JP2927393B2 - Holographic radar - Google Patents

Holographic radar

Info

Publication number
JP2927393B2
JP2927393B2 JP410794A JP410794A JP2927393B2 JP 2927393 B2 JP2927393 B2 JP 2927393B2 JP 410794 A JP410794 A JP 410794A JP 410794 A JP410794 A JP 410794A JP 2927393 B2 JP2927393 B2 JP 2927393B2
Authority
JP
Japan
Prior art keywords
signal
receiving
pulse
reception
hologram
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP410794A
Other languages
Japanese (ja)
Other versions
JPH07210073A (en
Inventor
均 北吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ADOBANTESUTO KK
Original Assignee
ADOBANTESUTO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP410794A priority Critical patent/JP2927393B2/en
Application filed by ADOBANTESUTO KK filed Critical ADOBANTESUTO KK
Priority to EP99203843A priority patent/EP0977053B1/en
Priority to DE69528480T priority patent/DE69528480T2/en
Priority to EP99203844A priority patent/EP0977050B1/en
Priority to DE69517453T priority patent/DE69517453T2/en
Priority to US08/371,885 priority patent/US5656932A/en
Priority to DE69528481T priority patent/DE69528481T2/en
Priority to DE69528482T priority patent/DE69528482T2/en
Priority to DE69528479T priority patent/DE69528479T2/en
Priority to EP99203842A priority patent/EP0977052B1/en
Priority to EP95400057A priority patent/EP0667538B1/en
Priority to EP99203841A priority patent/EP0981055B1/en
Publication of JPH07210073A publication Critical patent/JPH07210073A/en
Application granted granted Critical
Publication of JP2927393B2 publication Critical patent/JP2927393B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
  • Holo Graphy (AREA)
  • Radar Systems Or Details Thereof (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は電波を空間に放射し、
その空間よりの反射波をホログラム観測面上の各点で受
信し、その受信された各点からの反射波の干渉波を用い
てホログラム再生演算を行って反射体を観測するホログ
ラフィックレーダに関する。
This invention radiates radio waves into space,
The present invention relates to a holographic radar that receives a reflected wave from the space at each point on a hologram observation surface, performs a hologram reproduction operation using an interference wave of the reflected wave from each received point, and observes a reflector.

【0002】[0002]

【従来の技術】図に従来のホログラフィックレーダを
示す。ネットワークアナライザ11よりマイクロ波やミ
リ波のような高周波信号が電波照明用アンテナ12へ供
給され、観測空間に向って高周波電波が連続的に放射さ
れる。その観測空間と対向して想定されたホログラム観
測面13上の各点(x,y)で受信アンテナ14によ
り、反射波(通常、複数個所からの反射波の干渉波)が
受信され、その受信出力はネットワークアナライザ11
に入力され、ネットワークアナライザ11において、電
波照明用アンテナ12から受信点(x,y)に至る電波
の経路の伝達関数H(x,y,f)が求められる。受信
アンテナ14を観測面13上の各点(x,y)に移動し
て、その各点(x,y)での反射波の受信を行うか、観
測面13上の各点(x,y)にそれぞれ受信アンテナ3
4が配され、このアレイ状に配されたアンテナを順次切
換えて各点(x,y)の受信信号をネットワークアナラ
イザ11に取込まれる。つまり観測面13上の各点
(x,y)の反射波が走査受信手段により受信される。
2. Description of the Related Art FIG. 4 shows a conventional holographic radar. A high frequency signal such as a microwave or a millimeter wave is supplied from the network analyzer 11 to the radio wave illumination antenna 12, and the high frequency radio wave is continuously radiated toward the observation space. At each point (x, y) on the hologram observation surface 13 supposed to face the observation space, a reflected wave (usually an interference wave of reflected waves from a plurality of locations) is received by the reception antenna 14 and received. Output is network analyzer 11
And the transfer function H (x, y, f) of the radio wave path from the radio wave illumination antenna 12 to the reception point (x, y) is obtained in the network analyzer 11. The receiving antenna 14 is moved to each point (x, y) on the observation surface 13 to receive the reflected wave at each point (x, y), or to receive each point (x, y) on the observation surface 13. ) To receive antenna 3 respectively
4, and the received signals at each point (x, y) are taken into the network analyzer 11 by sequentially switching the antennas arranged in the array. That is, the reflected wave at each point (x, y) on the observation surface 13 is received by the scanning reception unit.

【0003】放射高周波電波の周波数fを少しずつずら
し、その各周波数fごとに空間伝達関数H(x,y,
f)を上述のように測定する。このようにして得られた
伝達関数H(x,y,f)はホログラム再生演算部15
で次式で示されるホログラム再生演算が行われる。 I(u,v,r) =∫∫∫H(x,y,f) exp {−j2π(ux+vy-fr)}dx,dy,df …(1) uは観測面13から観測空間を見た方位、vはその仰
角、rは観測面13からの距離をそれぞれ示す。
[0003] The frequency f of the radiated high frequency radio wave is shifted slightly, and the space transfer function H (x, y,
f) is measured as described above. The transfer function H (x, y, f) obtained in this way is used as the hologram reproduction operation unit 15.
A hologram reconstruction operation represented by the following equation is performed. I (u, v, r) = ∫∫∫H (x, y, f) exp {−j2π (ux + vy-fr)} dx, dy, df (1) u The viewed azimuth, v is the elevation angle, and r is the distance from the observation plane 13.

【0004】このホログラム再生演算結果I(u,v,
r)は三次元表示器16へ供給されて、三次元表示がな
される。例えばrを一定としてu,v平面に二次元表示
することを、rを順次変えて行う。
The hologram reproduction operation result I (u, v,
r) is supplied to the three-dimensional display 16 for three-dimensional display. For example, two-dimensional display on the u and v planes with r constant is performed by sequentially changing r.

【0005】[0005]

【発明が解決しようとする課題】従来のホログラフィッ
クレーダにおいては、ホログラム再生演算を(1)式に
より行う必要があり、これは三重積分であるため、計算
量が著しく多いという問題があった。
In the conventional holographic radar, it is necessary to perform the hologram reproduction operation by the following equation (1). Since this is a triple integration, there is a problem that the amount of calculation is extremely large.

【0006】[0006]

【課題を解決するための手段】請求項1の発明によれば
放射される高周波信号はパルスで変調され、走査受信手
段で受信された信号は前記高周波信号で直交検波され、
その直交検波出力は前記パルスと同期してサンプリング
され、そのサンプリング出力に対して観測面についてホ
ログラム再生演算がなされ、前記サンプリングのタイミ
ングが遅延手段でずらされ、そのずらされた量と共にホ
ログラム再生演算の結果が三次元表示される。
According to the first aspect of the present invention, the radiated high frequency signal is modulated by a pulse, and the signal received by the scanning receiving means is subjected to quadrature detection by the high frequency signal.
The quadrature detection output is sampled in synchronization with the pulse, a hologram reproduction operation is performed on the observation surface with respect to the sampled output, the sampling timing is shifted by delay means, and the hologram reproduction operation is performed together with the shifted amount. The result is displayed in three dimensions.

【0007】請求項2の発明によれば、放射される高周
波信号はパルスで変調され、走査受信手段で受信された
信号はこれよりも低い周波数の信号に変換され、その変
換された信号は、前記パルスと同期し、かつその低い周
波数の2倍以上の速度でサンプリングされ、そのサンプ
リング出力系列は所定時間順次ずらした一定個数ずつそ
れぞれ離散フーリエ変換され、その各一定個数ずつの離
散フーリエ変換結果に対し、観測面についてホログラム
再生演算が行われ、その演算結果と、所定時間のずれと
が合せて三次元表示される。
According to the second aspect of the present invention, the radiated high-frequency signal is modulated by a pulse, the signal received by the scanning receiving means is converted into a signal of a lower frequency, and the converted signal is Synchronized with the pulse and sampled at a rate of twice or more the low frequency thereof, the sampled output sequence is discrete Fourier transformed by a predetermined number sequentially shifted by a predetermined time, and the result of the discrete Fourier transform of each fixed number is obtained. On the other hand, a hologram reproduction operation is performed on the observation surface, and the result of the operation is displayed three-dimensionally together with a predetermined time lag.

【0008】[0008]

【実施例】図1に請求項1の発明の実施例を示し、図3
と対応する部分に同一符号を付けてある。発振器21か
らの周波数fo の正弦波高周波信号はこの実施例では変
調器22において、パルス発生器23からのパルスと乗
算されて、高周波パルスとして電波照明用アンテナ12
へ供給され、これより観測空間に放射される。観測空間
よりの反射波はホログラム観測面13で走査受信手段に
より受信される。例えば、Dan Slater,
“Near−Field Antenna Measu
rements”,Artech House,199
1 に実例が示されている。アンテナ14からの受信信
号は帯域通過フィルタ24により高周波信号周波数fo
成分が選出され、その選出出力は直交検波器25で発振
器21よりの高周波信号で直交検波される。つまりフィ
ルタ24の出力は乗算器26,27へ供給され、発振器
21より高周波信号は乗算器26へ供給されると共に移
相器28でπ/2移相されて乗算器27へ供給される。
FIG. 1 shows an embodiment of the invention of claim 1, and FIG.
The same reference numerals are given to portions corresponding to. In the modulator 22 a sine wave high frequency signal of the frequency f o in this embodiment is from the oscillator 21 is multiplied with the pulse from the pulse generator 23, wave illumination antenna 12 as a high-frequency pulse
And then emitted to the observation space. The reflected wave from the observation space is received by the scanning reception means on the hologram observation surface 13. For example, Dan Slater,
“Near-Field Antenna Measu
rements ", Artech House, 199
An example is shown in FIG. Received signal from the antenna 14 by the band-pass filter 24 a high-frequency signal frequency f o
The components are selected, and the selected output is subjected to quadrature detection by the quadrature detector 25 using the high-frequency signal from the oscillator 21. That is, the output of the filter 24 is supplied to the multipliers 26 and 27, and the high-frequency signal is supplied from the oscillator 21 to the multiplier 26, and π / 2 phase-shifted by the phase shifter 28 and supplied to the multiplier 27.

【0009】乗算器26,27の各出力はそれぞれ低域
通過フィルタ29,31を通じて不要信号が除去されて
AD変換器32,33へ供給される。AD変換器32,
33において、パルス発生器23よりのパルスと同期し
てサンプリングされ、その各サンプルがデジタル値に変
換される。このサンプリング信号はパルス発生器23か
らのパルスが可変遅延回路34で時間tdだけ遅延され
た信号として得られる。AD変換器32,33の各出力
は必要に応じて平均化回路35,36でそれぞれ複数の
同一受信点の信号が加算平均されてS/Nが改善されて
ホログラム再生演算部37へ供給される。送信高周波パ
ルスに対し、同一遅延時間tdのサンプリング信号によ
り、観測面13上の全ての受信点(x,y)についての
平均化回路35,36から信号が得られると、これらの
信号Re 〔H(x,y)〕,Im〔H(x,y)〕に付
し、観測面13についてホログラム再生演算が次式で行
われる。
The outputs of the multipliers 26 and 27 are supplied to AD converters 32 and 33 after unnecessary signals are removed through low-pass filters 29 and 31, respectively. AD converter 32,
At 33, sampling is performed in synchronization with the pulse from the pulse generator 23, and each sample is converted into a digital value. This sampling signal is obtained as a signal in which the pulse from the pulse generator 23 is delayed by the variable delay circuit 34 by the time td. The outputs of the AD converters 32 and 33 are added and averaged by the averaging circuits 35 and 36, respectively, as necessary, to improve the S / N, and are supplied to the hologram reproduction operation unit 37. . When signals are obtained from the averaging circuits 35 and 36 for all the reception points (x, y) on the observation surface 13 by the sampling signal of the same delay time td with respect to the transmission high-frequency pulse, these signals R e [ H (x, y)] and I m [H (x, y)], and a hologram reproduction operation on the observation surface 13 is performed by the following equation.

【0010】 I(u,v) =∫∫H(x,y)exp{−j2π(ux+vy) }dxdy … (2) 遅延時間tdは観測面13からの距離rと対応する。即
ちr=c・td/2(cは光速)の関係にある。よって
遅延時間td又はこれより求めた距離rとホログラム再
生演算部37の演算結果I(u,v) とが三次元表示器16
で表示される。遅延時間tdを変更して同様に信号を収
集してホログラム再生演算することにより、観測面13
からの各距離rにおける反射体像が三次元表示器16に
表示される。三次元表示器16としては例えばPete
r R.Keller,Mary M.Keller,
“Visual Cues:Practical Da
ta Visualization”,IEEE Pr
ess,1993に記載のものを用いればよい。
I (u, v) = {H (x, y) exp} −j2π (ux + vy)} dxdy (2) The delay time td corresponds to the distance r from the observation surface 13. That is, there is a relationship of r = c · td / 2 (c is the speed of light). Therefore, the delay time td or the distance r obtained from the delay time td and the calculation result I (u, v) of the hologram reproduction calculation unit 37 are displayed on the three-dimensional display 16.
Is displayed with. By changing the delay time td and collecting signals in the same manner and performing a hologram reproduction operation, the observation surface 13 is obtained.
The reflector image at each distance r from is displayed on the three-dimensional display 16. As the three-dimensional display 16, for example, Pete
rR. Keller, Mary M .; Keller,
“Visual Cues: Practical Da
ta Visualization ", IEEE Pr
Ess, 1993.

【0011】なお各遅延時間tdにおける観測面13上
の全ての点(x,y)での受信信号を得るには、各高周
波パルスの送信ごとに、1点(x,y)づつ受信信号を
得る場合に限らず、各高周波パルスの送信ごとに、1点
(x,y)について、所定時間順次ずれたパルス列でA
D変換器32,33をそれぞれサンプリングして、その
点(x,y)について、全ての遅延時間についての受信
信号を得、次に受信点(x,y)をずらして同様に全て
のtdと対応した受信信号を得るようにしてもよい。あ
るいは受信アンテナ14をアレイ状とし、高周波パルス
の送信ごとにアンテナを高速に切替えて受信し、1つの
切替え時間が例えば遅延時間tdの最小変化量と一致さ
せ、次に高周波パルスを送信する時は、最初に受信する
アンテナの位置を1つずらすことを繰返して、各受信点
(x,y)について各遅延時間tdと対応した信号を得
るようにしてもよい。
In order to obtain reception signals at all points (x, y) on the observation plane 13 at each delay time td, the reception signals are transmitted one point (x, y) at each transmission of each high-frequency pulse. Not only in the case where the pulse train is obtained but also for each transmission of each high-frequency pulse, A
The D converters 32 and 33 are respectively sampled to obtain reception signals for all delay times at the point (x, y). Next, the reception points (x, y) are shifted to similarly obtain all the td and td. A corresponding received signal may be obtained. Alternatively, when the receiving antenna 14 is arranged in an array, the antenna is switched at a high speed every time a high-frequency pulse is transmitted and received, and one switching time is made coincident with, for example, the minimum change amount of the delay time td. The signal corresponding to each delay time td may be obtained at each reception point (x, y) by repeating shifting the position of the antenna to be received first by one.

【0012】必ずしも全ての遅延時間tdについて、全
ての受信点(x,y)から信号を得るようにする必要は
ない。つまり、各遅延時間tdごとに1つのアンテナ又
は観測面13上の1点でのみ受信し、反射波が得られた
時のみ、その遅延時間tdについて、観測面13上の全
ての点(x,y)での受信を行うようにしてもよい。こ
のため制御部38により、可変遅延回路34の遅延時間
tdを制御すると共に、観測面13上のアンテナ14に
より受信点(x,y)の切替え制御を行い、更に帯域通
過フィルタ24の出力を、可変遅延回路34の出力パル
スで開とされるゲート39を通して監視し、受信信号の
有無に応じてtdの切替制御のみとするか、受信点
(x,y)の切替え全受信点での受信を行うかの判断が
行われる。
It is not necessary to obtain signals from all reception points (x, y) for all delay times td. In other words, only one antenna or one point on the observation surface 13 is received for each delay time td, and only when a reflected wave is obtained, all the points (x, The reception in y) may be performed. For this reason, the control unit 38 controls the delay time td of the variable delay circuit 34, controls the switching of the receiving point (x, y) by the antenna 14 on the observation surface 13, and further controls the output of the bandpass filter 24. Monitoring is performed through a gate 39 opened by the output pulse of the variable delay circuit 34, and only the switching control of td is performed according to the presence or absence of the received signal, or the reception point (x, y) is switched and reception at all reception points is performed. A determination is made whether to do so.

【0013】次に図2を参照して請求項2の発明の実施
例を説明する。図2において、図1と対応する部分に同
一符号を付けてある。帯域通過フィルタ24の出力は混
合器41で局部発振器42から周波数fo −fi の局部
信号と周波数混合され、その混合出力は低域通過フィル
タ43に通され、帯域通過フィルタ24からの周波数f
o の信号は周波数fi の信号に変換される。例えばfo
は1GHz〜10GHzであり、fi は1MHz程度で
ある。このように著しく低い周波数とされた信号はAD
変換器44でパルス発生器23からパルスと同期し、か
つ周波数fi の2倍以上の周波数のパルス列によりサン
プリングされ、かつその各サンプルはデジタル値に変換
される。このサンプリングパルス列はパルス発生器23
からのパルスがパルス列発生器45に入力されて発生さ
れる。
Next, an embodiment of the present invention will be described with reference to FIG. 2, parts corresponding to those in FIG. 1 are denoted by the same reference numerals. The output of the band-pass filter 24 in the mixer 41 is the local signal and the frequency mixing frequency f o -f i from the local oscillator 42, the mixed output is passed through the low-pass filter 43, the frequency f from the band-pass filter 24
The signal of o is converted into a signal of frequency f i . For example, f o
It is a 1GHz~10GHz, f i is about 1MHz. The signal having such a significantly lower frequency is AD
In the converter 44, sampling is performed by a pulse train synchronized with the pulse from the pulse generator 23 and having a frequency of twice or more the frequency f i , and each sample is converted into a digital value. This sampling pulse train is applied to a pulse generator 23.
Are input to the pulse train generator 45 and are generated.

【0014】このようにして観測面13の各受信点
(x,y)ごとに前記パルス列により低い周波数とされ
た受信信号がサンプリングされ、そのデジタル値のサン
プリング出力系列V(x,y,t)はメモリ46に記録
される。メモリ46から各受信点(x,y)ごとにサン
プリング出力系列V(x,y,t)を読出し、その所定
時間tdずらして所定数ずつ離散フーリエ変換部47で
次式の演算が行われて離散フーリエ変換される。
In this way, for each reception point (x, y) on the observation surface 13, the reception signal whose frequency is made lower by the pulse train is sampled, and a sampling output sequence V (x, y, t) of the digital value is obtained. Are recorded in the memory 46. The sampling output sequence V (x, y, t) is read from the memory 46 for each reception point (x, y), and the discrete Fourier transform unit 47 calculates the following equation by a predetermined number with a predetermined time td shift. Discrete Fourier transform.

【0015】H(x,y) =∫V(x,y,t)exp(−j2π
i )dt ∫はtdからtd+Δt まで tdは図1における各設定遅延時間と同一であり、Δt
は図1の離散フーリエ変換に用いるデータ数と対応した
時間、つまりサンプリング周期×データ数がΔtであ
る。
H (x, y) = ∫V (x, y, t) exp (−j2π
f i ) dt} is from td to td + Δt, where td is the same as each set delay time in FIG.
Is a time corresponding to the number of data used for the discrete Fourier transform in FIG. 1, that is, a sampling period × the number of data is Δt.

【0016】このようにして得られた離散フーリエ変換
の結果H(x,y)は図1中のホログラム再生演算部3
7に入力されて、(2)式の演算が行われ、その演算結
果I(u,v)と対応遅延時間tdとが三次元表示器1
6へ供給されて三次元表示される。図1に示した例につ
いて具体的処理の例を説明する。観測範囲の視野角とし
て方位を90度、仰角を90度、距離を10〜1000
mとし、観測分解能を方位1.5度、仰角1.5度、距
離3mとする。この時、観測面13での隣接測定点
(x,y)間の距離はΔx=Δy=1.5cm、64×
64点として観測面13の面積は1m×1mとなり、照
明用電波周波数(発振器21の発振周波数)はf 0 =1
0GHz、パルス発生器23のパルス幅はPw =10n
S、パルス繰返し周期はτ=10μS、全範囲観測時間
は約15秒、アンテナ14をアレー形とし、パルス繰返
しごとに電子的に走査し、1観測面走査時間は50mS
である。
The discrete Fourier transform obtained in this way
The result H (x, y) of the hologram reproduction operation unit 3 in FIG.
7 and the operation of equation (2) is performed.
The result I (u, v) and the corresponding delay time td are the three-dimensional display 1
6 and displayed three-dimensionally. In the example shown in FIG.
An example of a specific process will be described. The viewing angle of the observation range
90 degrees azimuth, 90 degrees elevation, 10-1000 distance
m, observation resolution 1.5 degrees azimuth, 1.5 degrees elevation, distance
3 m apart. At this time, an adjacent measurement point on the observation surface 13
The distance between (x, y) is Δx = Δy = 1.5 cm, 64 ×
Assuming 64 points, the area of the observation surface 13 is 1m × 1m,
The lighting radio frequency (oscillation frequency of the oscillator 21) is f 0= 1
0 GHz, the pulse width of the pulse generator 23 is Pw= 10n
S, pulse repetition period is τ = 10μS, whole range observation time
Is an array type antenna for about 15 seconds, and pulse repetition
Each work is electronically scanned, and one observation surface scan time is 50 ms.
It is.

【0017】この時の処理手順を図3に示す。まず遅延
時間tdを60nSに設定し(S1)、観測面13上の
座標点(測定点)(x,y)をx=0、y=0とし(S
2 )、パルス発生器23よりパルスを発生し(S3 )、
平均化回路35,36の各出力ホログラム再生演算器3
7に一旦記録する(S4 )。全点(x,y)についてH
(x,y)を取得したかを調べ(S5 )、取得していな
いならばx又はyをΔx又はΔy変化させて次の観測点
(測定点)を指定してステップS3 に戻る(S 6 )。全
点(x,y)についてH(x,y)を取得した場合は、
ホログラム再生演算を行い(S7 )、表示器16にtd
(距離ctd/2)の位置にI(u,v)を表示する
(S8 )。次に距離ctd/2が1000mを越えた
か、つまりtdが6.7μSを越えたかを調べ
(S9 )、越えていない場合はtdを+20nSしてス
テップS2 に戻る(S10)。td>6.7μSの場合は
観測の終了となる。
FIG. 3 shows a processing procedure at this time. First delay
The time td is set to 60 ns (S1) On the observation surface 13
Coordinate points (measurement points) (x, y) are set to x = 0 and y = 0 (S
Two) And a pulse is generated from the pulse generator 23 (SThree),
Each output hologram reproduction arithmetic unit 3 of averaging circuits 35 and 36
7 once (SFour). H for all points (x, y)
It is checked whether (x, y) has been acquired (SFive), Not acquired
If it is, change x or y by Δx or Δy and then the next observation point
Step S by specifying (measurement point)ThreeReturn to (S 6). all
When H (x, y) is obtained for the point (x, y),
Perform hologram reproduction operation (S7), Td is displayed on the display 16
Display I (u, v) at the position of (distance ctd / 2)
(S8). Next, the distance ctd / 2 exceeded 1000 m
Check if td exceeds 6.7μS
(S9), If not, td is increased by +20 nS
Tep STwoReturn to (STen). When td> 6.7 μS
The observation ends.

【0018】[0018]

【発明の効果】以上述べたようにこの発明によれば観測
面13からの距離ごとの信号を得てホログラム再生演算
をするようにしているため、この再生演算は(2)式で
示すように三重ではなく、二重積分で済むため、演算量
が従来よりも著しく少なくて済む。しかも、遅延時間t
d又は離散フーリエ変換のためのデータ列の時間範囲t
d〜td+Δtにより距離情報を知ることができる。
As described above, according to the present invention, a signal for each distance from the observation surface 13 is obtained to perform a hologram reproduction operation. Since it is sufficient to perform double integration instead of triple, the amount of calculation can be significantly reduced as compared with the conventional case. Moreover, the delay time t
d or time range t of the data sequence for the discrete Fourier transform
Distance information can be known from d to td + Δt.

【図面の簡単な説明】[Brief description of the drawings]

【図1】請求項1の発明の実施例を示すブロック図。FIG. 1 is a block diagram showing an embodiment of the present invention.

【図2】請求項2の発明の実施例を示すブロック図。FIG. 2 is a block diagram showing an embodiment of the invention of claim 2;

【図3】図1の実施例における処理手順の例を示す流れ
図。
FIG. 3 is a flowchart showing an example of a processing procedure in the embodiment of FIG. 1;

【図4】従来のホログラフィックレーダを示すブロック
図。
FIG. 4 is a block diagram showing a conventional holographic radar.

フロントページの続き (58)調査した分野(Int.Cl.6,DB名) G01S 13/89 G01S 15/89 G01B 17/00 Continuation of the front page (58) Field surveyed (Int. Cl. 6 , DB name) G01S 13/89 G01S 15/89 G01B 17/00

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 高周波信号をパルスで変調してアンテナ
から放射する手段と、ホログラム観測面上に設けられ、受信点が順次走査され
て上記放射電波の反射波を受信する 受信手段と、上記 受信手段の受信点で受信された信号を、上記高周波
信号で直交検波する1つの直交検波手段と、 その直交検波出力を上記パルスと同期してサンプリング
する手段と、 そのサンプリング出力に対し、上記ホログラム観測面に
ついてホログラム再生演算を行う手段と、 上記サンプリングのタイミングをずらす可変遅延手段
と、 上記ホログラム再生演算の結果を上記ずらした量と合せ
て三次元表示する手段と、 を具備するホログラフィックレーダ。
1. A means for modulating a high-frequency signal with a pulse and radiating it from an antenna , and provided on a hologram observation surface, wherein a receiving point is sequentially scanned.
Receiving means for receiving a reflected wave of the radio wave radiated Te, a signal received by the receiving point of the receiving means, said one of the orthogonal detection means for quadrature detection in a high-frequency signal, the quadrature detection output the pulse and synchronize Means for performing a hologram reproduction operation on the hologram observation surface with respect to the sampling output; variable delay means for shifting the sampling timing; and combining the result of the hologram reproduction operation with the shifted amount. A holographic radar comprising: a three-dimensional display means.
【請求項2】 高周波信号をパルスで変調してアンテナ
から放射する手段と、ホログラム観測面上に設けられ、受信点が順次走査され
て上記放射電波の反射波を受信する 受信手段と、上記 受信手段の受信点で受信された信号をそれよりも低
い周波数の信号に変換する手段と、 その周波数変換された信号を上記パルスと同期し、かつ
上記低い周波数の2倍以上の速度でサンプリングする手
段と、 そのサンプリング出力系列を、所定時間順次ずらした一
定個数ずつそれぞれ離散フーリエ変換する手段と、 その各一定個数ずつの離散フーリエ変換結果に対し、そ
れぞれ上記観測面についてホログラム再生演算を行う手
段と、 上記ホログラム再生演算の結果と、上記対応する所定時
間のずれとを合せて三次元表示する手段と、 を具備するホログラフィックレーダ。
2. A means for modulating a high-frequency signal with a pulse and radiating it from an antenna , and a receiving point provided on a hologram observation surface and sequentially scanning a receiving point.
Receiving means for receiving a reflected wave of the radio wave radiated Te, means for converting the lower frequency signal than the signal received at the receiving point of the receiving means, the frequency-converted signal the pulse and synchronize Means for sampling at a rate of twice or more the low frequency, means for discretely Fourier transforming the sampling output sequence by a predetermined number sequentially shifted by a predetermined time, and results of the discrete Fourier transform for each of the fixed numbers A holographic radar, comprising: means for performing a hologram reconstruction operation on each of the observation surfaces; and means for three-dimensionally displaying the result of the hologram reconstruction operation and the corresponding predetermined time shift.
【請求項3】 上記可変遅延手段の出力パルスが得られ
る時点に、上記走査受信手段で受信信号が得られるかを
判定する手段と、その判定が受信信号有りの場合にの
み、上記観測面上の全ての点での受信信号を得る手段と
を含むことを特徴とする請求項1記載のホログラフィッ
クレーダ。
3. A means for judging whether a reception signal is obtained by the scanning reception means at the time when an output pulse of the variable delay means is obtained, and means for determining whether a reception signal is obtained by the scanning reception means. 2. A holographic radar according to claim 1, further comprising means for obtaining a received signal at all points of the holographic radar.
【請求項4】 上記走査受信手段は上記観測面上に一様
に複数のアンテナが配列され、そのアンテナを順次切替
えて受信信号を出力する手段であることを特徴とする請
求項1乃至3の何れかに記載のホログラフィックレー
ダ。
4. The scanning receiving means according to claim 1, wherein a plurality of antennas are uniformly arranged on the observation surface, and the antennas are sequentially switched to output a reception signal. The holographic radar according to any one of the above.
【請求項5】 上記走査受信手段は上記観測面上の各点
に1個のアンテナを移動位置させて受信信号を出力する
手段であることを特徴とする請求項1乃至3の何れかに
記載のホログラフィックレーダ。
5. The scanning reception means according to claim 1, wherein said scanning reception means is means for moving one antenna to each point on said observation surface and outputting a reception signal. Holographic radar.
JP410794A 1994-01-12 1994-01-19 Holographic radar Expired - Fee Related JP2927393B2 (en)

Priority Applications (12)

Application Number Priority Date Filing Date Title
JP410794A JP2927393B2 (en) 1994-01-19 1994-01-19 Holographic radar
DE69528479T DE69528479T2 (en) 1994-01-12 1995-01-12 display device
EP99203844A EP0977050B1 (en) 1994-01-12 1995-01-12 Display apparatus
DE69517453T DE69517453T2 (en) 1994-01-12 1995-01-12 Non-contact observation device for wave signals
US08/371,885 US5656932A (en) 1994-01-12 1995-01-12 Non-contact type wave signal observation apparatus
DE69528481T DE69528481T2 (en) 1994-01-12 1995-01-12 Contactless wave signal monitoring device
EP99203843A EP0977053B1 (en) 1994-01-12 1995-01-12 Non-contact type wave signal observation apparatus
DE69528480T DE69528480T2 (en) 1994-01-12 1995-01-12 Contactless wave signal monitoring device
EP99203842A EP0977052B1 (en) 1994-01-12 1995-01-12 Non-contact type wave signal observation apparatus
EP95400057A EP0667538B1 (en) 1994-01-12 1995-01-12 Non-contact type wave signal observation apparatus
EP99203841A EP0981055B1 (en) 1994-01-12 1995-01-12 Non-contact type wave signal observation apparatus
DE69528482T DE69528482T2 (en) 1994-01-12 1995-01-12 Contactless wave signal monitoring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP410794A JP2927393B2 (en) 1994-01-19 1994-01-19 Holographic radar

Publications (2)

Publication Number Publication Date
JPH07210073A JPH07210073A (en) 1995-08-11
JP2927393B2 true JP2927393B2 (en) 1999-07-28

Family

ID=11575577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP410794A Expired - Fee Related JP2927393B2 (en) 1994-01-12 1994-01-19 Holographic radar

Country Status (1)

Country Link
JP (1) JP2927393B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0987561B1 (en) * 1998-09-14 2005-12-07 Kabushiki Kaisha Toyota Chuo Kenkyusho Holographic radar
JP4726111B2 (en) * 2005-03-31 2011-07-20 総務大臣 Radio holography radio source exploration equipment

Also Published As

Publication number Publication date
JPH07210073A (en) 1995-08-11

Similar Documents

Publication Publication Date Title
EP0977053B1 (en) Non-contact type wave signal observation apparatus
US6801153B2 (en) Spread spectrum radar with leak compensation at baseband
JP2990097B2 (en) Continuous-wave wide-band precision ranging radar equipment.
JP4665590B2 (en) Interferometric radar
JP4496954B2 (en) Interferometric radar
Lukin et al. Ka-band bistatic ground-based noise waveform SAR for short-range applications
AU2002333123A1 (en) Spread spectrum radar with leak compensation at baseband
Benjamin Modulation, resolution and signal processing in radar, sonar and related systems: international series of monographs in electronics and instrumentation
US3423754A (en) Sampled radar system
US20090189740A1 (en) Method and system for detecting vital signs of living bodies
US4644356A (en) Bistatic coherent radar receiving system
JP2927393B2 (en) Holographic radar
US3787853A (en) Coded multiple frequency signal system
JPH04357485A (en) Pulse doppler radar apparatus
JP2002082162A (en) Pulse compression radar device
Kunita Range measurement in ultrasound FMCW system
JP2004347362A (en) Fm-cw radar apparatus and interference wave removing method in the same
US6037897A (en) Apparatus and methods for moving target indicator simulation
JP4005007B2 (en) Radar signal processing device
JPH0540168A (en) Fw-cw radar device
JP2750781B2 (en) FM radar
Adler et al. Low-cost technology for multimode radar
RU2187129C1 (en) Procedure and device measuring polarization matrix of scattering of object
JP3183480B2 (en) Holographic radar
JP3431036B2 (en) Display device for complex wave interference information

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990413

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees