JP2929464B2 - Sliding contacts for electrical equipment - Google Patents

Sliding contacts for electrical equipment

Info

Publication number
JP2929464B2
JP2929464B2 JP2271498A JP27149890A JP2929464B2 JP 2929464 B2 JP2929464 B2 JP 2929464B2 JP 2271498 A JP2271498 A JP 2271498A JP 27149890 A JP27149890 A JP 27149890A JP 2929464 B2 JP2929464 B2 JP 2929464B2
Authority
JP
Japan
Prior art keywords
contact
conductor
sliding contact
sliding
movable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2271498A
Other languages
Japanese (ja)
Other versions
JPH04126314A (en
Inventor
久次 篠原
直司 内田
健之 神達
宗順 松村
格 千葉
茂治 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Uemera Kogyo Co Ltd
Original Assignee
Fuji Electric Co Ltd
Uemera Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=17432896&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2929464(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Fuji Electric Co Ltd, Uemera Kogyo Co Ltd filed Critical Fuji Electric Co Ltd
Priority to GB9121240A priority Critical patent/GB2251133B/en
Priority to US07/772,084 priority patent/US5199553A/en
Priority to KR1019910017657A priority patent/KR950013422B1/en
Priority to DE19914133466 priority patent/DE4133466A1/en
Publication of JPH04126314A publication Critical patent/JPH04126314A/en
Application granted granted Critical
Publication of JP2929464B2 publication Critical patent/JP2929464B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Contacts (AREA)
  • Non-Insulated Conductors (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【産業上の利用分野】[Industrial applications]

この発明は、回路遮断器などの各種の電気機器におい
て、相手導体と摺動接触して電気的な接続を行う電気導
体相互の接触機構(摺動接触子という)に関し、特にそ
の表面処理に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a contact mechanism (referred to as a sliding contact) between electric conductors for making an electric connection by sliding contact with a counter conductor in various electric devices such as a circuit breaker, and particularly to a surface treatment thereof.

【従来の技術】[Prior art]

回路遮断器、断路接触器、負荷開閉器あるいはコネク
タなど、機械的に動く導電部を持つ電気機器において
は、可動部と固定部との間に上記摺動接触子が用いられ
る。 摺動接触子は通電を受け持つ接触点が摺動の過程で刻
々変化するため、摺動過程での接触抵抗は静止状態と比
較すると不安定であり、かつ高くなる傾向にある。接触
抵抗が高くなるとジュール熱により接触部が加熱され、
導体が銅あるいは銅合金の場合は酸化によって接触抵抗
は更に高くなり、これによりまた酸化が進む。このよう
な悪循環を防ぐために、従来は大きな電流を流す摺動接
触子では摺動接触面に銀(Ag)めっきを施している。
In electric equipment having a conductive part that moves mechanically, such as a circuit breaker, disconnecting contactor, load switch or connector, the above-mentioned sliding contact is used between a movable part and a fixed part. In a sliding contact, the contact point that is energized changes momentarily during the sliding process, so that the contact resistance in the sliding process is unstable and tends to be higher than in the stationary state. When the contact resistance increases, the contact part is heated by Joule heat,
When the conductor is copper or a copper alloy, the contact resistance is further increased by the oxidation, which further promotes the oxidation. Conventionally, in order to prevent such a vicious circle, a sliding contact surface through which a large current flows is conventionally plated with silver (Ag) on a sliding contact surface.

【発明が解決しようとする課題】[Problems to be solved by the invention]

しかし、Agめっきは軟質でかじりを生じやすいもので
あり、無負荷開閉でも容易に磨耗して導体素地が露出す
る。また、通電時にはジュール熱によりAgが軟化してか
じりが一層生じやすくなり、摺動によりめっき層の剥離
が発生するようになる。更に、電流が大きくなると接触
部は発熱により溶融し、遂には発弧溶融に至る。この発
熱は摺動接触子の接触力を大きくすることである程度抑
えられるが、それに伴って摺動接触子の動きが悪くなる
ので、それを動かすための駆動機構や接触力を増すため
のばね機構が大形になる。また、接触力を増すと摩擦力
が大きくなるので、電流を流さない場合あるいは微小電
流の場合にもめっき層の磨耗が多くなる。 上記現象に対応する手段としてAgめっき被膜に導電性
のグリースを塗布することも行われている。この方法は
かじり防止には効果があり、また静止状態の接触抵抗も
低く安定しているが、発明者らの実験では、摺動過程で
の接触抵抗は高いものであり、大きな電流を流した場合
にはグリースを塗布しないものよりもむしろ溶融しやす
かった。また、グリースは高温で長期間使用すると固化
する傾向があり、高温での使用には制約がある。 そこで、この発明は、摺動過程においても接触抵抗が
低く安定した通電が得られる摺動接触子を提供すること
を目的とするものである。
However, Ag plating is soft and easily galling, and is easily worn away even when no load is opened and closed, so that the conductor substrate is exposed. In addition, when electricity is applied, Ag softens due to Joule heat and galling becomes more likely to occur, and the plating layer peels off due to sliding. Furthermore, when the electric current increases, the contact portion is melted by heat generation, and finally reaches an arc melting. This heat generation can be suppressed to some extent by increasing the contact force of the sliding contact, but the movement of the sliding contact deteriorates accordingly, so a drive mechanism for moving it and a spring mechanism for increasing the contact force Becomes large. In addition, when the contact force is increased, the frictional force is increased. Therefore, even when no current is supplied or when a small current is applied, abrasion of the plating layer is increased. As a means to cope with the above phenomenon, application of conductive grease to an Ag plating film is also performed. Although this method is effective in preventing galling and has a low and stable contact resistance in a stationary state, in our experiments, the contact resistance in the sliding process was high, and a large current was applied. In that case, it was easier to melt than the one without grease. In addition, grease tends to solidify when used at high temperatures for a long period of time, and there is a restriction on use at high temperatures. SUMMARY OF THE INVENTION It is an object of the present invention to provide a sliding contact element having a low contact resistance and a stable energization even in a sliding process.

【課題を解決するための手段】[Means for Solving the Problems]

上記目的を達成するために、この発明は、摺動接触子
の相手導体との摺動接触面に、銀(Ag)マトリクス中に
グラファイト(C)粒子を分散させた複合材の被膜処理
を施すものである。また、その際、グラファイト(C)
粒子の大きさは被膜の厚さより小さくするものとする。 摺動接触子が開閉機構に駆動されて支軸を支点に開閉
運動をする可動接触子と、ケースに固定され、可動接触
子に支軸の近傍でばねにより圧接されて摺動接触する腕
を有する固定導体とからなる場合において、可動接触子
及び固定導体の摺動接触面の少なくとも一方に上記被膜
処理を施すものとする。 上記被膜は電気めっきで形成することができ、その際
に使用するめっき液の組成としては、金属銀濃度2〜10
0g/l,シアン化カリウム2〜250g/l,水酸化カリウム0.5
〜15g/l,グラファイト粉末1〜550g/l,めっき液へのグ
ラファイト粉末の分散助材10〜2000ppmとするのがよ
い。
In order to achieve the above object, the present invention provides a coating process of a composite material in which graphite (C) particles are dispersed in a silver (Ag) matrix on a sliding contact surface of a sliding contact with a counter conductor. Things. At that time, graphite (C)
The size of the particles shall be smaller than the thickness of the coating. A movable contact that is driven by an opening / closing mechanism to open and close about a support shaft, and an arm that is fixed to the case and that comes into sliding contact with the movable contact by a spring near the support shaft by a spring. In the case where the fixed conductor is provided, at least one of the movable contact and the sliding contact surface of the fixed conductor is subjected to the coating treatment. The coating can be formed by electroplating, and the composition of the plating solution used at this time is a metal silver concentration of 2 to 10
0 g / l, potassium cyanide 2-250 g / l, potassium hydroxide 0.5
-15 g / l, 1-550 g / l graphite powder, and 10-2000 ppm of graphite powder dispersion aid for plating solution.

【作用】[Action]

周知のごとく、Cはすぐれた潤滑性を持つと同時に導
電性があり、しかもAgと全く融け合わない。そのため、
Agのマトリクス中にCを微細に分散させた被膜を摺動面
に施すことにより、かじりが生じにくくなり、かつ摺動
過程での接触抵抗が低く保たれるようになる。また、大
電流通流時に発熱により接触部が溶融しても溶着し合う
ことが少なく摺動接触面が平滑に保たれ、安定した通電
が引き続き維持される。
As is well known, C has excellent lubricity and at the same time has conductivity, and does not melt at all with Ag. for that reason,
By applying a coating film in which C is finely dispersed in an Ag matrix to the sliding surface, galling is less likely to occur, and the contact resistance during the sliding process is kept low. Further, even when the contact portions are melted due to heat generation during the passage of a large current, they are less likely to be welded to each other, and the sliding contact surfaces are kept smooth, so that stable energization is continuously maintained.

【実施例】【Example】

開閉運動をする可動導体とケースに固定されこれと摺
動接触する固定導体とからなる回路遮断器(配線用遮断
器)の摺動接触子について、この発明の実施例を以下に
説明する。ここで、第1図(A)は回路遮断器の可動接
触子部分の閉路状態の平面図、同(B)はその側面図で
ある。 図において、1は図示しない回路遮断器のケースにね
じで固定された銅材からなる固定導体2とその先端に取
り付けられた接点3とからなる固定接触子、4は図示し
ない開閉機構に駆動されて開閉運動する銅材からなる可
動導体5とその先端に取り付けられた接点6とからなる
可動接触子、7は可動接触子4を保持する絶縁物のホル
ダ、8は図示しない過電流引外し装置の発熱体に通じる
固定導体である。 固定導体8は直立したケースにねじ止めされるL字形
の導体9、これに水平に接合されたやはりL字形の導体
10、更にこれに平行に接合されたS字形の導体11とから
なり、導体10と11とは図示の通り導体5を挟んで摺動接
触する二股の腕を形成している。可動導体5と導体10,1
1には可動導体5を回動させるための支軸12が挿通さ
れ、支軸12の両端はホルダ7に保持されている。導体10
及び11とホルダ7との間にはそれぞれ圧縮ばね13が挿入
され、導体10,11を可動導体5に圧接している。14は可
動導体5の後端とケースとの間に挿入された接触ばね
で、可動導体5を図の反時計方向に付勢し、固定接点3
と可動接点6との間に接触圧力を生じさせている。 このような状態で、固定接触子1から可動接触子4に
流れた電流は可動導体5と導体10,11との摺動接触部15
を通して固定導体8に流れ、更に図示しない過電流引外
し装置を経て負荷側端子板に至る。図の閉路状態で図示
しない操作ハンドルが開操作され、あるいは過電流引外
し装置がトリップ動作をすると、図示しない開閉機構が
働いて可動接触子4は急速に引き上げられ、支軸12を支
点として第1図(B)の時計方向に回動する。その際、
可動導体5と導体10,11とは摺動接触部15において互い
に摺動する。 このような回路遮断器の可動接触子部分において、実
施例では可動導体5及び固定導体8に、それぞれ下記の
方法でAgマトリクス中にCを6体積%分散させた複合材
(Ag−6%C)の被膜を厚さ7μmに電気めっきにより
形成した(実施例1)。第2図はこれによって得られた
めっき被膜中のCの分散状態を示す電子顕微鏡写真(倍
率900倍)で、図中の黒点がCである。 〔めっき液の組成〕 金属銀濃度 : 35g/l シアン化カリウム:110g/l 水酸化カリウム : 8g/l グラファイト粉 : 20g/l(C粒の大きさは、長径0.5〜
2μm、短径0.2〜0.5μm) めっき液へのグラファイト粉末の分散助剤 :200ppm 〔作業条件〕 アノード :銀板 浴温度 :20℃ 電流密度 :1A/dm2 撹拌 :有り 同様に、可動導体5及び固定導体8にそれぞれAg/3%
C(体積%)の被膜を厚さ7μmに電気めっきにより形
成した(実施例2)。その際のめっき条件は、浴温度35
℃、C粒の長径0.8〜5μm、短径0.3〜1μmで、他は
実施例1の場合と同じである。 また、比較例として、Agめっき7μmを施した同様の
可動導体5及び固定導体8(比較例1)、及びこれにグ
リースを塗布したもの(比較例2)を用意した。 これらの可動導体5及び固定導体8を回路遮断器に組
み込み、無負荷開閉試験及び大電流遮断試験を実施し
た。なお、無負荷開閉試験では摺動接触部15は無通電状
態で往復摺動を繰り返し、大電流遮断試験では接触部15
は通電状態で摺動する。試験結果を第1表に示す。 これによれば、Ag−C複合材のめっきを施したもの
は、通常のAgめっきのもの、あるいはこれにグリースを
塗布したものに比べて銅素地が露出しにくいことが分か
る。 第3図は実施例1、比較例1及び比較例2の摺動接触
子について、DC10Aを流した状態で摺動させ、摺動接触
部15の接触抵抗を測定した結果である。静止状態での接
触抵抗は三者間で相違が小さいが、摺動過程ではAg−6
%Cの接触抵抗が最も低く、また変動も少ない。一般に
接触子の電気的接触部の温度は、接触部の電圧(=電流
×接触抵抗)に比例するといわれており、したがって摺
動通電時の温度はAg−6%Cが最も小さいといえる。 上記実施例では回路遮断器の摺動接触子について2つ
の例を示したが、この発明の効果はCの性質に依存して
いるので、C%やC粒の大きさはこれらに限ったもので
はない。摺動接触部のかじり易さや溶融し易さは接触部
の広さや面圧力によっても影響されるので、C%やC粒
の大きさはこれらを総合して決めるべきものである。し
かし、Cは導電性を有するものの電気抵抗がAgの数百倍
〜数千倍である。したがって、いたずらにC%を多くし
たり、めっき厚さを貫通するような大きなC粒を使用す
ることは、摺動接触部の発熱を増加させることになるの
で好ましくない。 かじり防止あるいは溶着防止に寄与しているのは摺動
接触面におけるCの存在であるから、可動導体と固定導
体のいずれか一方にのみAg−C被膜を形成しても効果が
ある。その場合、他方の部品はAgめっきをすることが望
ましいが、Cは酸化防止作用があるので、銅のままでも
ある程度の通電特性は得られる。なお、上記被膜は導体
全面に施す必要はなく、摺動接触面に限定して形成して
もよい。 更に、Ag−Cに第3の粒子として微細な硬質粒子、例
えばSiC、WC、ZrB、Al2O3、ZrO2、Cr2O3、TiO2、R2O3
ThO2、Y2O3、MoO3、W2C、TiC、B4C、CrB2などの粒子を
分散させれば、被膜全体の硬度を上げて、より磨耗しに
くい長寿命の接触部を構成することができる。 また、めっき条件としては、めっき液組成として、金
属銀濃度2〜100g/l、シアン化カリウム5〜250g/l、水
酸化カリウム0.5〜15g/lの範囲の基本浴を用い、グラフ
ァイト粉末は1〜550g/lの範囲で使用可能である。グラ
ファイト径は0.05〜25μmが使用できるが、好ましくは
0.2〜10μmである。
An embodiment of the present invention will be described below with respect to a sliding contact of a circuit breaker (circuit breaker for wiring) including a movable conductor that opens and closes and a fixed conductor fixed to a case and slidingly contacting the case. Here, FIG. 1 (A) is a plan view of the movable contact portion of the circuit breaker in a closed state, and FIG. 1 (B) is a side view thereof. In the drawing, reference numeral 1 denotes a fixed contact made up of a fixed conductor 2 made of a copper material fixed to a case of a circuit breaker (not shown) with screws and a contact 3 attached to the tip thereof, and 4 is driven by a switching mechanism (not shown). Movable contact 5 composed of a movable conductor 5 made of a copper material which moves and opens and closes and a contact 6 attached to the tip thereof, 7 is a holder of an insulator holding the movable contact 4, and 8 is an overcurrent trip device not shown. Are fixed conductors leading to the heating element. The fixed conductor 8 is an L-shaped conductor 9 screwed to an upright case, and also an L-shaped conductor joined horizontally thereto.
10 and an S-shaped conductor 11 joined in parallel to the conductor 10, and the conductors 10 and 11 form a forked arm which is in sliding contact with the conductor 5 as shown in the figure. Movable conductor 5 and conductors 10,1
A support shaft 12 for rotating the movable conductor 5 is inserted through 1, and both ends of the support shaft 12 are held by a holder 7. Conductor 10
A compression spring 13 is inserted between each of the holders 7 and 11 to press the conductors 10 and 11 against the movable conductor 5. Reference numeral 14 denotes a contact spring inserted between the rear end of the movable conductor 5 and the case. The contact spring 14 biases the movable conductor 5 in the counterclockwise direction in FIG.
A contact pressure is generated between the movable contact 6 and the movable contact 6. In such a state, a current flowing from the fixed contact 1 to the movable contact 4 is applied to a sliding contact portion 15 between the movable conductor 5 and the conductors 10 and 11.
To the fixed conductor 8 through the overcurrent tripping device (not shown). When the operation handle (not shown) is opened or the overcurrent trip device trips in the closed state shown in the figure, the opening / closing mechanism (not shown) works, and the movable contact 4 is quickly pulled up, and the movable contact 4 is pivoted around the support shaft 12 as a fulcrum. 1 It turns clockwise in FIG. that time,
The movable conductor 5 and the conductors 10 and 11 slide on each other at a sliding contact portion 15. In the movable contact portion of such a circuit breaker, a composite material (Ag-6% C) in which 6% by volume of C is dispersed in an Ag matrix by the following method is applied to the movable conductor 5 and the fixed conductor 8 in the embodiment. ) Was formed to a thickness of 7 μm by electroplating (Example 1). FIG. 2 is an electron micrograph (magnification: 900 times) showing the dispersion state of C in the plating film obtained by this method, and the black dot in the figure is C. [Composition of the plating solution] Metal silver concentration: 35 g / l Potassium cyanide: 110 g / l Potassium hydroxide: 8 g / l Graphite powder: 20 g / l
2 μm, minor axis 0.2 to 0.5 μm) Dispersing aid for graphite powder in plating solution: 200 ppm [Working conditions] Anode: Silver plate Bath temperature: 20 ° C. Current density: 1 A / dm 2 Stirring: Yes Similarly, movable conductor 5 Ag / 3% for fixed conductor 8
A coating of C (vol%) was formed to a thickness of 7 μm by electroplating (Example 2). The plating conditions at that time were a bath temperature of 35
C, the major axis of the C grains was 0.8 to 5 μm and the minor axis was 0.3 to 1 μm, and the other conditions were the same as in Example 1. In addition, as a comparative example, a similar movable conductor 5 and fixed conductor 8 (Comparative Example 1) coated with 7 μm of Ag plating, and a grease-coated one (Comparative Example 2) were prepared. The movable conductor 5 and the fixed conductor 8 were assembled in a circuit breaker, and a no-load switching test and a large current interruption test were performed. In the no-load opening / closing test, the sliding contact portion 15 repeats reciprocating sliding in a non-energized state.
Slides in the energized state. The test results are shown in Table 1. According to this, it can be seen that the copper base material is less likely to be exposed in the case where the Ag-C composite material is plated than in the case where the Ag-C composite material is plated or the case where grease is applied thereto. FIG. 3 shows the results of measuring the contact resistance of the sliding contact portion 15 by sliding the sliding contacts of Example 1, Comparative Example 1 and Comparative Example 2 while DC 10 A was flowing. The contact resistance in the stationary state has a small difference among the three, but the sliding resistance is Ag-6.
% C has the lowest contact resistance and has little fluctuation. It is generally said that the temperature of the electrical contact portion of the contact is proportional to the voltage of the contact portion (= current × contact resistance), and therefore, it can be said that the temperature at the time of energizing the sliding is Ag-6% C. In the above embodiment, two examples are shown for the sliding contact of the circuit breaker. However, since the effect of the present invention depends on the nature of C, C% and the size of C grains are limited to these. is not. The easiness of galling and melting of the sliding contact portion is also affected by the width and surface pressure of the contact portion, and therefore the C% and the size of the C grains should be determined comprehensively. However, although C has conductivity, its electrical resistance is several hundred times to several thousand times that of Ag. Therefore, it is not preferable to unnecessarily increase C% or to use a large C grain that penetrates the plating thickness, because it increases heat generation at the sliding contact portion. Since the presence of C on the sliding contact surface contributes to the prevention of galling or welding, it is effective to form an Ag-C coating on only one of the movable conductor and the fixed conductor. In that case, it is desirable that the other component is plated with Ag, but since C has an antioxidant effect, some current-carrying characteristics can be obtained even with copper. Note that the coating need not be applied to the entire surface of the conductor, and may be formed only on the sliding contact surface. Further, the fine hard particles as third particles Ag-C, for example SiC, WC, ZrB, Al 2 O 3, ZrO 2, Cr 2 O 3, TiO 2, R 2 O 3,
By dispersing particles such as ThO 2 , Y 2 O 3 , MoO 3 , W 2 C, TiC, B 4 C, CrB 2 etc., the hardness of the entire coating is increased, and a long-life contact portion that is more resistant to wear is increased. Can be configured. The plating conditions were as follows: a plating solution composition, a metal silver concentration of 2 to 100 g / l, potassium cyanide of 5 to 250 g / l, and a basic bath in the range of potassium hydroxide of 0.5 to 15 g / l, and graphite powder of 1 to 550 g. It can be used in the range of / l. The graphite diameter can be used 0.05 ~ 25μm, preferably
0.2 to 10 μm.

【発明の効果】【The invention's effect】

この発明によれば、摺動接触面にAgマトリクス中にC
を分散させた複合材の皮膜を電気めっきで形成すること
により、摺動過程における接触抵抗が低く保たれて通電
電流による発熱が抑えられ、かつ機械的な摺動磨耗も小
さくなるので、通電容量が大きく寿命の長い摺動接触子
を構成できる。また、発熱が小さいので接触力を小さく
でき、その結果として接触力を付与するばね機構、ある
いは接触子を動かすための駆動機構を小容量のものと
し、機器全体の小形化を図ることができる。
According to the invention, the sliding contact surface has C in the Ag matrix.
Is formed by electroplating, the contact resistance during the sliding process is kept low, heat generation due to current flow is suppressed, and mechanical sliding wear is reduced, so the current carrying capacity is reduced. And a long-life sliding contact can be constructed. Further, since the heat generation is small, the contact force can be reduced, and as a result, the spring mechanism for applying the contact force or the drive mechanism for moving the contact can have a small capacity, so that the entire device can be downsized.

【図面の簡単な説明】[Brief description of the drawings]

図はこの発明の実施例を示し、第1図(A)はこの発明
を適用した回路遮断器の可動接触子部分の平面図、第1
図(B)はその側面図、第2図は第1図における摺動接
触部の金型組織を示す電子顕微鏡写真、第3図は摺動接
触子の接触抵抗の測定結果を示す線図である。 1…固定接触子、4…可動接触子、5…可動導体、8…
固定導体、15…摺動接触部。
FIG. 1 shows an embodiment of the present invention. FIG. 1 (A) is a plan view of a movable contact portion of a circuit breaker to which the present invention is applied.
FIG. (B) is a side view thereof, FIG. 2 is an electron micrograph showing the structure of the mold of the sliding contact portion in FIG. 1, and FIG. 3 is a diagram showing the measurement results of the contact resistance of the sliding contact. is there. DESCRIPTION OF SYMBOLS 1 ... Fixed contact, 4 ... Movable contact, 5 ... Movable conductor, 8 ...
Fixed conductor, 15 ... Sliding contact.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 内田 直司 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 (72)発明者 神達 健之 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 (72)発明者 松村 宗順 大阪府枚方市出口1丁目5番1号 上村 工業株式会社中央研究所内 (72)発明者 千葉 格 大阪府枚方市出口1丁目5番1号 上村 工業株式会社中央研究所内 (72)発明者 宮崎 茂治 東京都台東区鳥越1丁目1番2号 上村 工業株式会社東京支社内 (56)参考文献 特開 昭60−97517(JP,A) 特開 昭63−174238(JP,A) 特開 昭62−267436(JP,A) 実開 昭60−129020(JP,U) 特公 昭28−5401(JP,B1) ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Naoji Uchida 1-1, Tanabe-Nitta, Kawasaki-ku, Kawasaki-shi, Kanagawa Prefecture Inside Fuji Electric Co., Ltd. (72) Inventor Takeyuki Kanda Tanabe-Nita, Kawasaki-ku, Kawasaki-ku, Kanagawa Prefecture No. 1-1 Fuji Electric Co., Ltd. (72) Sojun Matsumura, Inventor 1-5-1, Hirakata City Exit, Osaka Prefecture 1-1, Kamimura Industry Co., Ltd., Central Research Laboratory (72) Inventor Tadashi Chiba, 1-5 Exit, Hirakata City, Osaka Prefecture No. 1 Uemura Kogyo Co., Ltd. Central Research Laboratory (72) Inventor Shigeharu Miyazaki 1-2-1, Torigoe, Taito-ku, Tokyo 1-2-1 Uemura Kogyo Co., Ltd. Tokyo Office (56) References JP-A-60-97517 (JP, A JP-A-63-174238 (JP, A) JP-A-62-267436 (JP, A) JP-A-60-129020 (JP, U) JP-B-28-5401 (JP, B1)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】相手導体との摺動接触面に、銀(Ag)マト
リクス中にグラファイト(C)粒子を分散させた複合材
の被膜を電気めっきにより形成し、かつ前記グラファイ
ト(C)粒子の大きさを長径10μm以下で、前記被膜の
厚さより小さくしたことを特徴とする電気機器の摺動接
触子。
1. A coating of a composite material in which graphite (C) particles are dispersed in a silver (Ag) matrix is formed on a sliding contact surface with a mating conductor by electroplating. A sliding contact for electrical equipment, wherein the size is 10 μm or less in major axis and smaller than the thickness of the coating.
【請求項2】開閉機構に駆動されて支軸を支点に開閉運
動をする可動接触子と、ケースに固定され、前記可動接
触子に前記支軸の近傍でばねにより圧接されて摺動接触
する腕を有する固定導体とからなり、前記可動接触子及
び固定導体の摺動接触面の少なくとも一方に請求項1記
載の被膜処理を施したことを特徴とする電気機器の摺動
接触子。
2. A movable contact which is driven by an opening / closing mechanism to open and close about a support shaft and is fixed to a case, and comes into sliding contact with the movable contact by a spring near the support shaft by a spring. A sliding contact for electric equipment, comprising a fixed conductor having an arm, wherein at least one of the sliding contact surface of the movable contact and the fixed conductor is subjected to the coating treatment according to claim 1.
JP2271498A 1989-10-14 1990-10-09 Sliding contacts for electrical equipment Expired - Lifetime JP2929464B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
GB9121240A GB2251133B (en) 1990-10-09 1991-10-08 Sliding contactor for electric equipment
US07/772,084 US5199553A (en) 1990-10-09 1991-10-08 Sliding contactor for electric equipment
KR1019910017657A KR950013422B1 (en) 1990-10-09 1991-10-09 A sliding comtactor of electric machines
DE19914133466 DE4133466A1 (en) 1990-10-09 1991-10-09 ELECTRICAL GRINDING CONTACT

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP26658889 1989-10-14
JP1-266588 1989-10-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP8184219A Division JP3054628B2 (en) 1996-06-25 1996-06-25 Sliding contacts for electrical equipment

Publications (2)

Publication Number Publication Date
JPH04126314A JPH04126314A (en) 1992-04-27
JP2929464B2 true JP2929464B2 (en) 1999-08-03

Family

ID=17432896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2271498A Expired - Lifetime JP2929464B2 (en) 1989-10-14 1990-10-09 Sliding contacts for electrical equipment

Country Status (1)

Country Link
JP (1) JP2929464B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102693885A (en) * 2011-03-22 2012-09-26 Ls产电株式会社 Molded case circuit breaker and manufacturing method thereof

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007254876A (en) * 2006-03-27 2007-10-04 Dowa Holdings Co Ltd Composite plating material and method of manufacturing the same
JP2008127641A (en) * 2006-11-22 2008-06-05 Dowa Metaltech Kk Method for producing composite plated material
JP7350307B2 (en) * 2019-10-30 2023-09-26 国立大学法人 名古屋工業大学 Ag-graphene composite plating film metal terminal and its manufacturing method
JP2023092352A (en) * 2021-12-21 2023-07-03 Dowaメタルテック株式会社 Composite material, production method of composite material, and terminal

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6097517A (en) * 1983-10-31 1985-05-31 松下電工株式会社 Contact material
JPS62267436A (en) * 1986-05-15 1987-11-20 Sumitomo Electric Ind Ltd Electric contact point material and its production

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102693885A (en) * 2011-03-22 2012-09-26 Ls产电株式会社 Molded case circuit breaker and manufacturing method thereof
CN102693885B (en) * 2011-03-22 2015-11-18 Ls产电株式会社 Breaker of plastic casing and manufacture method thereof

Also Published As

Publication number Publication date
JPH04126314A (en) 1992-04-27

Similar Documents

Publication Publication Date Title
Grandin et al. Friction, wear and tribofilm formation on electrical contact materials in reciprocating sliding against silver-graphite
JP3054628B2 (en) Sliding contacts for electrical equipment
US4018599A (en) Electrical contacts of dispersion strengthened gold
US5199553A (en) Sliding contactor for electric equipment
KR920008726B1 (en) Circuit breaker
JP2929464B2 (en) Sliding contacts for electrical equipment
JP2762704B2 (en) Circuit breaker
Praveen Kumar et al. Fabrication of a novel silver-based electrical contact composites and assessment of its mechanical and electrical properties
KR950013422B1 (en) A sliding comtactor of electric machines
WO2022063757A1 (en) Electric contact comprising a metal-graphene composite layer
Hwang et al. Effect of copper-based spring alloy selection on arc erosion of electrical contacts in a miniature electrical switch
US2796495A (en) Electrical contact elements
JP2002343168A (en) Current-carrying slide body
CN108231439B (en) Electrical contact material
JPH08287758A (en) Disconnecting contact device
JP3097467B2 (en) Movable contact mechanism for circuit breakers
EP1320111A1 (en) Carbon nanotube contact for MEMS
JPH11149840A (en) Electrode for switch
Mingzhe et al. Effects of additives on the AgSnO2 contacts erosion behavior
US2371755A (en) Disconnecting switch
US20130112533A1 (en) Eletrical contact including stainless steel material
EP4089697A1 (en) Metal-graphene coated electrical contact
Gershman et al. Composite nanomaterials based on copper to replace silver in electrical contacts
RU2215342C2 (en) Surface coating of high-power ferreed contacts (alternatives)
Frydman et al. Physical and Electrical Properties of Silver-Matrix Composites Reinforced with Various Forms of Refractory Phases

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20040618

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20051031

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051108

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060228