JP2912701B2 - Method for estimating moisture content - Google Patents

Method for estimating moisture content

Info

Publication number
JP2912701B2
JP2912701B2 JP2280024A JP28002490A JP2912701B2 JP 2912701 B2 JP2912701 B2 JP 2912701B2 JP 2280024 A JP2280024 A JP 2280024A JP 28002490 A JP28002490 A JP 28002490A JP 2912701 B2 JP2912701 B2 JP 2912701B2
Authority
JP
Japan
Prior art keywords
porosity
powder
developer
toner
cos
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2280024A
Other languages
Japanese (ja)
Other versions
JPH04155242A (en
Inventor
晃 真壁
淳 児玉
哲郎 中嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2280024A priority Critical patent/JP2912701B2/en
Publication of JPH04155242A publication Critical patent/JPH04155242A/en
Application granted granted Critical
Publication of JP2912701B2 publication Critical patent/JP2912701B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Developing Agents For Electrophotography (AREA)

Description

【発明の詳細な説明】 [概要] 電子写真方式を応用したプリンタなどに用いられる現
像剤の含水特性推算方法に関し、 環境条件一定下でトナーの空隙率を測定し、この空隙
率から現像剤の含水特性を推算する含水特性推算方法を
提供することを目的とし、 デジタルマイクロメータおよび上部セルと下部セルを
有する空隙率測定装置を用いて、下部セルの窪みに現像
剤を充填し、上部セル上におもりを置いて、充填重量と
体積から空隙率εを求め、下記(1)式により液の体積
Vを求め、さらに下記(2)式により充填重量と体積か
ら求めた空隙率εを使用して現像剤の含水特性である空
隙飽和度Sを推算することを特徴とする接触点数推算方
法。
DETAILED DESCRIPTION OF THE INVENTION [Summary] The present invention relates to a method for estimating the water content of a developer used in a printer or the like to which an electrophotographic method is applied. The porosity of a toner is measured under constant environmental conditions, and the porosity of the developer is determined from the porosity. The purpose of the present invention is to provide a method for estimating the water-containing property of estimating the water-containing property, using a digital micrometer and a porosity measuring device having an upper cell and a lower cell, filling the depression in the lower cell with a developer, The porosity ε is determined from the filling weight and the volume, and the volume V of the liquid is determined by the following equation (1). Further, the porosity ε determined from the filling weight and the volume by the following equation (2) is used. A void saturation S, which is a water-containing property of the developer, by estimating the number of contact points.

V=2π((R1 2+b2)R1Cos(α+δ)−(R1 3/3)・Cos3(α+δ)b ・R1 2(Cos(α+δ)・Sin(α+δ)+(π/2−α−δ))−r1 3 ・(2+Cosα)(1−Cosα)) (1) ただし、r1は粉体粒子の半径、R1は粉体粒子の中心から
液面までの距離、bは粉体粒子の中心から液面の中心ま
での距離、αは粒子と液面のなすす角度、δは接触角で
あり、他の実験より求めることができる。
V = 2π ((R 1 2 + b 2) R 1 Cos (α + δ) - (R 1 3/3) · Cos 3 (α + δ) b · R 1 2 (Cos (α + δ) · Sin (α + δ) + (π / 2-α-δ)) - r 1 3 · (2 + Cosα) (1-Cosα) 3) (1) However, r 1 is the radius of the powder particles, the distance from the center of the R 1 is the powder particles to the liquid surface , B is the distance from the center of the powder particles to the center of the liquid surface, α is the angle between the particles and the liquid surface, and δ is the contact angle, which can be determined from other experiments.

S=((V/2)/((πDP 3/6)・((1−ε)/ε)))・K(n) (2) ここで、DPは平均粒子径、εは空隙率、K(n)は1個
の粉体に他の粉体が接触する点数である。
S = ((V / 2) / ((πD P 3/6) · ((1-ε) / ε))) · K (n) (2) where, D P is the average particle diameter, epsilon void The ratio, K (n), is the number of points at which one powder contacts another powder.

[産業上の利用分野] 本発明は、電子写真方式を応用したプリンタなどに用
いられる現像剤の含水特性推算方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for estimating the water content of a developer used in a printer or the like to which an electrophotographic method is applied.

レーザプリンタなどに使用されている電子写真プロセ
スにおいては、現像剤(トナーと呼ばれる着色微粒子樹
脂)は帯電性、電荷保持特性、定着性、耐光性などの諸
特性が重要となる。
In an electrophotographic process used in a laser printer or the like, a developer (colored fine particle resin called a toner) has various properties such as chargeability, charge retention property, fixing property, and light resistance.

第2図は、これらを説明するための電子写真プロセス
の概要を示したものである。
FIG. 2 shows an outline of an electrophotographic process for explaining these.

第2図において、1は光導電性を持つ円筒形の感光体
1であり、この感光体1表面をコロトロンや帯電ブラシ
などの帯電部2により一様に帯電させる。これにレーザ
光を露光部3により露光させ、目に見えない電荷の像
(潜像4)を形成する。現像部5中でトナー6とキャリ
ア7と呼ばれる鉄粉を撹拌混合することにより摩擦帯電
させる。こうしてキャリア7の表面上にトナー6が静電
力で付着する。この状態でトナー6はキャリア7により
感光体1の表面上に搬送され、帯電したトナー6が潜像
4に付着していきトナー像8を形成する。これを紙9側
に送り、転写部10により逆電圧を印加、紙9上に付着さ
せ、さらに定着部11により熱と圧力により紙9上に溶か
しこむ。こうして印字を得ることができる。
In FIG. 2, reference numeral 1 denotes a cylindrical photoconductor 1 having photoconductivity, and the surface of the photoconductor 1 is uniformly charged by a charging unit 2 such as a corotron or a charging brush. This is exposed to laser light by the exposure unit 3 to form an invisible charge image (latent image 4). In the developing unit 5, the toner 6 and the iron powder called the carrier 7 are frictionally charged by stirring and mixing. Thus, the toner 6 adheres to the surface of the carrier 7 by electrostatic force. In this state, the toner 6 is transported onto the surface of the photoconductor 1 by the carrier 7, and the charged toner 6 adheres to the latent image 4 to form a toner image 8. This is sent to the paper 9 side, a reverse voltage is applied by the transfer unit 10 and adheres to the paper 9, and the fixing unit 11 melts the paper 9 by heat and pressure. Thus, printing can be obtained.

感光体1上に残ったトナー6をブラシのようなクリー
ニング部12でクリーニングし、残った電荷は除電部13に
よりとり除く。こうして感光体1は元の状態に戻る。こ
のプロセスを繰り返すことにより印字を繰り返し得るこ
とができる。このようなトナー6は電子写真プロセスに
おいて、重要な役割を果たしている。トナー6の粉体状
態での帯電電荷の保持特性が特に重要になる。この特性
を表す重要な物性値として体積抵抗率がある。トナー6
は粉体の状態でプロセスに用いられるので、トナー6の
粉体としての空隙を含んだ帯電電荷保持特性を把握する
ことが重要である。
The toner 6 remaining on the photoreceptor 1 is cleaned by a cleaning unit 12 such as a brush, and the remaining charge is removed by a charge removing unit 13. Thus, the photosensitive member 1 returns to the original state. Printing can be repeated by repeating this process. Such a toner 6 plays an important role in the electrophotographic process. The charge retention characteristic of the toner 6 in the powder state is particularly important. An important physical property value representing this characteristic is volume resistivity. Toner 6
Is used in the process in a powder state, it is important to grasp the charge retention characteristics including voids of the toner 6 as a powder.

トナーは粉体状態では粉体の粒子間に空隙がある状態
で存在し、このため空隙に水分が入りこみ帯電電荷保持
特性に影響を及ぼす。また、同時に含水特性が変わると
現像剤の流動性にも大きく影響を及ぼす。したがって、
現像剤の含水特性を定量的に把握する方法が必要とな
る。
In the powder state, the toner exists in a state in which there is a gap between the particles of the powder, and therefore, water enters the gap and affects the charge retention characteristics. At the same time, when the water-containing properties change, the fluidity of the developer is greatly affected. Therefore,
A method for quantitatively grasping the water content of the developer is required.

[従来の技術および発明が解決しようとする課題] 現像剤の粉体としての含水特性を把握することは、電
子写真プロセスにおいてトナーに要求される帯電電荷保
持特性や流動性を考える上で非常に重要になる。ところ
が、これまでトナーの含水特性を定量的に求める方法が
提案されてこなかった。
[Problems to be Solved by Conventional Techniques and Inventions] To grasp the water-containing properties of a developer powder is very important in considering the charge retention property and fluidity required for a toner in an electrophotographic process. Becomes important. However, a method for quantitatively determining the water content of the toner has not been proposed.

本発明は、環境条件一定下でトナーの空隙率を測定
し、この空隙率から現像剤の含水特性(空隙飽和度)を
推算する含水特性推算方法を提供することを目的とす
る。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for estimating the water content of a developer by measuring the porosity of a toner under constant environmental conditions and estimating the water content (void saturation) of the developer from the porosity.

[課題を解決するための手段] 本発明は、デジタルマイクロメータおよび上部セルと
下部セルを有する空隙率測定装置を用いて、下部セルの
窪みに現像剤を充填し、上部セル上におもりを置いて、
充填重量と体積から空隙率εを求め、下記(1)式によ
り液の体積Vを求め、さらに下記(2)式により充填重
量と体積から求めた空隙率εを使用して現像剤の含水特
性である空隙飽和度Sを推算するものである。
Means for Solving the Problems The present invention uses a digital micrometer and a porosity measuring device having an upper cell and a lower cell to fill a depression in the lower cell with a developer and place a weight on the upper cell. hand,
The porosity ε is obtained from the filling weight and the volume, the volume V of the liquid is obtained by the following equation (1), and the water content of the developer is obtained using the porosity ε obtained from the filling weight and the volume by the following equation (2). Is estimated.

V=2π((R1 2+b2)R1Cos(α+δ)−(R1 3/3)・Cos3(α+δ)b ・R1 2(Cos(α+δ)・Sin(α+δ)+(π/2−α−δ))−r1 3 ・(2+Cosα)(1−Cosα)) (1) ただし、r1は粉体粒子の半径、R1は粉体粒子の中心から
液面までの距離、bは粉体粒子の中心から液面の中心ま
での距離、αは粒子と液面のなす角度、δは接触角であ
り、他の実験より求めることができる。
V = 2π ((R 1 2 + b 2) R 1 Cos (α + δ) - (R 1 3/3) · Cos 3 (α + δ) b · R 1 2 (Cos (α + δ) · Sin (α + δ) + (π / 2-α-δ)) - r 1 3 · (2 + Cosα) (1-Cosα) 3) (1) However, r 1 is the radius of the powder particles, the distance from the center of the R 1 is the powder particles to the liquid surface , B is the distance from the center of the powder particle to the center of the liquid surface, α is the angle between the particle and the liquid surface, and δ is the contact angle, which can be determined from other experiments.

S=((V/2)/((πDP 3/6)・((1−ε)/ε)))・K(n) (2) ここで、DPは平均粒子径、εは空隙率、K(n)は1個
の粉体に他の粉体が接触する点数である。
S = ((V / 2) / ((πD P 3/6) · ((1-ε) / ε))) · K (n) (2) where, D P is the average particle diameter, epsilon void The ratio, K (n), is the number of points at which one powder contacts another powder.

[作用] 第3図に示すように、粉体と粉体との間には空隙が存
在し、粉体と粉体との間に保持される液体の体積VはPi
etschの式で与えられる。
[Operation] As shown in FIG. 3, there is a gap between the powders and the volume V of the liquid held between the powders is Pi.
It is given by the equation of etsch.

V=2π((R1 2+b2)R1Cos(α+δ)−(R1 3/3)・Cos3(α+δ)b ・R1 2(Cos(α+δ)・Sin(α+δ)+(π/2−α−δ))−r1 3 ・(2+Cosα)(1−Cosα)) (1) ここで、第3図に示すように、r1は粉体粒子の半径、R1
は粉体粒子の中心から液面までの距離、bは粉体粒子の
中心から液面の中心までの距離、αは粒子と液面のなす
角度、δは接触角であり、他の実験より求めることがで
きる。
V = 2π ((R 1 2 + b 2) R 1 Cos (α + δ) - (R 1 3/3) · Cos 3 (α + δ) b · R 1 2 (Cos (α + δ) · Sin (α + δ) + (π / 2-α-δ)) - r 1 3 · (2 + Cosα) (1-Cosα) 3) (1) here, as shown in FIG. 3, r 1 is the radius of the powder particles, R 1
Is the distance from the center of the powder particle to the liquid surface, b is the distance from the center of the powder particle to the center of the liquid surface, α is the angle between the particle and the liquid surface, and δ is the contact angle. You can ask.

このとき、R1+R2=b また、(1)式より空隙飽和度(粒子間空隙に対する
保持液の体積比)Sは下記(2)式で求められる。
At this time, R 1 + R 2 = b Further, from equation (1), the degree of void saturation (volume ratio of retentate to voids between particles) S is determined by the following equation (2)

S=((V/2)/((πDP 3/6)・((1−ε)/ε)))・K(n) (2) ここで、DPは平均粒子径、εは空隙率、K(n)は1個
の粉体に他の粉体が接触する点数である。
S = ((V / 2) / ((πD P 3/6) · ((1-ε) / ε))) · K (n) (2) where, D P is the average particle diameter, epsilon void The ratio, K (n), is the number of points at which one powder contacts another powder.

空隙率εとK(n)は実験的に下記(3)式の関係に
ある。
The porosity ε and K (n) are experimentally in the relationship of the following equation (3).

ε=1.072−0.1193K(n)+0.00431K(n)(3) ここで、空隙率εは第1図に示す空隙率測定装置を用
い、、下記(4),(5)式より求まる。
ε = 1.072−0.1193K (n) + 0.00431K (n) 2 (3) Here, the porosity ε is obtained from the following formulas (4) and (5) using the porosity measuring device shown in FIG. .

ρb=m(Sc×d) (4) ρbは嵩密度、mは粒子の充填重量、Scはセルくぼみ
面積、dはトナー層の厚さである。
ρb = m (Sc × d) (4) ρb is the bulk density, m is the filling weight of the particles, Sc is the cell depression area, and d is the thickness of the toner layer.

ε=1−(ρb/ρ) (5) ρは粒子密度である。 ε = 1- (ρb / ρ P ) (5) ρ P is a particle density.

また、第3図のR1は下記(6)式より、R2は下記
(7)式により求められる。
Further, R 1 in FIG. 3 is obtained from the following equation (6), and R 2 is obtained from the following equation (7).

R1=((rCos(1−α))/Cos(α+δ)))(6) R2=r・Sinα−R1+R1・Sin(α+δ) (7) このように、現像剤(トナー)の含水特性(空隙飽和
度)を推算することができるので、現像剤の帯電電荷保
持特性や流動性を把握することができる。
R 1 = ((rCos (1 -α)) / Cos (α + δ))) (6) R 2 = r · Sinα-R 1 + R 1 · Sin (α + δ) (7) Thus, the developer (toner) Can be estimated, so that the charge retention characteristics and fluidity of the developer can be ascertained.

[実施例] 以下、本発明の実施例を図面に基づいて説明する。[Example] Hereinafter, an example of the present invention will be described with reference to the drawings.

第1図は本発明の一実施例に係る空隙率測定装置であ
る。
FIG. 1 shows a porosity measuring apparatus according to one embodiment of the present invention.

第1図において、21は下部セルであり、下部セル21は
円筒形に形成されている。下部セル21には窪み22が形成
され、窪み22内には現像剤であるトナー23が充填され
る。なお、窪み22の直径は、ここでは5.6cmに形成され
ている。
In FIG. 1, reference numeral 21 denotes a lower cell, and the lower cell 21 is formed in a cylindrical shape. A depression 22 is formed in the lower cell 21, and the depression 22 is filled with a toner 23 as a developer. Here, the diameter of the depression 22 is formed to be 5.6 cm.

24は上部セルであり、上部セル24には下部セル21の窪
み22に嵌入される円柱状の凸部25が形成されている。上
部セル24上にはおもり26が載置され、おもり26で上部セ
ル24の凸部25が窪み22に充填されたトナー23を押圧した
ときにトナー層の厚さdが、デジタルマイクロメータ7
により測定される。
Reference numeral 24 denotes an upper cell, and the upper cell 24 is formed with a columnar convex portion 25 that fits into the depression 22 of the lower cell 21. A weight 26 is placed on the upper cell 24, and when the convex portion 25 of the upper cell 24 presses the toner 23 filled in the recess 22 with the weight 26, the thickness d of the toner layer is reduced by the digital micrometer 7.
Is measured by

次に、平均粒径が8μmのポリメタクリル酸メチル球
形樹脂粉体であるトナー23を用いて環境一定の下で、空
隙率εの測定を行った。
Next, the porosity ε was measured under a constant environment using a toner 23 which is a polymethyl methacrylate spherical resin powder having an average particle diameter of 8 μm.

前記(4),(5)式により、空隙率εは0.566とな
り、前記(3)式によりK(n)は6.7となった。
The porosity ε was 0.566 according to the equations (4) and (5), and K (n) was 6.7 according to the equation (3).

α=30度、δ=10度のとき、前記(1),(2)式に
より、空隙飽和度Sは0.011となった。
When α = 30 degrees and δ = 10 degrees, the gap saturation S was 0.011 according to the equations (1) and (2).

このように、トナー23の含水特性を推算することがで
き、その結果、トナー23の帯電電荷保持特性や流動特性
を把握することができる。
As described above, the water-containing characteristics of the toner 23 can be estimated, and as a result, the charge retention characteristics and the flow characteristics of the toner 23 can be grasped.

[発明の効果] 以上説明してきたように、本発明によれば、空隙率測
定装置を用いて現像剤の空隙率を求め、粉体と粉体の間
に保持される液体の体積Vを求めることにより、含水特
性を求めることができる。その結果、現像剤の帯電電荷
保持特性や流動性を把握することができる。
[Effects of the Invention] As described above, according to the present invention, the porosity of the developer is determined using the porosity measuring device, and the volume V of the liquid held between the powders is determined. Thereby, the water-containing property can be obtained. As a result, the charge retention characteristics and fluidity of the developer can be grasped.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例に係る空隙率測定装置を示す
図、 第2図は電子写真プロセスの説明図、 第3図は粉体粒子の接触状態を示す図である。 図中、 21……下部セル、 22……窪み、 23……トナー、 24……上部セル、 25……凸部、 26……おもり、 27……デジタルマイクロメータ。
FIG. 1 is a view showing a porosity measuring apparatus according to one embodiment of the present invention, FIG. 2 is an explanatory view of an electrophotographic process, and FIG. 3 is a view showing a contact state of powder particles. In the figure, 21: lower cell, 22: hollow, 23: toner, 24: upper cell, 25: convex, 26: weight, 27: digital micrometer.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) G01N 15/08 JICSTファイル(JOIS)──────────────────────────────────────────────────続 き Continuation of the front page (58) Field surveyed (Int.Cl. 6 , DB name) G01N 15/08 JICST file (JOIS)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】デジタルマイクロメータおよび上部セルと
下部セルを有する空隙率測定装置を用いて、下部セルの
窪みに現像剤を充填し、上部セル上におもりを置いて、
充填重量と体積から空隙率εを求め、下記(1)式によ
り液の体積Vを求め、さらに下記(2)式により充填重
量と体積から求めた空隙率εを使用して現像剤の含水特
性であるである空隙飽和度Sを推算することを特徴とす
る含水特性推算方法。 V=2π((R1 2+b2)R1Cos(α+δ)−(R1 3/3)・Cos3(α+δ)b ・R1 2(Cos(α+δ)・Sin(α+δ)+(π/2−α−δ))−r1 3 ・(2+Cosα)(1−Cosα)) (1) ただし、r1は粉体粒子の半径、R1は粉体粒子の中心から
液面までの距離、bは粉体粒子の中心から液面の中心ま
での距離、αは粒子と液面のなす角度、δは接触角であ
り、他の実験より求めることができる。 S=((V/2)/((πDP 3/6)・((1−ε)/ε)))・K(n) (2) ここで、DPは平均粒子径、εは空隙率、K(n)は空隙
率εより1個の粉体に他の粉体が接触する点数で実験式
により求める。
1. Using a digital micrometer and a porosity measuring device having an upper cell and a lower cell, a developer is filled in a depression of the lower cell, and a weight is placed on the upper cell.
The porosity ε is obtained from the filling weight and the volume, the volume V of the liquid is obtained by the following equation (1), and the water content of the developer is obtained using the porosity ε obtained from the filling weight and the volume by the following equation (2). A method for estimating water-containing characteristics, comprising estimating a void saturation S that is: V = 2π ((R 1 2 + b 2) R 1 Cos (α + δ) - (R 1 3/3) · Cos 3 (α + δ) b · R 1 2 (Cos (α + δ) · Sin (α + δ) + (π / 2-α-δ)) - r 1 3 · (2 + Cosα) (1-Cosα) 3) (1) However, r 1 is the radius of the powder particles, the distance from the center of the R 1 is the powder particles to the liquid surface , B is the distance from the center of the powder particle to the center of the liquid surface, α is the angle between the particle and the liquid surface, and δ is the contact angle, which can be determined from other experiments. S = ((V / 2) / ((πD P 3/6) · ((1-ε) / ε))) · K (n) (2) where, D P is the average particle diameter, epsilon void The ratio, K (n), is obtained from the porosity ε by an empirical formula based on the number of points at which one powder contacts another powder.
JP2280024A 1990-10-18 1990-10-18 Method for estimating moisture content Expired - Lifetime JP2912701B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2280024A JP2912701B2 (en) 1990-10-18 1990-10-18 Method for estimating moisture content

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2280024A JP2912701B2 (en) 1990-10-18 1990-10-18 Method for estimating moisture content

Publications (2)

Publication Number Publication Date
JPH04155242A JPH04155242A (en) 1992-05-28
JP2912701B2 true JP2912701B2 (en) 1999-06-28

Family

ID=17619238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2280024A Expired - Lifetime JP2912701B2 (en) 1990-10-18 1990-10-18 Method for estimating moisture content

Country Status (1)

Country Link
JP (1) JP2912701B2 (en)

Also Published As

Publication number Publication date
JPH04155242A (en) 1992-05-28

Similar Documents

Publication Publication Date Title
EP0388191B1 (en) Developing device used in electrophotographic field
JPH0635303A (en) Gray scale single component nonmagnetic development system
US5659852A (en) Image forming method, image forming apparatus and process cartridge
US5233393A (en) Image forming apparatus
JP2912701B2 (en) Method for estimating moisture content
US6959162B2 (en) Electrographic image developing apparatus and process
JP2912702B2 (en) How to estimate the number of contact points
US3931792A (en) Abrasive liquid developing apparatus
US6308038B1 (en) Developing apparatus
JPH0422876A (en) Method and device for measuring resistivity of fine particles
JPH05203689A (en) Method for measuring specific charge of powder
JP3208577B2 (en) Wet development method and apparatus
JPH0792793A (en) Image forming device
JP2000338708A (en) Image forming device
JPS5983171A (en) Electrostatic charge image developer
Jones Carrier Materials for Imaging
JPH0511512A (en) Two-component magnetic brush developing method
JPS59195668A (en) Developing method
JPH01101572A (en) Electrophotographic method
JPS5895356A (en) Developing method
JPH0342675B2 (en)
JPH03171078A (en) Electrophotographic developing device
JPS58178366A (en) Method for detecting developing capacity of electrophotographic developer
JP2018112580A (en) Image forming apparatus
JPH0543274B2 (en)