JP2919163B2 - Anode container for sodium-sulfur battery - Google Patents

Anode container for sodium-sulfur battery

Info

Publication number
JP2919163B2
JP2919163B2 JP4068849A JP6884992A JP2919163B2 JP 2919163 B2 JP2919163 B2 JP 2919163B2 JP 4068849 A JP4068849 A JP 4068849A JP 6884992 A JP6884992 A JP 6884992A JP 2919163 B2 JP2919163 B2 JP 2919163B2
Authority
JP
Japan
Prior art keywords
sodium
anode
coating
film
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4068849A
Other languages
Japanese (ja)
Other versions
JPH05275109A (en
Inventor
孝志 安藤
吉彦 蔵島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Company Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc filed Critical Tokyo Electric Power Co Inc
Priority to JP4068849A priority Critical patent/JP2919163B2/en
Publication of JPH05275109A publication Critical patent/JPH05275109A/en
Application granted granted Critical
Publication of JP2919163B2 publication Critical patent/JP2919163B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、電力貯蔵用などの二
次電池として利用されるナトリウム−硫黄電池の陽極容
器に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an anode container for a sodium-sulfur battery used as a secondary battery for storing electric power.

【0002】[0002]

【従来の技術】一般に、この種のナトリウム−硫黄電池
では、筒状の陽極容器内において固体電解質管の内側と
外側にそれぞれ陰極室と陽極室が形成され、その陰極室
内には陰極活物質としての金属ナトリウムが収容される
と共に、陽極室内には陽極活物質としての硫黄が収容さ
れている。そして、300〜350℃に加熱された状態
で、陰極室のナトリウムと陽極室の硫黄とがイオン化さ
れ、そのイオン化されたナトリウムが固体電解質管を透
過して硫黄と反応し、多硫化ナトリウムが生成されると
共に、放電が行われるようになっている。
2. Description of the Related Art Generally, in a sodium-sulfur battery of this type, a cathode chamber and an anode chamber are formed inside and outside a solid electrolyte tube in a cylindrical anode vessel, respectively. And sulfur as an anode active material is accommodated in the anode chamber. Then, while being heated to 300 to 350 ° C., sodium in the cathode chamber and sulfur in the anode chamber are ionized, and the ionized sodium permeates through the solid electrolyte tube and reacts with sulfur to produce sodium polysulfide. At the same time as discharging.

【0003】この電池の放電時に生成される多硫化ナト
リウムは腐食性が大きいので、アルミニウム又はアルミ
ニウム合金よりなる陽極容器に多硫化ナトリウムが直接
接触すると、陽極容器が損傷を受けて耐久性が低下する
おそれがある。そのため、従来のナトリウム−硫黄電池
の陽極容器では、金属溶射により陽極容器の容器本体の
内周面に、ステライト合金等の耐腐食性材料よりなる皮
膜を全体に亘ってほぼ均一の厚さに形成していた。
[0003] Since sodium polysulfide generated during discharge of this battery is highly corrosive, if sodium polysulfide directly contacts an anode container made of aluminum or an aluminum alloy, the anode container is damaged and its durability is reduced. There is a risk. Therefore, in a conventional anode container of a sodium-sulfur battery, a film made of a corrosion-resistant material such as a stellite alloy is formed on the inner peripheral surface of the container body of the anode container by metal spraying to have a substantially uniform thickness throughout. Was.

【0004】[0004]

【発明が解決しようとする課題】ところが、この従来構
成の陽極容器においては、ステライト合金等よりなる皮
膜の厚さが約100μmもあったので、加熱、冷却によ
る膨張、収縮の繰り返しに伴う熱ひずみに起因して、皮
膜に大きな残留応力が発生し、皮膜にクラックが生じや
すいという問題があった。
However, in this conventional anode container, the thickness of the coating made of a stellite alloy or the like was about 100 μm, so that the thermal strain caused by repeated expansion and contraction due to heating and cooling was reduced. As a result, there is a problem that a large residual stress is generated in the film and cracks are easily generated in the film.

【0005】又、この従来構成のように皮膜の厚さが大
きいと、皮膜の形成時に大量の溶射用金属粉末を必要と
して、製作コストが高くなると共に、電池全体の重量も
大きくなり、さらには、電池内部からの熱放散が悪くな
って、安全性が低下するという問題もあった。
When the thickness of the coating is large as in the conventional structure, a large amount of metal powder for thermal spraying is required at the time of forming the coating, so that the production cost is increased and the weight of the whole battery is increased. However, there is also a problem that heat dissipation from the inside of the battery is deteriorated and safety is reduced.

【0006】この発明は、このような従来技術に存在す
る問題点に着目してなされたものであって、その目的と
するところは、皮膜に生じる残留応力を少なくして、皮
膜にクラックが生じるおそれを防止することができ、し
かも、皮膜の形成時に大量の溶射用金属粉末を必要とせ
ず、製作コストを低減することができると共に、電池全
体を軽量化することができ、さらには、電池内部からの
熱放散を良好にして、安全性を向上させることができる
ナトリウム−硫黄電池の陽極容器を提供することにあ
る。
The present invention has been made in view of the problems existing in the prior art, and has as its object to reduce the residual stress generated in the film and to cause cracks in the film. In addition, it is possible to reduce the manufacturing cost and to reduce the weight of the battery as a whole. It is an object of the present invention to provide an anode container of a sodium-sulfur battery capable of improving heat dissipation from a fuel cell and improving safety.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
めに、第1の発明では、筒状の容器本体の内周面に、金
属溶射により皮膜を形成してなるナトリウム−硫黄電池
の陽極容器において、前記皮膜の厚さの上限を60μm
に設定するとともに、皮膜内の気孔率は5%以下とした
ものである。
According to a first aspect of the present invention, there is provided an anode for a sodium-sulfur battery in which a coating is formed on the inner peripheral surface of a cylindrical container body by metal spraying. In the container, the upper limit of the thickness of the coating is 60 μm.
And the porosity in the film is set to 5% or less .

【0008】又、第2の発明では、前記容器本体の外径
は、50〜120mmに設定され、さらに、第3の発明
では 粒径が10〜60μmの金属粉末を金属溶射する
ものである。
In the second invention, the outer diameter of the container body is
Is set to 50 to 120 mm, and the third invention
In is <br/> that the particle size is metal spraying metal powder of 10 to 60 [mu] m.

【0009】[0009]

【作用】この発明の陽極容器では、容器本体の内周面に
形成される皮膜が薄膜となるように、その皮膜の厚さが
上限60μmに設定されるとともに、皮膜内の気孔率は
5%以下に設定されている。このため、電池作動時の加
熱、冷却による膨張、収縮の繰り返しに伴う熱ひずみに
起因して、皮膜に大きな残留応力が発生するのを抑制す
ることができ、皮膜にクラックが生じるおそれを防止す
ることができる。又、 皮膜の形成時に大量の溶射用金属
粉末を必要とせず、製作コストを低減することができる
と共に、電池全体を軽量化することができる。さらに
は、電池内部からの熱放散を良好にして、安全性を向上
させることができる。
According to the anode container of the present invention, the thickness of the film is set to an upper limit of 60 μm so that the film formed on the inner peripheral surface of the container body becomes a thin film, and the porosity in the film is reduced.
It is set to 5% or less . For this reason, it is possible to suppress the occurrence of a large residual stress in the film due to the thermal strain caused by the repetition of expansion and contraction due to heating and cooling during the operation of the battery, and to prevent the possibility of cracks in the film. be able to. Further, a large amount of metal powder for thermal spraying is not required at the time of forming the coating, so that the manufacturing cost can be reduced and the weight of the whole battery can be reduced. Further, heat dissipation from the inside of the battery can be improved, and safety can be improved.

【0010】[0010]

【実施例】以下、この発明を具体化したナトリウム−硫
黄電池の第1実施例を、図面に基づいて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of a sodium-sulfur battery embodying the present invention will be described below with reference to the drawings.

【0011】図1に示すように、陽極容器1は円筒状の
容器本体2と、その下端部に溶接された円盤状の底蓋3
とにより有底円筒状に形成されている。そして、この陽
極容器1は軽量かつ安価であるアルミニウム又はアルミ
ニウム合金で形成されているが、鉄、ステンレス鋼、ク
ラッド鋼等であってもよい。容器本体2の内周面には皮
膜4が金属溶射により所定厚さで均一に形成されてい
る。なお、前記容器本体2の上部外周には陽極端子5が
取着されている。
As shown in FIG. 1, an anode container 1 has a cylindrical container body 2 and a disk-shaped bottom cover 3 welded to its lower end.
This forms a bottomed cylindrical shape. The anode container 1 is formed of aluminum or aluminum alloy which is lightweight and inexpensive, but may be iron, stainless steel, clad steel or the like. A coating 4 is uniformly formed on the inner peripheral surface of the container body 2 with a predetermined thickness by metal spraying. An anode terminal 5 is attached to the outer periphery of the upper part of the container body 2.

【0012】前記陽極容器1の上端部にはα−アルミナ
よりなる絶縁リング6が固着されている。この絶縁リン
グ6の下部内周面にはβ−アルミナよりなる有底円筒状
の固体電解質管7が上端外周にて接合固定されている。
この固体電解質管7の内側には陰極室8が区画形成さ
れ、外側には陽極室9が区画形成されている。前記陰極
室8内には陰極活物質としてのナトリウム(Na)が収
容され、陽極室9内には陽極活物質としての硫黄(S)
が収容されている。前記絶縁リング6上には陰極蓋10
が取付けられ、その上面には陰極端子11が突設されて
いる。
An insulating ring 6 made of α-alumina is fixed to the upper end of the anode container 1. A cylindrical solid electrolyte tube 7 having a bottom and made of β-alumina is fixedly joined to the lower inner peripheral surface of the insulating ring 6 at the outer periphery at the upper end.
A cathode chamber 8 is defined inside the solid electrolyte tube 7, and an anode chamber 9 is defined outside. The cathode chamber 8 contains sodium (Na) as a cathode active material, and the anode chamber 9 contains sulfur (S) as an anode active material.
Is housed. On the insulating ring 6, a cathode lid 10 is provided.
The cathode terminal 11 protrudes from the upper surface.

【0013】さて、この実施例においては、図2に示す
ように、前記陽極容器1の容器本体2の外径L1が50
〜120mm、長さL2が300〜500mm、厚さT
が1.0〜2.5mmに設定されている。又、皮膜4の
厚さtは上限が60μmとなるように、20〜60μm
の範囲に設定され、好ましくは30〜50μmの範囲で
設定されている。
In this embodiment, as shown in FIG. 2, the outer diameter L1 of the container body 2 of the anode container 1 is 50
~ 120mm, length L2 is 300 ~ 500mm, thickness T
Is set to 1.0 to 2.5 mm. The thickness t of the coating 4 is 20 to 60 μm so that the upper limit is 60 μm.
, And preferably in the range of 30 to 50 μm.

【0014】さらに、この皮膜4の材料としては、多硫
化ナトリウムや硫黄に対して耐食性の良好な合金である
ステライト、すなわちコバルト(Co)にクロム(Cr)及びタ
ングステン(W) を添加した合金が使用されている。な
お、この材料としては、ハステロイ、インコロイ、イン
コネル等のニッケル(Ni)基合金や鉄(Fe)基合金を使用し
てもよい。
Further, as a material of the film 4, stellite which is an alloy having good corrosion resistance to sodium polysulfide and sulfur, that is, an alloy obtained by adding chromium (Cr) and tungsten (W) to cobalt (Co) is used. in use. As this material, a nickel (Ni) -based alloy such as Hastelloy, Incoloy, or Inconel or an iron (Fe) -based alloy may be used.

【0015】そして、この皮膜4は金属溶射法により次
のようにして形成される。すなわち、図2に示すよう
に、溶射装置本体12の下部にパイプ状の溶射ノズル1
3が延出され、その先端部には噴出口14が開口されて
いる。そして、まず装置本体12に前記の金属材料が粉
末状態で供給され、溶融状態にしてノズル13の噴出口
14から容器本体2の内面に吹き付けられて、皮膜4が
形成される。この場合、皮膜4の厚さtは、溶射装置本
体12の上下移動速度を加減したり、噴出口14からの
金属粉末の噴出量を加減したりすることにより、任意に
調節設定することができる。
The coating 4 is formed by a metal spraying method as follows. In other words, as shown in FIG.
3 is extended, and a spout 14 is opened at the tip. Then, first, the metal material is supplied to the apparatus main body 12 in a powdered state, is melted, and is sprayed from the ejection port 14 of the nozzle 13 onto the inner surface of the container main body 2 to form the coating 4. In this case, the thickness t of the coating 4 can be arbitrarily adjusted and set by adjusting the vertical movement speed of the thermal spraying apparatus main body 12 or adjusting the amount of the metal powder ejected from the ejection port 14. .

【0016】又、前記溶射用金属粉末の粒径は10〜6
0μmの範囲がよく、20〜40μmの範囲が最もよ
い。皮膜4内の気孔率は5%以下がよい。さらに、容器
本体2の内面粗度はRa(中心線平均粗さ、JIS B 060
1):2〜10μmの範囲がよく、2〜5μmの範囲が
最もよい。皮膜4の表面粗度はRa:4〜12μmの範
囲がよく、7μm以下が最もよい。
The metal powder for thermal spraying has a particle size of 10-6.
The range of 0 μm is good, and the range of 20 to 40 μm is best. The porosity in the coating 4 is preferably 5% or less. Further, the inner surface roughness of the container body 2 is Ra (center line average roughness, JIS B 060
1): The range of 2 to 10 μm is good, and the range of 2 to 5 μm is best. The surface roughness of the film 4 is preferably Ra: 4 to 12 μm, and most preferably 7 μm or less.

【0017】前記のようにこの実施例の陽極容器1で
は、容器本体2の内周面に形成される皮膜4が薄層とな
るように、その皮膜4の厚さが上限60μm又は20〜
60μmの範囲に設定されている。このため、電池作動
時の加熱、冷却による膨張、収縮の繰り返しに伴う熱ひ
ずみに起因して、皮膜4に大きな残留応力が発生するの
を抑制することができ、皮膜4にクラックが生じるおそ
れを防止することができる。
As described above, in the anode container 1 of this embodiment, the thickness of the coating 4 is 60 μm or 20 to 20 μm so that the coating 4 formed on the inner peripheral surface of the container body 2 is a thin layer.
It is set in the range of 60 μm. For this reason, it is possible to suppress the occurrence of a large residual stress in the film 4 due to the thermal strain caused by the repetition of expansion and contraction due to heating and cooling during the operation of the battery. Can be prevented.

【0018】又、前記のように金属溶射により容器本体
2の内周面に皮膜4を形成する際に、大量の溶射用金属
粉末を必要としないため、製作コストを低減することが
できる。さらに、皮膜4が薄層であるため、電池全体を
軽量化することができると共に、、電池内部からの熱放
散を良好にして、安全性を向上させることもできる。
Further, as described above, when forming the coating 4 on the inner peripheral surface of the container body 2 by metal spraying, a large amount of metal powder for spraying is not required, so that the manufacturing cost can be reduced. Furthermore, since the film 4 is a thin layer, the weight of the whole battery can be reduced, and the heat dissipation from the inside of the battery can be improved to improve the safety.

【0019】因みに、皮膜4の厚さtを60μm以下に
設定した場合と、60μmを越えた値に設定した場合と
について、溶射後の皮膜4の残留応力試験を行ったとこ
ろ、表1に示すような結果を得ることができた。
Incidentally, when the thickness t of the coating 4 was set to 60 μm or less and when it was set to a value exceeding 60 μm, the residual stress test of the coating 4 after thermal spraying was performed. We were able to obtain such a result.

【0020】すなわち、皮膜4の厚さtを120μmに
設定した従来例品Aと、80μmに設定した従来例品B
と、60μmに設定した第1実施例品Cと、40μmに
設定した第2実施例品Dと、20μmに設定した第3実
施例品Eとを用意し、これらに微少X線を照射して、格
子定数の変化から図2に示す円周X方向と長さY方向の
残留応力を求めた。
That is, the conventional product A in which the thickness t of the film 4 is set to 120 μm and the conventional product B in which the thickness t is set to 80 μm
, A first embodiment product C set to 60 μm, a second embodiment product D set to 40 μm, and a third embodiment product E set to 20 μm, and these are irradiated with micro X-rays. The residual stress in the circumferential X direction and the length Y direction shown in FIG. 2 was determined from the change in the lattice constant.

【0021】[0021]

【表1】 [Table 1]

【0022】又、前記のように異なった厚さの皮膜4を
形成した各陽極容器1について、皮膜4の耐久性試験を
行ったところ、図3のグラフに示すような結果を得るこ
とができた。すなわち、各陽極容器1内に多硫化ナトリ
ウムを入れた状態で、350℃まで8時間で昇温し、そ
の温度に24時間保持し、室温まで8時間かけて降温す
るサイクルを繰り返し行い、降温後にX線透過法によっ
てクラックの数を測定した。
Further, when a durability test of the coating 4 was performed on each anode container 1 on which the coatings 4 having different thicknesses were formed as described above, the results shown in the graph of FIG. 3 could be obtained. Was. That is, in a state in which sodium polysulfide is put in each anode container 1, a cycle of raising the temperature to 350 ° C. in 8 hours, maintaining the temperature for 24 hours, and lowering the temperature to room temperature in 8 hours is repeated. The number of cracks was measured by the X-ray transmission method.

【0023】前記の表1に示すように、X方向の残留応
力が、従来例A,Bでは4 Kg/mm2以上あったものが、
実施例C,D,Eでは1〜2 Kg/mm2 の範囲に抑えるこ
とができ、Y方向の残留応力が、従来例A,Bでは6 K
g/mm2 以上あったものが、実施例C,D,Eでは3〜4
Kg/mm2 の範囲に抑えることができた。又、図3に示す
ように、従来例A,Bではサイクルを繰り返すごとにク
ラック数が増大して、特性曲線の角度が大きくなるのに
対し、実施例C,D,Eではサイクルを繰り返してもク
ラック数がさほど増加せず、特性曲線の角度が小さくな
った。これらのことから、皮膜4の残留応力、さらに皮
膜4のクラックの発生は、皮膜4の厚さについて60μ
mを境に顕著に変化することがわかった。
As shown in Table 1 above, the residual stress in the X direction was 4 kg / mm 2 or more in Conventional Examples A and B.
In Examples C, D and E, the residual stress in the Y direction can be suppressed to the range of 1-2 kg / mm 2 , and in the conventional examples A and B, the residual stress is 6 Kg / mm 2.
g / mm 2 or more, but 3 to 4 in Examples C, D and E
Kg / mm 2 range. Further, as shown in FIG. 3, in the conventional examples A and B, the number of cracks increases each time the cycle is repeated, and the angle of the characteristic curve increases, whereas in the examples C, D and E, the cycle is repeated. Also, the number of cracks did not increase so much, and the angle of the characteristic curve became small. From these facts, the residual stress of the coating 4 and the occurrence of cracks in the coating 4 were reduced by 60 μm with respect to the thickness of the coating 4.
It turned out that it changes remarkably at m.

【0024】この発明は前記実施例の構成に限定される
ものではなく、例えば、皮膜4の厚さを前記所定の範囲
内で下部ほど厚くなるように構成したり、材料や表面粗
さを適宜に変更する等、この発明の趣旨から逸脱しない
範囲で任意に変更して具体化することも可能である。
The present invention is not limited to the configuration of the above-described embodiment. For example, the thickness of the coating 4 may be increased toward the lower part within the above-mentioned predetermined range, or the material and the surface roughness may be appropriately adjusted. It is also possible to arbitrarily change and embody the present invention without departing from the spirit of the present invention.

【0025】[0025]

【発明の効果】以上詳述したようにこの発明によれば、
皮膜に生じる残留応力を少なくして、皮膜にクラックが
生じるおそれを防止することができ、しかも、皮膜の形
成時に大量の溶射用金属粉末を必要とせず、製作コスト
を低減することができると共に、電池全体を軽量化する
ことができ、さらには、電池内部からの熱放散を良好に
して、安全性を向上させることができるという優れた効
果を奏する。
As described in detail above, according to the present invention,
By reducing the residual stress generated in the coating, it is possible to prevent the possibility of cracks in the coating, and, furthermore, it is not necessary to use a large amount of metal powder for thermal spraying at the time of forming the coating, thereby reducing the manufacturing cost, It is possible to reduce the weight of the whole battery, and furthermore, it is possible to improve heat dissipation from the inside of the battery, thereby improving safety.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明を具体化したナトリウム−硫黄電池の
一実施例を示す縦断面図である。
FIG. 1 is a longitudinal sectional view showing one embodiment of a sodium-sulfur battery embodying the present invention.

【図2】陽極容器に皮膜を形成する状態を示す断面図で
ある。
FIG. 2 is a sectional view showing a state in which a film is formed on an anode container.

【図3】加熱、冷却のサイクル数と皮膜内のクラック発
生数との関係を示すグラフである。
FIG. 3 is a graph showing the relationship between the number of heating and cooling cycles and the number of cracks generated in a coating.

【符号の説明】 1…陽極容器、2…容器本体、4…皮膜。[Description of Signs] 1 ... Anode container, 2 ... Container body, 4 ... Coating.

フロントページの続き (58)調査した分野(Int.Cl.6,DB名) H01M 10/39 H01M 2/02 Continuation of front page (58) Field surveyed (Int.Cl. 6 , DB name) H01M 10/39 H01M 2/02

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 筒状の容器本体の内周面に、金属溶射に
より皮膜を形成してなるナトリウム−硫黄電池の陽極容
器において、 前記皮膜の厚さの上限を60μmに設定するとともに、
皮膜内の気孔率は5%以下としたことを特徴とするナト
リウム−硫黄電池の陽極容器。
1. An anode container for a sodium-sulfur battery in which a film is formed on the inner peripheral surface of a cylindrical container body by metal spraying, wherein the upper limit of the thickness of the film is set to 60 μm .
An anode container for a sodium-sulfur battery , wherein the porosity in the film is 5% or less .
【請求項2】 前記容器本体の外径は、50〜120m
mに設定されている請求項1記載のナトリウム−硫黄電
池の陽極容器。
2. The outer diameter of the container body is 50 to 120 m.
2. The sodium-sulfur battery according to claim 1, wherein m is set to m.
Pond anode vessel.
【請求項3】粒径が10〜60μmの金属粉末を金属溶
射する請求項1又は請求項2記載のナトリウム−硫黄電
池の陽極容器。
3. A metal powder having a particle size of 10 to 60 μm is melted.
3. The sodium-sulfur battery according to claim 1 or 2,
Pond anode vessel.
JP4068849A 1992-03-26 1992-03-26 Anode container for sodium-sulfur battery Expired - Lifetime JP2919163B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4068849A JP2919163B2 (en) 1992-03-26 1992-03-26 Anode container for sodium-sulfur battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4068849A JP2919163B2 (en) 1992-03-26 1992-03-26 Anode container for sodium-sulfur battery

Publications (2)

Publication Number Publication Date
JPH05275109A JPH05275109A (en) 1993-10-22
JP2919163B2 true JP2919163B2 (en) 1999-07-12

Family

ID=13385541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4068849A Expired - Lifetime JP2919163B2 (en) 1992-03-26 1992-03-26 Anode container for sodium-sulfur battery

Country Status (1)

Country Link
JP (1) JP2919163B2 (en)

Also Published As

Publication number Publication date
JPH05275109A (en) 1993-10-22

Similar Documents

Publication Publication Date Title
US4117209A (en) Electrochemical cells
JPH038066B2 (en)
US6329099B1 (en) Sodium-sulfur battery, and a battery system using same
JP2919163B2 (en) Anode container for sodium-sulfur battery
JP2758756B2 (en) Anode container in sodium-sulfur battery
JP2969050B2 (en) Sodium-sulfur battery
EP0622860A2 (en) Hydrogen-absorbing alloy electrode
JPH05275110A (en) Anode vessel for sodium-sulfur battery
JP2957822B2 (en) Method for producing anode container in sodium-sulfur battery
JPH02142065A (en) Sodium-sulphur cell
JP3561210B2 (en) Anode container for sodium-sulfur single cell and sodium-sulfur single cell using the same
JP2520986B2 (en) Anode container for sodium-sulfur battery and its manufacturing method
EP0141809B1 (en) Lithia doped coating for sodium/sulfur battery
JP2005071902A (en) Method for forming spray coating film on inner circumferential surface of positive electrode container for sodium-sulfur battery
JP3205438B2 (en) Anode container for sodium-sulfur battery and method for manufacturing the same
JP3205441B2 (en) Anode container for sodium-sulfur battery and method for manufacturing the same
JP4234936B2 (en) Sodium-sulfur battery anode container, method for forming spray coating on inner surface of anode container, and method for determining quality of spray coating
JP3617628B2 (en) Anode container for sodium-sulfur battery
JP2006022358A (en) Thermal spraying powder material for corrosion-resistant film, highly corrosion-resistant film, anode container for sodium-sulphur battery, and method for manufacturing the same
JP3322797B2 (en) Sodium-sulfur battery
JP2769284B2 (en) Method for producing sodium-sulfur battery and anode container thereof
JP3415106B2 (en) Sodium-sulfur battery
JP2854226B2 (en) Anode container for sodium-sulfur battery and method for producing the same
JPH0722067A (en) Cathode container for sodium-sulfur battery and manufacture thereof
CN114520390A (en) Processing technology of liquid metal battery anode current collector and liquid metal battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090423

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100423

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100423

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110423

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110423

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120423

Year of fee payment: 13

EXPY Cancellation because of completion of term