JP2920238B2 - Catalyst for hydrocracking of hydrocarbon oils - Google Patents

Catalyst for hydrocracking of hydrocarbon oils

Info

Publication number
JP2920238B2
JP2920238B2 JP4357866A JP35786692A JP2920238B2 JP 2920238 B2 JP2920238 B2 JP 2920238B2 JP 4357866 A JP4357866 A JP 4357866A JP 35786692 A JP35786692 A JP 35786692A JP 2920238 B2 JP2920238 B2 JP 2920238B2
Authority
JP
Japan
Prior art keywords
catalyst
weight
pore diameter
hydrocracking
alumina
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4357866A
Other languages
Japanese (ja)
Other versions
JPH06190278A (en
Inventor
敏男 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP4357866A priority Critical patent/JP2920238B2/en
Publication of JPH06190278A publication Critical patent/JPH06190278A/en
Application granted granted Critical
Publication of JP2920238B2 publication Critical patent/JP2920238B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は炭化水素油の水素化分解
用触媒に関するもので詳しくは特定の担体に水素化活性
金属を担持させた触媒であって、減圧炭化水素油を効率
よく水素化分解して軽質油に転化せしめることのできる
触媒に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a catalyst for the hydrocracking of hydrocarbon oils, and more particularly to a catalyst having a hydrogenation active metal supported on a specific carrier. The present invention relates to a catalyst which can be decomposed and converted into light oil.

【0002】[0002]

【従来の技術】最近の石油類の需要は軽質化傾向にあ
り、ガソリン、ナフサに関しては流動的接触分解によっ
て増産を図ることは可能であるが、中間留分と呼ばれる
灯油、軽油留分は流動接触分解では好ましいものが得ら
れず、減圧軽油を水素化分解する方法が用いられてい
る。ところで、減圧軽油の水素化分解は高温、高圧下
で、原料油を触媒と接触させ、目的の留分を得るが、そ
のため反応条件と触媒の選定は重要である。例えば、転
化率を上げるには、反応条件をより厳しくするか、固体
酸性の強いゼオライト系担体に水素化活性金属種を担持
した触媒を用いればよいが、該触媒を用いて反応せしめ
ると転化率は高くなるがガスやナフサが生成し、中間留
分の選択率が悪くなるという欠点がある。また、アルミ
ナ、シリカ−アルミナ、ボリア−アルミナ等の担体に水
素化活性金属種を担持した触媒では中間留分の選択率は
高いといわれているが、転化率が低いという欠点があ
る。
2. Description of the Related Art The demand for petroleum has recently become lighter, and it is possible to increase the production of gasoline and naphtha by fluid catalytic cracking. However, kerosene and gas oil fractions called middle distillates are The catalytic cracking does not provide a preferable product, and a method of hydrocracking the vacuum gas oil is used. By the way, in the hydrocracking of reduced pressure gas oil, a raw oil is brought into contact with a catalyst at a high temperature and a high pressure to obtain a target fraction. Therefore, the reaction conditions and the selection of the catalyst are important. For example, in order to increase the conversion, the reaction conditions may be stricter or a catalyst in which a hydrogenation active metal species is supported on a zeolite-based carrier having a strong solid acidity may be used. However, gas and naphtha are generated, and the selectivity of the middle distillate is deteriorated. Further, catalysts in which a hydrogenation-active metal species is supported on a carrier such as alumina, silica-alumina, and boria-alumina are said to have a high selectivity for the middle distillate, but have a drawback of low conversion.

【0003】本発明者は先願(特願平3−334,45
7号公報)で水素化処理用触媒の固体酸性に着目し、ゼ
オライトより固体酸性の酸点は弱いが、酸量を多く有す
るB2 3 として3〜10重量%とSiO2 として4〜
19重量%と残量がAl2 3 から成るボリア−シリカ
−アルミナ組成物担体を見出だしたが、さらに本発明で
は水素化分解用触媒として好適な担体組成と触媒の細孔
特性を検討することにより、転化率を高め且つ中間留分
の選択性を向上させるのに適したボリア−シリカ−アル
ミナ担体組成と触媒の細孔特性を見出だし、本発明に到
達したものである。
The present inventor has filed a prior application (Japanese Patent Application No. 3-334,45).
No. 7), paying attention to the solid acidity of the hydrotreating catalyst, the solid acidic acid point is weaker than that of zeolite, but 3 to 10% by weight as B 2 O 3 having a larger amount of acid and 4 to 4 as SiO 2 .
A boria-silica-alumina composition carrier having a residual amount of 19% by weight of Al 2 O 3 has been found. In the present invention, a carrier composition suitable as a hydrocracking catalyst and pore characteristics of the catalyst are examined. As a result, a boria-silica-alumina carrier composition and a pore characteristic of a catalyst suitable for increasing the conversion and improving the selectivity of the middle distillate have been found, and have reached the present invention.

【0004】[0004]

【発明が解決しようとする課題】本発明は炭化水素油
類、特に減圧軽油に対して転化率が高く、しかも中間留
分の選択性を向上させた水素化分解用触媒を提供するこ
とを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a hydrocracking catalyst which has a high conversion rate with respect to hydrocarbon oils, particularly vacuum gas oil, and has improved selectivity for middle distillates. And

【0005】[0005]

【課題を解決するための手段】本発明者は前記の目的を
達成するため鋭意検討を行った結果、本発明は、B2
3 として5〜10重量%とSiO2 として10〜15重
量%と残量がAl2 3 から成るボリアとシリカとアル
ミナ担体に周期律表第6族金属および第8族金属に属す
る水素化活性金属を担持し、細孔特性が水銀圧入法で測
定分布で平均細孔直径が90〜120Åであり、平均細
孔直径±10Åの細孔が占める容積が細孔直径20〜9
7,000Åの細孔容積に対する割合が60%以上であ
る炭化水素油の水素化分解用触媒であることを特徴とす
る。
The present inventors have conducted intensive studies to achieve the above object, and as a result, the present invention has found that B 2 O
5 to 10% by weight as 3 and 10 to 15% by weight as SiO 2 , and a hydrogenation activity belonging to Group 6 and Group 8 metals of the periodic table on a boria, silica, and alumina carrier having a balance of Al 2 O 3. A metal is supported, and the pore characteristics have a mean pore diameter of 90 to 120 ° in a distribution measured by a mercury intrusion method, and the volume occupied by pores having a mean pore diameter of ± 10 ° is a pore diameter of 20 to 9 °.
The catalyst is characterized in that it is a catalyst for hydrocracking hydrocarbon oil having a ratio of not less than 60% to a pore volume of 7,000 °.

【0006】[0006]

【作用】本発明のボリアとシリカとアルミナから成る担
体を製造する方法としては、特願平3−334,457
号公報記載の製造方法により得ることができるが、例え
ば硫酸アルミニウム水溶液とアルミン酸ナトリウム水溶
液を混合し、加水分解して生成したアルミナ水和物スラ
リーに所定量の珪酸ナトリウム水溶液を添加して、濾過
・洗浄しシリカ−アルミナ水和物ケーキを得、該水和物
に所定量のホウ酸を添加し、成型可能な水分まで捏和し
て所望の形状に成型した後、乾燥し、次いで焼成するこ
とによりボリアとシリカとアルミナから成る担体を製造
することができる。尚、触媒の細孔特性を満足させるた
め前記捏和工程で硝酸・酢酸等を添加してもよい。本発
明の水素化分解触媒担体においてBとしての含量
を5〜10重量%とし、SiOとしての含量を10〜
15重量%とするのは、Bとして5〜10重量
%、SiOとして10〜15重量%の範囲をはずれて
含有させると触媒の細孔特性が本発明の範囲に入らず、
水素化活性金属種を担持した触媒の水素化分解活性にお
いて、中間留分の選択性が劣るからである。
The method for producing a carrier comprising boria, silica and alumina according to the present invention is disclosed in Japanese Patent Application No. 3-334457.
For example, an aqueous solution of aluminum sulfate and an aqueous solution of sodium aluminate are mixed, and a predetermined amount of an aqueous solution of sodium silicate is added to an alumina hydrate slurry produced by hydrolysis, followed by filtration. Washing to obtain a silica-alumina hydrate cake, adding a predetermined amount of boric acid to the hydrate, kneading to a formable water content to form a desired shape, drying, and then firing This makes it possible to produce a carrier composed of boria, silica and alumina. Incidentally, in order to satisfy the pore characteristics of the catalyst, nitric acid, acetic acid and the like may be added in the kneading step. In the hydrocracking catalyst carrier of the present invention, the content as B 2 O 3 is 5 to 10% by weight, and the content as SiO 2 is 10 to 10% by weight.
When the content is set to 15% by weight, if the content is out of the range of 5 to 10% by weight as B 2 O 3 and 10 to 15% by weight as SiO 2 , the pore characteristics of the catalyst do not fall within the range of the present invention.
This is because, in the hydrocracking activity of the catalyst supporting the hydrogenation active metal species, the selectivity of the middle distillate is inferior.

【0007】本発明でいう水素化活性金属としては周期
律表第6族金属と第8族金属から選ばれる金属が用いら
れる。この第6族と第8族の金属は、併用することが必
要であり、どちらか一方のみの使用では本発明の目的を
達成することはできない。第6族に属する金属として
は、タングステンまたはモリブデンが好ましく、第8族
に属する金属としてはニッケルまたはコバルトを用いる
ことが好ましい。また金属の担持量は、特に制限はな
く、適宜定めればよいが、通常触媒中に酸化物換算で第
6族金属は15〜20重量%で第8族金属は3〜5重量
%程度担持することが望ましい。上記の活性金属の担持
方法は特に限定しないが、金属酸化物、金属硫化物の形
の溶液を担体に含浸法等の公知の方法で担持することが
できる。
As the hydrogenation active metal in the present invention, a metal selected from Group 6 metals and Group 8 metals of the periodic table is used. The Group 6 and Group 8 metals must be used in combination, and the use of either one alone cannot achieve the object of the present invention. As the metal belonging to Group 6, tungsten or molybdenum is preferable, and as the metal belonging to Group 8, it is preferable to use nickel or cobalt. The amount of the metal carried is not particularly limited and may be appropriately determined. Usually, the amount of the Group 6 metal is about 15 to 20% by weight and the amount of the Group 8 metal is about 3 to 5% by weight in terms of oxide. It is desirable to do. The method for supporting the active metal is not particularly limited, but a solution in the form of a metal oxide or metal sulfide can be supported on a carrier by a known method such as impregnation.

【0008】本発明の水素化分解用触媒は上述の如く調
製されるが、同時に水銀圧入法で測定した細孔分布で平
均細孔直径が90〜120Åであり、平均細孔直径±1
0Åの細孔が占める容積が細孔直径20〜97,000
Åの細孔容積に対する割合が60%以上である細孔特性
を持つものであることが好ましい。平均細孔直径を90
〜120Åの範囲にするのは減圧軽油の水素化分解反応
において高い転化率で、中間留分を多く得るために適し
た細孔径であり、平均細孔直径±10Åの細孔が占める
容積が細孔直径20〜97,000Åの細孔容積に対す
る割合が60%以上にするのは、いわゆる触媒作用をす
るのに有効な細孔直径の細孔をできるだけ多く持つこと
で、水素化分解反応を長期間にわたって高活性が維持す
ることができるからである。また、触媒の平均細孔直径
±10Åの細孔が占める容積が細孔直径20〜97,0
00Åの細孔容積に対する割合が60%未満のとき、即
ち細孔が特定の範囲に集中していないときは、たとえ平
均細孔直径が90〜120Åに入っていたとしても、触
媒作用する有用な細孔が減少するので水素化分解活性は
低下する。
The hydrocracking catalyst of the present invention is prepared as described above, but has a mean pore diameter of 90 to 120 ° in the pore distribution measured by a mercury intrusion method, and a mean pore diameter of ± 1.
The volume occupied by 0 ° pores is pore diameter of 20 to 97,000.
It is preferable that Å has pore characteristics in which the ratio to the pore volume is 60% or more. Average pore diameter of 90
The range of about 120 ° is a pore diameter suitable for obtaining a large amount of middle distillate at a high conversion rate in the hydrocracking reaction of vacuum gas oil, and the volume occupied by pores having an average pore diameter of ± 10 ° is small. The reason why the ratio of the pore diameter of 20 to 97,000% to the pore volume is 60% or more is that the hydrocracking reaction is prolonged by having as many pores as possible having a pore diameter effective for so-called catalysis. This is because high activity can be maintained over a period. The volume occupied by pores having an average pore diameter of ± 10 ° of the catalyst is 20 to 97,0.
When the ratio of 00 ° to the pore volume is less than 60%, that is, when the pores are not concentrated in a specific range, even if the average pore diameter is in the range of 90 to 120 °, it is useful to catalyze. Hydrocracking activity is reduced due to reduced pores.

【0009】本発明の炭化水素油とは、原油の常圧残
油、減圧残油、あるいはアスファルテン分を実質含まな
い常圧流出油、減圧流出油等が挙げられるが、本発明に
おいては減圧流出油のうち減圧軽油であり、沸点範囲3
60〜560℃の留分が90重量%以上含まれているも
のである。この減圧軽油中に含まれている硫黄分は約
2.0重量%程度であり、窒素分は約0.1重量%以下
である。触媒の評価は固定床流通装置を用い、水素化分
解の反応条件としては圧力50〜150kg/cm2
で、温度350〜450℃で、水素/油供給比500〜
2,000Nl/lでLHSV=0.2〜1.5hr-1
である。次に、実施例等によって本発明を更に詳しく述
べる。
The hydrocarbon oil of the present invention includes a normal pressure residual oil, a vacuum residual oil of a crude oil, a normal pressure spilled oil substantially free of asphaltenes, and a reduced pressure spilled oil. It is a vacuum gas oil among oils and has a boiling point range of 3
It contains 90% by weight or more of a fraction at 60 to 560 ° C. The sulfur content in the vacuum gas oil is about 2.0% by weight, and the nitrogen content is about 0.1% by weight or less. The catalyst was evaluated using a fixed bed flow system, and the reaction conditions for hydrocracking were pressures of 50 to 150 kg / cm 2 G
At a temperature of 350 to 450 ° C. and a hydrogen / oil supply ratio of 500 to
LHSV at 2,000 Nl / l = 0.2-1.5 hr -1
It is. Next, the present invention will be described in more detail with reference to examples and the like.

【0010】[0010]

【実施例】実施例1 内容積100リットルの攪拌機付きステンレス製反応槽
に、水49.5リットルと濃度50%のグルコン酸溶液
204g(加水分解で生成するAl2 3 に対して0.
05重量%)を反応槽内に入れ、70℃まで加温し保持
し、攪拌しながらAl2 3 として774gを含む硫酸
アルミニウム水溶液9540gとAl23 として12
75gを含むアルミン酸ナトリウム水溶液6230gを
同時またはほぼ同時に全量滴下してpH9.0のアルミ
ナ水和物スラリーを得た。次ぎに該スラリーを30分間
熟成した後、濃度31%の硝酸50gを加えてpH6.
3とし、次いでSiO2 として255を含むケイ酸ナト
リウム水溶液1820gを全量滴下してpHが8.8の
シリカ−アルミナ水和物を得た。該水和物を30分間熟
成した後、Na2 Oとして0.1重量%以下、SO4
して0.5重量%以下になるまで濾過・洗浄して得られ
たシリカ−アルミナ−水和物ケーキ2500g(SiO
2 −Al2 3 として500g)にホウ酸47g(B2
3 として26.6g)と濃度31%の硝酸25gを加
え、加温ジャケット付きニーダ中で加熱捏和し、B2
3 −SiO2 −Al2 3 濃度として62重量%の可塑
性のある捏和物を得、次いでこの捏和物を直径1.5m
mφのダイスを有する押出し成型機で成型し、乾燥後、
電気炉で800℃で2時間焼成してB2 3 として5重
量%、SiO2 として10.5重量%を含むボリア−シ
リカ−アルミナ担体を得た。
EXAMPLE 1 In a stainless steel reaction tank with a stirrer having an internal volume of 100 liters, 49.5 liters of water and 204 g of a 50% gluconic acid solution (0.2 g of Al 2 O 3 produced by hydrolysis) were added.
05% by weight) were placed in a reaction vessel, heated and held to 70 ° C., as with stirring Al 2 O 3 aqueous solution of aluminum sulfate 9540g and Al 2 O 3 containing 774g as 12
A total of 6230 g of an aqueous sodium aluminate solution containing 75 g was simultaneously or almost simultaneously added dropwise to obtain an alumina hydrate slurry having a pH of 9.0. Next, the slurry was aged for 30 minutes, and then 50 g of nitric acid having a concentration of 31% was added thereto to adjust the pH to 6.0.
Then, a total of 1820 g of an aqueous sodium silicate solution containing 255 as SiO 2 was added dropwise to obtain a silica-alumina hydrate having a pH of 8.8. After aging the hydrate for 30 minutes, the silica-alumina-hydrate cake obtained by filtering and washing until 0.1% by weight or less as Na 2 O and 0.5% by weight or less as SO 4 is obtained. 2500g (SiO
2 -Al 2 O 3 as 500 g) borate 47 g (B 2
O 3 as 26.6 g) and a 31% strength nitric acid 25g was added, and kneaded heated warming a jacketed kneader, B 2 O
3 -SiO 2 -Al 2 O 3 to obtain a 62% by weight of a thermoplastic having certain kneaded product as concentration, then the diameter 1.5m The kneaded product
Molded with an extrusion molding machine having a mφ die, dried,
It was calcined at 800 ° C. for 2 hours in an electric furnace to obtain a boria-silica-alumina support containing 5% by weight as B 2 O 3 and 10.5% by weight as SiO 2 .

【0011】次いで、該担体100gに三酸化モリブデ
ン23.1g、炭酸ニッケル6.7gを水50mlに懸
濁し、酒石酸2.0gを添加して加熱下で溶解し、担体
の吸水量に見合う液量に水で液量調節した含浸溶液に
て、含浸し110℃で16時間乾燥して、500℃で2
時間焼成してMoO3 として18重量%、NiOとして
4重量%含む触媒Aを得た。得られた触媒Aについて水
銀圧入法で細孔分布を測定した結果平均細孔直径は98
Åであり、平均細孔直径±10Åの細孔が占める容積が
細孔直径20〜97,000Åの細孔容積に対する割合
は64%であった。
Next, 23.1 g of molybdenum trioxide and 6.7 g of nickel carbonate are suspended in 50 ml of water, and 2.0 g of tartaric acid is added to 100 g of the carrier, dissolved under heating, and dissolved in an amount corresponding to the water absorption of the carrier. And then dried at 110 ° C. for 16 hours, and then dried at 500 ° C. for 2 hours.
Calcination was performed for 18 hours to obtain a catalyst A containing 18% by weight of MoO 3 and 4% by weight of NiO. As a result of measuring the pore distribution of the obtained catalyst A by a mercury intrusion method, the average pore diameter was 98.
And the ratio of the volume occupied by pores having an average pore diameter of ± 10 ° to the volume of pores having a pore diameter of 20 to 97,000 ° was 64%.

【0012】次ぎに、触媒充填量10mlの固定床流通
型反応装置に触媒Aを充填し、ジメチルジサルファイド
を2.5重量%添加したライトガスオイルで水素/油供
給300Nl/l、LHSV=2.0hr-1、圧力30
kg/cm2 Gの条件下100℃から315℃まで7時
間かけて昇温し、保持して16時間予備硫化した後沸点
範囲360〜560℃の留分が90重量%以上ある減圧
軽油を用い圧力100kg/cm2 G、水素/油供給比
1,500Nl/l、LHSV=0.5hr-1、反応温
度395℃の反応条件で水素化分解反応を行い転化率、
中間留分収率について求めた結果それぞれ84.5重量
%、40.2重量%であった。
Next, catalyst A was charged into a fixed bed flow type reactor having a catalyst loading amount of 10 ml, and hydrogen / oil supply was 300 Nl / l, LHSV = 2 with light gas oil containing 2.5% by weight of dimethyl disulfide. 0.0 hr -1 , pressure 30
The temperature was raised from 100 ° C. to 315 ° C. over 7 hours under the condition of kg / cm 2 G, held and presulfurized for 16 hours, and then a vacuum gas oil having a fraction in the boiling range of 360 to 560 ° C. of 90% by weight or more was used. The hydrocracking reaction was carried out under the reaction conditions of a pressure of 100 kg / cm 2 G, a hydrogen / oil supply ratio of 1,500 Nl / l, an LHSV of 0.5 hr −1 and a reaction temperature of 395 ° C.
The results obtained for the middle distillate yield were 84.5% by weight and 40.2% by weight, respectively.

【0013】実施例2 実施例1で得たシリカ−アルミナ水和物ケーキに添加す
るホウ酸の添加量をSiO2 −Al2 3 に対して、B
2 3 として10重量%になるように加えたこと以外実
施例1に示す触媒Aを得る方法とほぼ同様の方法で触媒
Bを得、次いで実施例1に示す水素化分解反応方法とほ
ぼ同様の方法で活性評価した。得られた触媒Bについて
水銀圧入法で細孔分布を測定した結果は平均細孔直径は
94Åであり、平均細孔直径±10Åの細孔が占める容
積が細孔直径20〜97,000Åの細孔容積に対する
割合は62%であり、活性評価した結果は転化率は8
6.2重量%中間留分収率は37.4重量%であった。
[0013] Silica was obtained in Example 1 - the amount of boric acid added to the alumina hydrate cake with respect to SiO 2 -Al 2 O 3, B
A catalyst B was obtained in substantially the same manner as that for obtaining the catalyst A shown in Example 1, except that it was added so as to become 10% by weight as 2 O 3 , and then substantially the same as the hydrocracking reaction method shown in Example 1. The activity was evaluated by the following method. As a result of measuring the pore distribution of the obtained catalyst B by a mercury intrusion method, the average pore diameter was 94 °, and the volume occupied by pores having an average pore diameter of ± 10 ° was 20 to 97,000 °. The ratio to the pore volume was 62%, and the result of activity evaluation was that the conversion was 8%.
The 6.2% by weight middle distillate yield was 37.4% by weight.

【0014】実施例3 実施例1とほぼ同様にして得たアルミナ水和物スラリー
に添加するケイ酸ナトリウム水溶液の添加量をアルミナ
水和物スラリー中のAl2 3 に対して、SiO2 とし
て15重量%になるように添加したこと以外実施例1に
示す触媒Aを得る方法とほぼ同様の方法で触媒Cを得、
次いで、実施例1に示す水素化分解反応方法とほぼ同様
の方法で活性評価した。得られた触媒Cについて水銀圧
入法で細孔分布を測定した結果は、平均細孔直径は10
8Åであり、平均細孔直径±10Åの細孔が占める容積
が細孔直径20〜97,000Åの細孔容積に対する割
合は60%であり、活性評価した結果は転化率は88.
6重量%、中間留分収率は38.5重量%であった。
Example 3 The amount of the aqueous sodium silicate solution added to the alumina hydrate slurry obtained in substantially the same manner as in Example 1 was calculated as SiO 2 with respect to Al 2 O 3 in the alumina hydrate slurry. A catalyst C was obtained in substantially the same manner as the method for obtaining the catalyst A shown in Example 1, except that the catalyst C was added so as to be 15% by weight.
Next, the activity was evaluated by a method substantially similar to the hydrocracking reaction method shown in Example 1. As a result of measuring the pore distribution of the obtained catalyst C by a mercury intrusion method, the average pore diameter was 10%.
The volume occupied by pores having an average pore diameter of ± 10 ° is 60% of the volume of pores having a pore diameter of 20 to 97,000 °.
6% by weight, and the middle distillate yield was 38.5% by weight.

【0015】比較例1 反応槽内にグルコン酸を添加しなかったこと以外実施例
1に示す触媒Aを得る方法とほぼ同様の方法で触媒Dを
得、次いで実施例1に示す水素化分解反応方法とほぼ同
様の方法で活性評価した。得られた触媒Dについて水銀
圧入法で細孔分布を測定した結果は、平均細孔直径は1
06Åであり、平均細孔直径±10Åの細孔が占める容
積が細孔直径20〜97,000Åの細孔容積に対する
割合は52%であり、活性評価した結果は転化率は7
4.8重量%、中間留分収率は28.7重量%であっ
た。触媒Dはボリア−シリカ−アルミナから成る担体の
組成は本発明の範囲内ではあるが、触媒の平均細孔直径
±10Åの細孔が占める容積が細孔直径20〜97,0
00Åの細孔容積に対する割合が低い、つまり細孔分布
が広い触媒であり、実施例1に示す触媒Aと比べ転化率
および中間留分収率が共に劣っていることが明らかであ
る。
Comparative Example 1 A catalyst D was obtained in substantially the same manner as that for obtaining the catalyst A shown in Example 1 except that gluconic acid was not added to the reactor, and then a hydrocracking reaction shown in Example 1 was carried out. The activity was evaluated in almost the same manner as described above. As a result of measuring the pore distribution of the obtained catalyst D by a mercury intrusion method, the average pore diameter was 1
06%, the ratio of the volume occupied by pores having an average pore diameter of ± 10 ° to the volume of pores having a pore diameter of 20 to 97,000 ° is 52%, and the result of activity evaluation shows that the conversion rate is 7%.
4.8% by weight and the middle distillate yield was 28.7% by weight. Catalyst D has a composition of a support composed of boria-silica-alumina within the scope of the present invention, but the volume occupied by pores having an average pore diameter of ± 10 ° of the catalyst has a pore diameter of 20 to 97,0.
It is clear that the catalyst has a low ratio to the pore volume of 00 °, that is, a catalyst having a wide pore distribution, and is inferior in both the conversion and the middle distillate yield as compared with the catalyst A shown in Example 1.

【0016】比較例2 実施例1とほぼ同様にして得たシリカ−アルミナ水和物
ケーキに添加するホウ酸の添加量をSiO2 −Al2
3 に対してB2 3 として2重量%になるように加えた
こと以外実施例1に示す触媒Aを得る方法とほぼ同様の
方法で触媒Eを得、次いで実施例1に示す水素化分解反
応方法とほぼ同様の方法で活性評価した。得られた触媒
Eについて水銀圧入法で細孔分布を測定した結果は、平
均細孔直径は100Åであり、平均細孔直径±10Åの
細孔が占める容積が細孔直径20〜97,000Åの細
孔容積に対する割合は65%であり、活性評価した結果
は転化率は76.7重量%、中間留分収率は31.1重
量%であった。触媒Eは細孔特性が本発明の範囲内であ
ってもボリア−シリカ−アルミナから成る担体のB2
3 含有量が少ない触媒であり、実施例1の触媒Aと比
べ、転化率および中間留分収率共に低いことが判る。
Comparative Example 2 The amount of boric acid added to the silica-alumina hydrate cake obtained in substantially the same manner as in Example 1 was changed to SiO 2 —Al 2 O
Obtain catalyst E in substantially the same manner as obtaining the catalyst A in Example 1 except for the addition to be a B 2 O 3 to 2 wt% relative to 3, then hydrogenolysis in Example 1 The activity was evaluated by a method substantially similar to the reaction method. As a result of measuring the pore distribution of the obtained catalyst E by a mercury intrusion method, the average pore diameter was 100 °, and the volume occupied by pores having an average pore diameter of ± 10 ° was 20 to 97,000 °. The ratio to the pore volume was 65%, and as a result of activity evaluation, the conversion was 76.7% by weight, and the middle distillate yield was 31.1% by weight. Catalyst E has a B 2 O support of boria-silica-alumina even though the pore properties are within the scope of the present invention.
3 It is a catalyst having a small content, and it is found that both the conversion and the middle distillate yield are lower than that of the catalyst A of Example 1.

【0017】比較例3 実施例1とほぼ同様にして得たアルミナ水和物スラリー
に添加するケイ酸ナトリウム水溶液の添加量をアルミナ
水和物スラリー中のAl2 3 に対してSiO2 として
5重量%、20重量%となるように添加したこと以外実
施例1に示す触媒Aを得る方法とほぼ同様の方法で触媒
F,Gを得、次いで実施例1に示す水素化分解反応方法
とほぼ同様の方法で活性評価した。得られた触媒F,G
について水銀圧入法で細孔分布を測定した結果は、平均
細孔直径はそれぞれ102Å,114Åであり、平均細
孔直径±10Åの細孔が占める容積が細孔直径20〜9
7,000Åの細孔容積に対する割合はそれぞれ67
%,45%であり、活性評価した結果は触媒Fの転化率
は69.4重量%、中間留分収率は26.6重量%であ
り、触媒Gの転化率は90.0重量%,中間留分収率は
24.3重量%であった。
Comparative Example 3 The amount of the aqueous sodium silicate solution to be added to the alumina hydrate slurry obtained in substantially the same manner as in Example 1 was 5 as SiO 2 with respect to Al 2 O 3 in the alumina hydrate slurry. Catalysts F and G were obtained in substantially the same manner as in the method for obtaining Catalyst A shown in Example 1, except that they were added so as to be 20% by weight and 20% by weight, respectively. Activity was evaluated in the same manner. Catalysts F and G obtained
As a result of measuring the pore distribution by mercury porosimetry, the average pore diameter was 102 ° and 114 °, respectively, and the volume occupied by pores having an average pore diameter of ± 10 ° was 20 to 9
The ratio to the pore volume of 7,000 ° is 67
%, 45%, and the activity was evaluated. The conversion of Catalyst F was 69.4% by weight, the yield of middle distillate was 26.6% by weight, the conversion of Catalyst G was 90.0% by weight, The middle distillate yield was 24.3% by weight.

【0018】触媒Fは細孔特性が本発明の範囲内ではあ
るが、ボリア−シリカ−アルミナから成る担体のSiO
2 含有量が少ない触媒であり、実施例1の触媒Aと比べ
転化率および中間留分収率共に劣っていることが明らか
で、触媒Gは平均細孔直径±10Åの細孔が占める容積
が細孔直径20〜97,000Åの細孔容積に対する割
合が低い、つまり触媒の細孔分布が広く、またボリア−
シリカ−アルミナから成る担体のSiO2 含有量が多い
本発明の範囲外の触媒であり、実施例3の触媒Cと比べ
転化率は同等ではあるが、中間留分収率が著しく低いこ
とが判る。このように、本発明に係る実施例1〜3の触
媒は比較例1〜3と比較して高い転化率が得られるのと
同時に、中間留分の選択率も優れていることが明らかで
ある。
The catalyst F has a pore characteristic within the scope of the present invention, but has a support composed of a boria-silica-alumina SiO 2 support.
2 It is clear that the catalyst has a low content and is inferior in both conversion rate and middle distillate yield as compared with catalyst A of Example 1, and catalyst G has a volume occupied by pores having an average pore diameter of ± 10 °. The ratio of the pore diameter to the pore volume of 20 to 97,000 ° is low, that is, the pore distribution of the catalyst is wide, and
It is a catalyst outside the range of the present invention in which the support composed of silica-alumina has a large SiO 2 content, and the conversion is the same as that of the catalyst C of Example 3, but the middle distillate yield is remarkably low. . As described above, it is clear that the catalysts of Examples 1 to 3 according to the present invention can obtain a high conversion as compared with Comparative Examples 1 to 3, and at the same time, have excellent selectivity of the middle distillate. .

【0019】[0019]

【発明の効果】以上に示した本発明の水素化分解用触媒
によれば、炭化水素油類、特に減圧軽油の水素化分解反
応において高い転化率で、しかも中間留分を多く得るこ
とができる。
According to the above-described hydrocracking catalyst of the present invention, a high conversion rate and a large amount of middle distillate can be obtained in the hydrocracking reaction of hydrocarbon oils, particularly vacuum gas oil. .

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ボリアとして5〜10重量%、シリカと
して10〜15重量%、残量がアルミナからなるボリア
とシリカとアルミナから成る担体に、周期律表第6族金
属及び第8族金属に属する水素化活性金属を担持し、細
孔特性が水銀圧入法で測定した細孔分布で平均細孔直径
が90〜120Åであり、平均細孔直径±10Åの細孔
が占める容積が細孔直径20〜97,000Åの細孔容
積に対する割合が60%以上であることを特徴とする炭
化水素油の水素化分解用触媒。
1 to 10% by weight of boria, 10 to 15% by weight of silica, and a balance of boria comprising alumina and a carrier comprising silica and alumina; The hydrogenation-active metal belongs to, and the average pore diameter in the pore distribution is 90 to 120 ° in the pore distribution measured by the mercury intrusion method, and the volume occupied by pores having an average pore diameter of ± 10 ° is the pore diameter. A catalyst for hydrocracking hydrocarbon oils, wherein a ratio to a pore volume of 20 to 97,000 ° is 60% or more.
JP4357866A 1992-12-25 1992-12-25 Catalyst for hydrocracking of hydrocarbon oils Expired - Lifetime JP2920238B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4357866A JP2920238B2 (en) 1992-12-25 1992-12-25 Catalyst for hydrocracking of hydrocarbon oils

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4357866A JP2920238B2 (en) 1992-12-25 1992-12-25 Catalyst for hydrocracking of hydrocarbon oils

Publications (2)

Publication Number Publication Date
JPH06190278A JPH06190278A (en) 1994-07-12
JP2920238B2 true JP2920238B2 (en) 1999-07-19

Family

ID=18456340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4357866A Expired - Lifetime JP2920238B2 (en) 1992-12-25 1992-12-25 Catalyst for hydrocracking of hydrocarbon oils

Country Status (1)

Country Link
JP (1) JP2920238B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GC0000065A (en) 1998-09-01 2004-06-30 Japan Energy Corp Hydrocracking catalyst, producing method threof, and hydrocracking method.

Also Published As

Publication number Publication date
JPH06190278A (en) 1994-07-12

Similar Documents

Publication Publication Date Title
JP6134334B2 (en) Silica-containing alumina support, catalyst produced therefrom and method of use thereof
EP0533451B1 (en) Silica modified hydroisomerization catalyst
US5223472A (en) Demetallation catalyst
EP0449144B2 (en) Catalyst composition for hydrotreating of hydrocarbons and hydrotreating process using the same
JP3439790B2 (en) Hydroconversion method
JP5547923B2 (en) Heavy oil hydrocracking catalyst and method for hydrotreating heavy oil using the same
US5384297A (en) Hydrocracking of feedstocks and catalyst therefor
JP5231735B2 (en) Iron-containing crystalline aluminosilicate, hydrocracking catalyst containing the aluminosilicate, and hydrocracking method using the catalyst
US20110086755A1 (en) Hydrocracking catalyst for heavy oil
JPH10310782A (en) High-degree hydrodesulfurization of hydrocarbon feedstock
US6551500B1 (en) Hydrocracking catalyst, producing method thereof, and hydrocracking method
US6306289B1 (en) Catalyst for hydrogenation treatment and method for hydrogenation treatment of hydrocarbon oil
JP3772285B2 (en) Hydrocracking catalyst for hydrocarbon oil and hydrocracking method
AU2015339950A1 (en) Middle distillate hydrocracking catalyst containing highly A stabilized Y zeolite with enhanced acid site distribution
GB1071467A (en) Hydrocracking process
JP2920238B2 (en) Catalyst for hydrocracking of hydrocarbon oils
AU2015339952A1 (en) Middle distillate hydrocracking catalyst containing highly nanoporous stabilized Y zeolite
JP2009242487A (en) Method for decomposing atmospheric distillation residual oil
JP2000073072A (en) Production of high cetane number, low sulfur diesel gas oil
JPS6225418B2 (en)
JPH0117414B2 (en)
JPH09248461A (en) Hydrocracking catalyst for hydrocarbon oil
JPH0813338B2 (en) Residual oil hydrocracking catalyst
JP2817558B2 (en) Catalyst for hydrodesulfurization and denitrification of hydrocarbon oil and method for producing the same
USRE26358E (en) Single-stage hydrocracking process with a nitrogen containing peed stock

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080430

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090430

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090430

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100430

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100430

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110430

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110430

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120430

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 14