているた
め、冷間加工による加工硬化が大きく冷間での切削、穿
孔などの被削性が劣るという問題点もあった。要する
に、従来公知の非磁性鋼は上記した要求性能の一部を満
足はするもののすべてを満足するものではなかった。
[0004] Both of these have succeeded in improving the strength, the price, and the magnetic permeability after cold working. On the other hand, Japanese Patent Application Laid-Open No. 54-130428 discloses that C is 0.5 to 1.5 with respect to weldability.
In Japanese Patent Application Laid-Open No. 57-155350, there is a problem that the weld heat affected zone is extremely hardened at the time of welding due to the maximum C content of 0.4%, cracks tend to occur in the portion, and welding is extremely difficult. Further, since Mn and N are contained in a large amount, there is a problem that work hardening by cold working is large and machinability such as cold cutting and drilling is inferior. In short, the conventionally known non-magnetic steel satisfies a part of the above-mentioned required performances but does not satisfy all of them.

【0005】[0005]

【発明が解決しようとする課題】本発明は冷間加工後の
透磁率、被削性、溶接性、高強度という要求性能を同時
に満足する安価な耐銹性非磁性鋼を提供することを目的
としている。ここで溶接性が優れるとは、溶接時に、溶
接熱影響部の割れ、あるいは溶接部直下の非金属介在物
に沿った割れ(以下ラメラ・テアという)を生じず溶接
ができることをいう。
SUMMARY OF THE INVENTION An object of the present invention is to provide an inexpensive rust-resistant non-magnetic steel which simultaneously satisfies the required performances of permeability, machinability, weldability and high strength after cold working. And Here, “excellent weldability” means that welding can be performed without cracking of the weld heat affected zone or cracking along non-metallic inclusions immediately below the welded portion (hereinafter referred to as lamellar tear) during welding.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するには
溶接性、被削性、透磁率、耐銹性に影響する鋼成分を適
切な範囲に制御してやればよいが、鋼成分の各々が相互
に影響するため、適切な成分範囲の決定は単純ではな
い。本発明者らは研究を重ねた結果以下の成分範囲の鋼
を用いればこれら要求性能を同時に達成できることを見
出した。
Means for Solving the Problems To achieve the above object, the steel components which affect the weldability, machinability, magnetic permeability and rust resistance may be controlled within an appropriate range. Determining the appropriate component range is not trivial because of its interaction. As a result of repeated studies, the present inventors have found that these required performances can be simultaneously achieved by using steels having the following component ranges.

【0007】すなわち、重量%で、C:0.03%以上
0.08%以下、Mn:18.0%以上22.0%以
下、S:0.004%以上0.04%以下、Ni:5.
5%以上8.0%以下、Cr:17.0%以上20.0
%以下、N:0.15%以上0.25%以下を有する鋼
を用いることにより、溶接性、被削性に優れ、しかも冷
間加工後も透磁率が1.010以下を維持する安価な耐
銹性非磁性鋼が実現できる。
That is, C: 0.03% to 0.08%, Mn: 18.0% to 22.0%, S: 0.004% to 0.04%, Ni: 5.
5% or more and 8.0% or less, Cr: 17.0% or more and 20.0%
%, N: 0.15% or more and 0.25% or less, the use of a steel having excellent weldability and machinability, and inexpensive for maintaining a magnetic permeability of 1.010 or less even after cold working. Rust-resistant non-magnetic steel can be realized.

【0008】また、この鋼にCa:0.001%以上
0.01%以下、Se:0.005%以上0.03%以
下のうち1種類以上を含有させることにより、ラメラ・
テアが著しく改善されることを見出した。
In addition, by adding one or more of Ca: 0.001% or more and 0.01% or less and Se: 0.005% or more to 0.03% or less to the steel,
The tear was found to be significantly improved.

【0009】[0009]

【作用】本発明に係わる耐銹性非磁性鋼の各成分の限定
理由を述べる。 (1)C:0.03%以上0.08%以下 Cは、強度の確保、オーステナイトの安定化のために
0.03%以上必要であるが、0.08%を越えると溶
接時熱影響部が硬化して割れが発生しやすくなるため
0.08%以下に抑える必要がある。
The reasons for limiting each component of the rust-resistant non-magnetic steel according to the present invention will be described. (1) C: 0.03% or more and 0.08% or less C is required to be 0.03% or more in order to secure strength and stabilize austenite. Since the portion hardens and cracks easily occur, the content must be suppressed to 0.08% or less.

【0010】 (2)Mn:18.0%以上22.0%以下 MnはNiより安価なオーステナイト安定化成分であ
り、Niを5.5ないし8.0%含有する鋼に安定なオ
ーステナイトを生成させるにはMnを15.0ないし2
2.0%含有させることが必要である。一方、Mnの含
有量が18%未満では良好なドリル寿命が得られない。
結局ドリル寿命に代表される被削性と冷間加工後の非磁
性との観点から18.0%以上22.0%以下の含有量
とする。
(2) Mn: 18.0% or more and 22.0% or less Mn is an austenite stabilizing component cheaper than Ni, and forms stable austenite in steel containing 5.5 to 8.0% of Ni. In order to make Mn 15.0 to 2
It is necessary to contain 2.0%. On the other hand, if the Mn content is less than 18%, a good drill life cannot be obtained.
In the end, the content is set to 18.0% or more and 22.0% or less from the viewpoint of machinability represented by the drill life and non-magnetism after cold working.

【0011】 (3)S:0.004%以上0.04%以下 Sはおもに介在物の形態で鋼中に存在し鋼の被削性を向
上させる効果があるが、0.004%未満ではその効果
が著しく減少する。一方、0.04%を越えて添加して
も被削性の向上は少なく、逆に溶接時にラメラ・テアが
発生しやすくなるという弊害が顕著になる。そのため、
Sの含有量は0.004%以上0.04%以下とする。
(3) S: 0.004% or more and 0.04% or less S is mainly present in the form of inclusions in the steel and has an effect of improving the machinability of the steel. The effect is significantly reduced. On the other hand, even if added over 0.04%, the improvement in machinability is small, and conversely, the adverse effect that lamellae and tear are likely to occur during welding becomes significant. for that reason,
The content of S is set to 0.004% or more and 0.04% or less.

【0012】(4)Ni:5.5%以上8.0%以下 Niは、本発明鋼のようにMnとCrを多量に含む鋼に
おいてはオーステナイトを安定化させるために重要な成
分であり、5.5%以上含有させることが必要である。
しかしMn含有量が18.0ないし22.0%であれば
Niを8.0%を越えて含有させてもオーステナイト安
定化効果は少ないことから、Ni含有量は5.5%以上
8.0%以下とする。
(4) Ni: 5.5% or more and 8.0% or less Ni is an important component for stabilizing austenite in a steel containing a large amount of Mn and Cr like the steel of the present invention. It is necessary to contain 5.5% or more.
However, if the Mn content is 18.0 to 22.0%, even if Ni is contained in excess of 8.0%, the effect of stabilizing austenite is small, so the Ni content is 5.5% or more and 8.0 or more. % Or less.

【0013】 (5)Cr:17.0%以上20.0%以下 Crは本発明鋼に耐銹性を付与するに必要な成分で1
7.0%未満の含有では耐銹性が不足すること、およ
び、20.0%を越えて含有させるとCrを主体とする
金属間化合物を生成しオーステナイトが不安定化するこ
とから、17.0%以上20.0%以下の含有とする。
(5) Cr: 17.0% or more and 20.0% or less Cr is a component necessary for imparting rust resistance to the steel of the present invention.
If the content is less than 7.0%, the rust resistance is insufficient, and if the content exceeds 20.0%, an intermetallic compound mainly composed of Cr is formed and austenite is destabilized. The content is 0% or more and 20.0% or less.

【0014】(6)N:0.15%以上0.25%以下 Nはオーステナイトを安定化するだけでなく、固溶体と
して鋼基地に存在することにより溶体化熱処理後の0.
2%耐力を高くするのに必要な成分である。しかし0.
15%未満ではその効果が現れないこと、および0.2
5%を越えると溶接時溶接金属にNが侵入しブローホー
ル等の欠陥が発生するため0.15%以上0.25%以
下の含有とする。
(6) N: not less than 0.15% and not more than 0.25% N not only stabilizes austenite, but also exists in a steel matrix as a solid solution, so that the content of 0.1% after the solution heat treatment is increased.
It is a component necessary to increase the proof stress by 2%. But 0.
The effect is not exhibited below 15%, and 0.2
If it exceeds 5%, N enters the weld metal at the time of welding to cause defects such as blowholes. Therefore, the content is made 0.15% or more and 0.25% or less.

【0015】 (7)Ca:0.001%以上0.01%以下 Caはドリル刃先の劣化を抑える成分であるが、それに
くわえ硫化物介在物の形態を球状に制御することにより
鋼の強度に影響を与えること無く溶接時のラメラ・テア
を抑制する効果がある。そのため特別にラメラ・テアに
注意が必要な用途には重要な成分である。しかし、0.
001%未満ではその効果を発揮せず、一方0.01%
を越えると硬い酸化物介在物を形成してドリル寿命を劣
化させ被削性を阻害する。そのため0.001%以上
0.01%以下の含有量に制御する必要がある。
(7) Ca: not less than 0.001% and not more than 0.01% Ca is a component that suppresses the deterioration of the drill bit. In addition to that, by controlling the form of the sulfide inclusions into a sphere, the strength of the steel is increased. It has the effect of suppressing lamella and tear during welding without affecting it. Therefore, it is an important ingredient for applications that require special attention to lamella and tear. However, 0.
If it is less than 001%, the effect is not exhibited, while 0.01%
Exceeding the limit results in the formation of hard oxide inclusions, shortening the drill life and impairing machinability. Therefore, it is necessary to control the content to 0.001% or more and 0.01% or less.

【0016】 (8)Se:0.005%以上0.03%以下 SeはCaと同様ドリル刃先の劣化を抑えると同時に溶
接時のラメラ・テアを抑制する効果があり、特別にラメ
ラ・テアに注意が必要な用途には重要な成分である。し
かし、0.005%未満ではその効果を発揮せず、一方
0.03%を越えると硬い酸化物介在物を形成してドリ
ル寿命を劣化させ被削性を阻害する。そのため0.00
5%以上0.03%以下の含有量に制御する必要があ
る。
(8) Se: 0.005% or more and 0.03% or less Se, like Ca, has the effect of suppressing the deterioration of the drill bit and the effect of suppressing lamella tear during welding. It is an important ingredient for sensitive applications. However, if the content is less than 0.005%, the effect is not exhibited. On the other hand, if the content exceeds 0.03%, hard oxide inclusions are formed to deteriorate the drill life and impair the machinability. Therefore 0.00
It is necessary to control the content to 5% or more and 0.03% or less.

【0017】ここで、SeとCaはどちらか一方のみを
含有させてもよいし両方含有させても含有量が上記の範
囲内であれば上記の効果を発揮する。なお、不可避不純
物には、鋼製造の際の原料に含まれるPなど微量元素の
ほか鋼精練の際の脱酸剤として添加されるSi,Alが
含まれ、Siは0.10%から0.50%まで、Alは
0.001%から0.07%までの範囲で添加されるの
が一般的である。
Here, either Se or Ca may be contained alone, or both may be contained as long as the content is within the above range. The unavoidable impurities include trace elements such as P contained in raw materials at the time of steel production, and Si and Al added as deoxidizing agents at the time of steel refining. Up to 50%, Al is typically added in the range of 0.001% to 0.07%.

【0018】以下に本発明鋼の成分限定の根拠とした実
験例について述べる。図1は安価な不銹鋼として知られ
る18%Cr系の鋼の透磁率を測定した結果である。供
試材は表1に示すようにCrを18%と固定しMn,N
iを種々変化させた成分で、いずれも熱間圧延で厚み2
0mmの鋼板に仕上げ溶体化熱処理を施した。その後5
0%の冷間加工として、冷間圧延で厚み10mmにまで
減厚(以下50%冷間加工という)したのち透磁率を測
定した。表1の供試材は、冷間加工前の透磁率はすべて
1.010以下である。
An experimental example as a basis for limiting the composition of the steel of the present invention will be described below. FIG. 1 shows the results of measuring the magnetic permeability of 18% Cr-based steel known as inexpensive stainless steel. As shown in Table 1, Cr was fixed at 18% and Mn, N
Components with various values of i, each having a thickness of 2
A 0 mm steel plate was subjected to a finish solution heat treatment. Then 5
As 0% cold working, the thickness was reduced to 10 mm by cold rolling (hereinafter referred to as 50% cold working), and then the magnetic permeability was measured. All the test materials in Table 1 have a magnetic permeability of 1.010 or less before cold working.

【0019】[0019]

【表1】 [Table 1]

【0020】図1から理解できるように、Mn含有量1
5.0ないし22.0%の領域では基地のオーステナイ
トは冷間加工に対し安定で、50%冷間加工後も1.0
10以下の透磁率を維持できる。したがって、本発明の
目的とする非磁性鋼のMn含有量は15.0ないし2
2.0%としなければならないことがわかる。
As can be understood from FIG. 1, the Mn content is 1
In the range of 5.0 to 22.0%, the austenite of the matrix is stable to cold working, and 1.0% after 50% cold working.
A magnetic permeability of 10 or less can be maintained. Therefore, the Mn content of the nonmagnetic steel aimed at by the present invention is 15.0 to 2
It turns out that it must be 2.0%.

【0021】次に、被削性について述べる。図2はMn
含有量15.0ないし22.0%の鋼の被削性を調べた
結果である。供試材は表2に示すようにMnを15.
0,18.0,22.0%の3グループとし、Niを
1.5から9.5%の範囲で変化させた。圧延、冷間加
工条件は図1の場合と同じである。被削性はドリル寿命
を指標とし、ドリル寿命は次のように定義した。すなわ
ち、1本のドリルで穿孔しうる孔の合計長さをドリル寿
命とした。また、穿孔途中でドリル寿命に達し穿孔不能
となった時は貫通孔長さの50%穿孔できたとみなし
た。例えば、1本のドリルで厚み10mmの供試材に孔
をあけてゆき、21回目の穿孔途中にドリルが切れなく
なって穿孔できなくなったとすると、10mm×(21
−1)+10mm×0.5=205mmがドリル寿命と
なる。
Next, the machinability will be described. FIG. 2 shows Mn
It is the result of having investigated the machinability of steel of content 15.0-22.0%. As shown in Table 2, the test material contained Mn of 15.
Three groups of 0, 18.0, and 22.0% were used, and Ni was changed in a range of 1.5 to 9.5%. Rolling and cold working conditions are the same as in FIG. The machinability was defined using the drill life as an index, and the drill life was defined as follows. That is, the total length of holes that can be drilled by one drill was defined as the drill life. Further, when the drill life reached during the drilling and the drilling became impossible, it was considered that 50% of the through-hole length could be drilled. For example, if a single drill is used to make a hole in a test material having a thickness of 10 mm and the drill cannot be cut during the 21st drilling and cannot be drilled, then 10 mm × (21
-1) +10 mm × 0.5 = 205 mm is the drill life.

【0022】[0022]

【表2】 [Table 2]

【0023】図2から理解できるように、Mn15.0
%のグループではドリル寿命は高々400mmである
が、Mnが18.0%と22.0%のグループではNi
が5.5から8.0%の範囲でドリル寿命は800mm
以上と飛躍的に向上する。すなわち、被削性の観点か
ら、Mnは、透磁率の観点から範囲限定した15.0な
いし22.0%よりさらに狭い18.0ないし22.0
%の範囲に限定し、しかも、Niは5.5ないし8.0
%の範囲に限定すべきことがわかる。
As can be seen from FIG. 2, Mn15.0
%, The drill life is at most 400 mm, while the group with Mn of 18.0% and 22.0%
Is in the range of 5.5 to 8.0% and the drill life is 800mm
The above is dramatically improved. That is, from the viewpoint of machinability, Mn is 18.0 to 22.0, which is much narrower than the range of 15.0 to 22.0% limited in terms of magnetic permeability.
%, And Ni is 5.5 to 8.0.
It can be seen that it should be limited to the range of%.

【0024】次に被削性およびラメラ・テアの発生しや
すさに対するSの影響を述べる。図3はMnが18.0
から22.0%、Niが5.5から8.0%の範囲の非
磁性鋼のS量とドリル寿命および板厚方向引張り試験に
おける断面収縮率(以下RAzという)を調べた。ここ
で、RAzはラメラ・テアの生じ難さを示す指標で20
%以上であればラメラ・テアが発生しないことが知られ
ている。供試材の成分を表3に示す。表3中下線部は本
発明の範囲を外れている成分である。
Next, the effect of S on machinability and the likelihood of lamella tear will be described. FIG. 3 shows that Mn is 18.0.
From 22.0% and Ni from 5.5 to 8.0%, the S content, the drill life, and the cross-sectional shrinkage (RAz) in a thickness direction tensile test were examined. Here, RAz is an index that indicates the difficulty of lamella tearing.
%, It is known that lamella tear does not occur. Table 3 shows the components of the test materials. The underlined portions in Table 3 are components outside the scope of the present invention.

【0025】[0025]

【表3】 [Table 3]

【0026】図3から理解できるように、S含有量が
0.004%以上になるとドリル寿命は800mm以上
に改善される。一方、S含有量が0.04%を越えると
RAzが20%あるいはそれ以下となり溶接時ラメラ・
テアが発生する危険が生じる。それゆえ、S含有量は
0.004%から0.04%の範囲に制限すべきことが
わかる。
As can be seen from FIG. 3, when the S content is 0.004% or more, the drill life is improved to 800 mm or more. On the other hand, if the S content exceeds 0.04%, the RAz becomes 20% or less, and the lamella during welding decreases.
There is a risk of taring. Therefore, it is understood that the S content should be limited to the range of 0.004% to 0.04%.

【0027】この耐銹性非磁性鋼の製造方法は、転炉ま
たは電気炉で本発明鋼の成分範囲に調整した鋼を連続鋳
造法または鋳型造塊法を経て熱間圧延により製造すれば
よい。この耐銹性非磁性鋼には溶体化熱処理を施すのが
原則であるが、熱間圧延の条件および熱間圧延後の冷却
速度によっては溶体化熱処理は必要ない場合もある。
The method for producing this rust-resistant non-magnetic steel may be such that a steel adjusted to the composition range of the steel of the present invention in a converter or an electric furnace is hot-rolled through a continuous casting method or a mold ingot casting method. . The rust-resistant non-magnetic steel is generally subjected to a solution heat treatment. However, the solution heat treatment may not be necessary depending on the conditions of the hot rolling and the cooling rate after the hot rolling.

【0028】[0028]

【実施例】以下に実施例を述べるが、目安とする目標性
能は次のように設定した。 強度:0.2%耐力 ………… 300MPa以上 非磁性:透磁率 ………… 50%冷間加工後1.
010以下 被削性:ドリル寿命 ………… 800mm以上 溶接性:熱影響部の割れ …… なし ラメラ・テアとブローホール・・いずれも発生しない 本発明鋼は目標性能をすべて満たすが、本発明鋼の成分
範囲から外れる耐銹性非磁性鋼は目標性能すべてを同時
に満足するものでないことは以下の実施例、比較例から
明らかである。 (実施例1)表4(a)は本発明鋼の一組の実施例を示
す。供試材は表4(b)の成分の鋼を転炉にて精練する
と同時にSi,Alを添加して脱酸し、その後連続鋳造
にて製造したスラブを厚さ20mmに熱間圧延し105
0℃30分保持後水冷という溶体化熱処理をした後50
%冷間加工を施したものを用いた。以下供試材の製造方
法はすべて同じであるが、ここで、転炉による精練、脱
酸方法、連続鋳造の工程は本発明の本質ではなく、例え
ば電気炉による精練、普通造塊および分塊圧延などで製
造されたものであっても本発明の効果は変わるものでは
ない。
EXAMPLES Examples will be described below, but the target performance as a guide was set as follows. Strength: 0.2% proof stress 300 MPa or more Non-magnetic: permeability ... 50% after cold working 1.
010 or less Machinability: Drill life ……… 800 mm or more Weldability: Cracking of heat-affected zone …… None Neither lamellar tear nor blowholes occur. It is apparent from the following Examples and Comparative Examples that rust-resistant non-magnetic steels out of the steel component range do not simultaneously satisfy all of the target performances. (Example 1) Table 4 (a) shows a set of examples of the steel of the present invention. The test material was prepared by refining steel having the components shown in Table 4 (b) in a converter, adding Si and Al and deoxidizing the steel at the same time, and then hot rolling the slab manufactured by continuous casting to a thickness of 20 mm.
After a solution heat treatment of water cooling after holding at 0 ° C for 30 minutes, 50
% Cold worked. Hereinafter, the manufacturing methods of the test materials are all the same, but the scouring by the converter, the deoxidizing method, and the steps of continuous casting are not the essence of the present invention. The effects of the present invention do not change even if they are manufactured by rolling or the like.

【0029】表4(a)から理解されるように、本発明
鋼であるD−1からD−5はすべて目標性能を満足して
おり、優れた強度、ドリル寿命、溶接性を示すのみなら
ず冷間加工後も安定した非磁性を示している。
As can be understood from Table 4 (a), the steels of the present invention, D-1 to D-5, all satisfy the target performance and exhibit only excellent strength, drill life and weldability. It shows stable non-magnetism even after cold working.

【0030】[0030]

【表4】 [Table 4]

【0031】本発明の有効性を確認するために以下に比
較例を示す。 比較例1:CとNの効果 表5(a)に各性能の実験結果を示す。性能が目標値を
外れている部分には表5(a)中に(*)印をつけて示
した。供試材は表5(b)の成分の鋼を実施例1と同じ
処理を施した。表5(b)の成分値のうち本発明の成分
範囲から外れるものには下線をつけて示した。
Comparative examples are shown below to confirm the effectiveness of the present invention. Comparative Example 1: Effects of C and N Table 5 (a) shows the experimental results of each performance. The part where the performance deviates from the target value is indicated by (*) in Table 5 (a). As the test material, steels having the components shown in Table 5 (b) were subjected to the same treatment as in Example 1. Those out of the component range of the present invention among the component values in Table 5 (b) are underlined.

【0032】C含有量が0.03%未満のd−1とd−
2およびNが0.15%未満のd−5では、0.2%耐
力が300MPa未満であった。また、C含有量が0.
08%を越えたd−3,d−4ではドリル寿命が著しく
劣り、また溶接時に熱影響部に割れが発生した。さら
に、Nが0.25%をこえるd−6では溶接時ブローホ
ールが発生した。
D-1 and d- having a C content of less than 0.03%
For d-5 in which 2 and N were less than 0.15%, the 0.2% proof stress was less than 300 MPa. Further, when the C content is 0.1.
With d-3 and d-4 exceeding 08%, the drill life was remarkably inferior, and cracks occurred in the heat-affected zone during welding. Further, at d-6 where N exceeds 0.25%, blow holes were generated during welding.

【0033】[0033]

【表5】 [Table 5]

【0034】比較例2:MnとNiの効果 表6(a)に各性能の実験結果を示す。供試材は表6
(b)の成分の鋼を実施例1と同じ処理を施した。表中
の(*)印および下線の意味はそれぞれ表5(a)およ
び表5(b)のものと同じである。
Comparative Example 2: Effects of Mn and Ni Table 6 (a) shows the experimental results of each performance. Table 6 shows the test materials.
The same treatment as in Example 1 was performed on the steel of the component (b). The meaning of the (*) mark and the underline in the table are the same as those in Table 5 (a) and Table 5 (b), respectively.

【0035】Mn含有量2.6%のe−1ではオーステ
ナイトが不安定なため50%冷間加工あるいはドリル穿
孔時の加工によりマルテンサイトが容易に生成し、透磁
率が高くなり、またドリル寿命が著しく劣化して非磁性
鋼としては使えないことが確認された。e−2ではMn
を15%以上含有するためオーステナイトが安定になっ
ており50%冷間加工後の透磁率は目標値を満足する
が、ドリル寿命が劣っている。次に、Mn含有量が22
%を越えるe−3,e−4ではこの鋼が凝固するときに
生成する金属間加工物によってオーステナイトが不安定
となる。その結果50%冷間加工後の透過率が高くなっ
た。
In the case of e-1 having a Mn content of 2.6%, austenite is unstable, so that martensite is easily formed by 50% cold working or working at the time of drilling, thereby increasing the magnetic permeability and the drill life. Was significantly deteriorated and it was confirmed that it could not be used as nonmagnetic steel. In e-2, Mn
Contains 15% or more, austenite is stable, and the magnetic permeability after 50% cold working satisfies the target value, but the drill life is inferior. Next, when the Mn content is 22
%, The austenite becomes unstable due to the intermetallic product formed when the steel solidifies. As a result, the transmittance after 50% cold working was increased.

【0036】e−5,e−6はNi含有量が本発明鋼の
それより低い場合であり、この場合もオーステナイトが
不安定であるためドリル穿孔時にマルテンサイトが生成
しドリル寿命を劣化させた。
E-5 and e-6 are cases where the Ni content is lower than that of the steel of the present invention. In this case, too, the austenite is unstable, so that martensite was formed during drilling and the drill life was deteriorated. .

【0037】[0037]

【表6】 [Table 6]

【0038】比較例3:Sの効果 表7(a)に各性能の実験結果を示す。供試材は表7
(b)の成分の鋼を実施例1と同じ処理を施した。表中
の(*)印および下線の意味はそれぞれ表5(a)およ
び表5(b)のものと同じである。
Comparative Example 3: Effect of S Table 7 (a) shows the experimental results of each performance. Table 7 shows the test materials.
The same treatment as in Example 1 was performed on the steel of the component (b). The meaning of the (*) mark and the underline in the table are the same as those in Table 5 (a) and Table 5 (b), respectively.

【0039】f−1,f−2はSが0.04%を越えて
いるため溶接時ラメラ・テアが発生した。f−3はSが
0.004%より低いため被削性が悪くドリル寿命が著
しく短かかった。
As for f-1 and f-2, S exceeded 0.04%, and lamella tear occurred during welding. As for f-3, since the S was lower than 0.004%, the machinability was poor and the drill life was extremely short.

【0040】[0040]

【表7】 (実施例2)表8(a)はCa,Seの効果を明らかに
した実施例を示す。供試材は表8(b)の成分の鋼を実
施例1と同じ処理を施した。なお、表7(a),表8
(b)には、比較例も併記している。表中の(*)印お
よび下線の意味はそれぞれ表5(a),表5(b)のも
のと同じである。
[Table 7] (Embodiment 2) Table 8 (a) shows an embodiment in which the effects of Ca and Se are clarified. As the test material, steel having the components shown in Table 8 (b) was subjected to the same treatment as in Example 1. Table 7 (a), Table 8
(B) also shows a comparative example. The meanings of (*) and underline in the table are the same as those in Table 5 (a) and Table 5 (b), respectively.

【0041】Caが0.001から0.01%の範囲を
外れたg−1とg−2、Seが0.005から0.03
%の範囲を外れたg−3とg−4はドリル寿命が400
mm以下と著しく短く被削性は満足できるものではな
い。一方Ca,Seが本発明の範囲内にあるG−1およ
びG−2は良好なドリル寿命を示し、良好な被削性を持
っていることがわかる。
Ca is g-1 and g-2 outside the range of 0.001 to 0.01%, and Se is 0.005 to 0.03.
%, G-3 and g-4 have a drill life of 400.
mm or less, and the machinability is not satisfactory. On the other hand, G-1 and G-2 in which Ca and Se are within the range of the present invention show a good drill life and have good machinability.

【0042】[0042]

【表8】 [Table 8]

【0043】[0043]

【発明の効果】以上に示したように、非磁性鋼の分野に
おいて、C,Mn,Ni,Cr,S,Nの含有量を適切
に組み合わせ、さらに非磁性鋼の被削性に影響を与える
Ca,Seを必要に応じ適正量含有させることによっ
て、高強度で溶接性、被削性に優れ、しかも冷間加工し
ても安定な非磁性を維持する非磁性鋼を提供することが
できる。
As described above, in the field of non-magnetic steel, the contents of C, Mn, Ni, Cr, S, and N are appropriately combined to further affect the machinability of the non-magnetic steel. By containing Ca and Se in appropriate amounts as necessary, it is possible to provide a non-magnetic steel which has high strength, excellent weldability and machinability, and which maintains stable non-magnetism even during cold working.

【図面の簡単な説明】[Brief description of the drawings]

【図1】透磁率におよぼすC,Mn,Ni,Nの影響を
示す図。
FIG. 1 is a diagram showing the influence of C, Mn, Ni, and N on magnetic permeability.

【図2】被削性におよぼすMn,Niの影響を示す図。FIG. 2 is a view showing the influence of Mn and Ni on machinability.

【図3】S含有量とドリル寿命、RAzの関係の影響を
示す図。
FIG. 3 is a graph showing the influence of the relationship between the S content, the drill life, and RAz.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) C22C 38/00 302 C22C 38/58 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 6 , DB name) C22C 38/00 302 C22C 38/58

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 実質的に、重量%で、C:0.03%以
上0.08%以下、Mn:18.0%以上22.0%以
下、S:0.004%以上0.04%以下、Ni:5.
5%以上8.0%以下、Cr:17.0%以上20.0
%以下、N:0.15%以上0.25%以下を有する被
削性、溶接性に優れた耐銹性非磁性鋼。
1. Substantially, in terms of% by weight, C: 0.03% to 0.08%, Mn: 18.0% to 22.0%, S: 0.004% to 0.04% Hereinafter, Ni: 5.
5% or more and 8.0% or less, Cr: 17.0% or more and 20.0%
%, N: 0.15% or more and 0.25% or less Rust-resistant non-magnetic steel excellent in machinability and weldability.
【請求項2】 実質的に、重量%で、C:0.03%以
上0.08%以下、Mn:18.0%以上22.0%以
下、S:0.004%以上0.04%以下、Ni:5.
5%以上8.0%以下、Cr:17.0%以上20.0
%以下、N:0.15%以上0.25%以下を有し、か
つ、Ca:0.001%以上0.01%以下とSe:
0.005%以上0.03%以下のうち1種類以上を有
する被削性、溶接性に優れた耐銹性非磁性鋼。
2. Substantially, in terms of% by weight, C: 0.03% to 0.08%, Mn: 18.0% to 22.0%, S: 0.004% to 0.04% Hereinafter, Ni: 5.
5% or more and 8.0% or less, Cr: 17.0% or more and 20.0%
%: N: 0.15% to 0.25%, and Ca: 0.001% to 0.01% and Se:
A rust-resistant non-magnetic steel having at least one of 0.005% or more and 0.03% or less and excellent in machinability and weldability.
【請求項3】 溶体化熱処理後の0.2%耐力が300
MPa以上であることを特徴とする請求項1または2に
記載した耐銹性非磁性鋼。
3. The 0.2% proof stress after solution heat treatment is 300.
The rust-resistant nonmagnetic steel according to claim 1 or 2, wherein the rust resistance is not less than MPa.
JP3821994A 1994-03-09 1994-03-09 Rust-resistant non-magnetic steel Expired - Fee Related JP2929933B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3821994A JP2929933B2 (en) 1994-03-09 1994-03-09 Rust-resistant non-magnetic steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3821994A JP2929933B2 (en) 1994-03-09 1994-03-09 Rust-resistant non-magnetic steel

Publications (2)

Publication Number Publication Date
JPH07243001A JPH07243001A (en) 1995-09-19
JP2929933B2 true JP2929933B2 (en) 1999-08-03

Family

ID=12519200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3821994A Expired - Fee Related JP2929933B2 (en) 1994-03-09 1994-03-09 Rust-resistant non-magnetic steel

Country Status (1)

Country Link
JP (1) JP2929933B2 (en)

Also Published As

Publication number Publication date
JPH07243001A (en) 1995-09-19

Similar Documents

Publication Publication Date Title
EP2119802A1 (en) Austenitic stainless steel welded joint and austenitic stainless steel welding material
JP3256401B2 (en) High heat input welding steel having heat input of 500 kJ / cm or more and method for producing the same
US4302248A (en) High manganese non-magnetic steel with excellent weldability and machinability
JPH0555585B2 (en)
JP3182995B2 (en) High Mn non-magnetic steel with excellent stress corrosion cracking resistance and mechanical properties
JP2929933B2 (en) Rust-resistant non-magnetic steel
JPH10166179A (en) High mn stainless welding wire for extra low temp. excellent in welding high temp. crack resistance
JPS628504B2 (en)
JP2875375B2 (en) How to prevent local corrosion in welds
JP2930772B2 (en) High manganese ultra-high strength steel with excellent toughness of weld heat affected zone
JPH0615686B2 (en) Manufacturing method of abrasion resistant structural steel
JPS6075551A (en) Stainless nonmagnetic steel for electronic device parts
JPH0475305B2 (en)
JPS621823A (en) Manufacture of nonmagnetic high-mn steel having superior machinability
JPH09291344A (en) Low hardness martensitic stainless steel
JPH0317245A (en) High strength non-magnetic stainless steel having excellent machinability
JPH0535209B2 (en)
JP3270541B2 (en) How to prevent local corrosion in welds
JPH0558053B2 (en)
JP3390234B2 (en) Steel with excellent heat input welding characteristics
JPH01176016A (en) Manufacture of steel stock for welded joint excellent in toughness
JPH08158012A (en) High damping alloy with high strength and high corrosion resistance
JP2932924B2 (en) Steel material excellent in weldability and method for producing the same
JPS628500B2 (en)
JPH0790497A (en) Nitric acid resistant austenitic stainless steel

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees