JP2910023B2 - Gallium nitride based compound semiconductor light emitting device - Google Patents

Gallium nitride based compound semiconductor light emitting device

Info

Publication number
JP2910023B2
JP2910023B2 JP32776293A JP32776293A JP2910023B2 JP 2910023 B2 JP2910023 B2 JP 2910023B2 JP 32776293 A JP32776293 A JP 32776293A JP 32776293 A JP32776293 A JP 32776293A JP 2910023 B2 JP2910023 B2 JP 2910023B2
Authority
JP
Japan
Prior art keywords
gallium nitride
compound semiconductor
emitting device
type
based compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32776293A
Other languages
Japanese (ja)
Other versions
JPH07183576A (en
Inventor
元量 山田
修二 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Chemical Industries Ltd
Original Assignee
Nichia Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Chemical Industries Ltd filed Critical Nichia Chemical Industries Ltd
Priority to JP32776293A priority Critical patent/JP2910023B2/en
Publication of JPH07183576A publication Critical patent/JPH07183576A/en
Application granted granted Critical
Publication of JP2910023B2 publication Critical patent/JP2910023B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は発光ダイオード、レーザ
ーダイオード等に使用されるInXAlYGa 1-X-Y
(0≦X≦1、0≦Y≦1)が積層されてなる窒化ガリウ
ム系化合物半導体発光素子に係り、特に1チップで多色
発光可能にできる発光素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light emitting diode and a laser.
-In used for diodes, etc.XAlYGa 1-XYN
(0 ≦ X ≦ 1, 0 ≦ Y ≦ 1)
Multi-color compound semiconductor light-emitting devices, especially with one chip
The present invention relates to a light-emitting element which can emit light.

【0002】[0002]

【従来の技術】ディスプレイ光源の一つとして発光ダイ
オード(LED)が知られている。一般にLEDを用い
てディスプレイのような多色発光を行う場合、赤、緑、
青色各発光色のLEDを複数個組み合わせて1画素を形
成するか、あるいはLEDのステム上に赤、緑、青色の
各発光チップを複数個組み合わせて一つのLED画素と
する試みが成されている。
2. Description of the Related Art A light emitting diode (LED) is known as one of display light sources. In general, when performing multi-color light emission such as a display using an LED, red, green,
Attempts have been made to form one pixel by combining a plurality of LEDs of each blue emission color, or to combine a plurality of red, green, and blue light-emitting chips on an LED stem to form one LED pixel. .

【0003】しかしながら、前者の場合では1画素に設
置したLED間の距離が離れているため、近距離からデ
ィスプレイを観測する際には混色が不十分になる欠点が
ある。また、各LEDレンズの集光形状のため視認方向
によって、表示色が変化してしまい混色が不十分となる
欠点がある。混色をよくするため、例えばLEDの樹脂
モールドに光拡散剤を添加するか、あるいはLEDの前
面に光拡散板を設置すると、外部量子効率が低下してし
まう。一方、後者の場合は混色を行う際の外部量子効率
の点では前者よりも有利であるが、何分一画素を構成す
るLEDが大きくなってしまい、精細な画像を得ること
が困難である。従って現在LEDを用いたディスプレイ
は、広告用、スタジアムのディスプレイ等のように数メ
ートル、あるいは数十メートル以上離れた位置から視認
するものしか実用化されていないのが現状である。つま
り、従来のLEDディスプレイは、どうしても1画素を
構成するLEDが大きくなり接近した位置で混色が十分
にできなくなるので、かなり離れた位置でしか見ること
ができなかった。
However, in the former case, since the distance between the LEDs installed in one pixel is large, there is a disadvantage that the color mixture becomes insufficient when the display is observed from a short distance. Further, there is a disadvantage that the display color changes depending on the viewing direction due to the condensing shape of each LED lens, and the color mixture becomes insufficient. If, for example, a light diffusing agent is added to the resin mold of the LED or a light diffusing plate is provided on the front surface of the LED in order to improve the color mixture, the external quantum efficiency is reduced. On the other hand, the latter case is more advantageous than the former in terms of external quantum efficiency when performing color mixing, but the LEDs constituting one pixel are increased by a fraction, making it difficult to obtain a fine image. Therefore, at present, only displays using LEDs that can be viewed from a distance of several meters or tens of meters or more, such as displays for advertisements and stadiums, are currently in practical use. In other words, in the conventional LED display, the LEDs that constitute one pixel are inevitably large and color mixing cannot be sufficiently performed at a close position, so that the LED display can be viewed only at a considerably distant position.

【0004】[0004]

【発明が解決しようとする課題】LEDを用いた多色発
光のディスプレイを高精細とし、例えば数十センチ離れ
た位置からでも均一に混色が行うことができれば、その
用途を広告だけでなく、他の分野にも大きく広げること
が可能となる。従って本発明の目的は、多色発光LED
ディスプレイの一画素を小さくすることができる発光素
子を提供することにより、近接した位置からでも均一に
混色された映像を得ることができるディスプレイを実現
することにある。
If a multi-color light-emitting display using LEDs is made to have high definition and, for example, color mixing can be performed even from a position distant from several tens of centimeters, the use thereof is not limited to advertisements. It is possible to greatly expand to the field of. Accordingly, an object of the present invention is to provide a multicolor LED.
An object of the present invention is to provide a display capable of obtaining a uniformly mixed image even from a close position by providing a light-emitting element which can reduce one pixel of the display.

【0005】[0005]

【課題を解決するための手段】我々はLEDを構成する
半導体材料の中でも特にワイドギャップ半導体と知られ
ている窒化ガリウム系化合物半導体を用い、その半導体
一種類で多色発光を可能とする発光素子を見いだした。
即ち、本発明の発光素子は、基板上にInXAlYGa
1-X-YN(0≦X≦1、0≦Y≦1)で表される窒化ガリ
ウム系化合物半導体が積層されてなる窒化ガリウム系化
合物半導体発光素子において、前記発光素子にはバンド
ギャップエネルギーが異なり、かつInを含む窒化ガリ
ウム系化合物半導体層を有する活性層が少なくとも二層
以上形成されており、それぞれの活性層がn型及びp型
のクラッド層で挟まれたダブルへテロ構造を有すること
を特徴とする。さらに、前記ダブルへテロ構造は、それ
ぞれ半絶縁性の窒化ガリウム系化合物半導体を介して、
単一構造毎に分離されて形成されていることが望まし
い。
SUMMARY OF THE INVENTION We use a gallium nitride-based compound semiconductor known as a wide-gap semiconductor among semiconductor materials constituting an LED, and a light emitting element capable of emitting multicolor light with one kind of the semiconductor. Was found.
That is, the light-emitting device of the present invention has In X Al Y Ga
In a gallium nitride-based compound semiconductor light-emitting device in which gallium nitride-based compound semiconductors represented by 1-XYN (0 ≦ X ≦ 1, 0 ≦ Y ≦ 1) are laminated, the light-emitting device has a different band gap energy. And gallium nitride containing In
At least two or more active layers having a compound semiconductor layer are formed, and each of the active layers is an n-type or a p-type.
Characterized by having a double hetero structure sandwiched between the cladding layers . Further, the double heterostructure is
Through a semi-insulating gallium nitride compound semiconductor,
It is desirable that they are formed separately for each single structure.
No.

【0006】[0006]

【作用】InXAlYGa1-X-YNはそのバンドギャップ
エネルギーが最大のAlNで6.2eV、最小のInN
で1.89eVあり、このバンドギャップエネルギーの
バンド間発光のみを利用すると、理論的にはAlNから
InNまで発光波長をおよそ200nm〜656nmま
で変化させることができる。そしてこの半導体を活性層
として、1チップの中に複数形成し、それぞれの活性層
を同じく窒化ガリウム系化合物半導体よりなるクラッド
層で挟むことにより、活性層を独自に発光させることが
可能となる。但し、同一素子内において、活性層はバン
ドギャップエネルギーの大きい方、つまり発光波長の短
い活性層ほど、発光観測面側に形成されている方が好ま
しい。なぜなら、逆に短波長の活性層の上に長波長の活
性層があると、発光の際、短波長が長波長に吸収され
て、発光観測面側に取り出しにくいからである。
The band gap energy of In X Al Y Ga 1 -XYN is 6.2 eV for AlN having the maximum band gap energy, and InN is the minimum for InN.
When only the inter-band emission of this band gap energy is used, the emission wavelength can be theoretically changed from AlN to InN from about 200 nm to 656 nm. Then, a plurality of such semiconductors are formed as an active layer in one chip, and each active layer is sandwiched between cladding layers made of a gallium nitride-based compound semiconductor, whereby the active layer can emit light independently. However, in the same device, it is preferable that the active layer having a larger band gap energy, that is, the active layer having a shorter emission wavelength be formed on the emission observation surface side. On the contrary, if there is an active layer having a long wavelength on the active layer having a short wavelength, the short wavelength is absorbed by the long wavelength at the time of light emission, and it is difficult to take out to the emission observation surface side.

【0007】[0007]

【実施例】以下実施例で本発明の発光素子を詳説する。
図1は本願の一実施例の発光素子の構造を示す模式断面
図であり、1はサファイアよりなる基板、2はn型Al
0.23In0.66Ga0.11Nよりなるクラッド層、3はn
型、あるいはp型のIn0.89Ga0.11Nよりなる活性
層、4はp型Al0.23In0.66Ga0.11Nよりなるクラ
ッド層、5はn型、あるいはp型のIn0.63Ga0.37N
よりなる活性層、6はp型Al0.23In0.66Ga0.11N
よりなるクラッド層、7はn型、あるいはp型のAl0.
13In0.63Ga0.24Nよりなる活性層、最上層である8
はp型Al0.23In0.66Ga0.11Nよりなるクラッド層
であり、発光観測面側をp型Al0.23In0.66Ga0.11
Nクラッド層8側としている。この発光素子は各クラッ
ド層に設けられた電極α、β、γ、δに通電することに
より、各活性層3、5、7が発光する構造としている。
EXAMPLES The light emitting device of the present invention will be described in detail with reference to the following examples.
FIG. 1 is a schematic cross-sectional view showing the structure of a light emitting device according to one embodiment of the present application, wherein 1 is a substrate made of sapphire, and 2 is n-type Al.
A cladding layer made of 0.23In0.66Ga0.11N,
-Type or p-type active layer of In0.89Ga0.11N, 4 is a cladding layer of p-type Al0.23In0.66Ga0.11N, 5 is an n-type or p-type In0.63Ga0.37N
The active layer 6 is made of p-type Al0.23In0.66Ga0.11N.
The cladding layer 7 is made of n-type or p-type AlO.
Active layer made of 13In0.63Ga0.24N, top layer 8
Is a cladding layer made of p-type Al0.23In0.66Ga0.11N, and the emission observation surface side is p-type Al0.23In0.66Ga0.11N.
It is on the N clad layer 8 side. This light-emitting element has a structure in which each of the active layers 3, 5, and 7 emits light when a current is applied to the electrodes α, β, γ, and δ provided in each clad layer.

【0008】これらの窒化ガリウム系化合物半導体はノ
ンドープでもn型となる性質があるが、好ましいn型と
するためにSi、Ge、Te、Se等のn型ドーパント
をドープして結晶成長させることがさらに好ましい。ま
た、p型とするためにはZn、Mg、Ca、Sr等のp
型ドーパントであるII族元素をドープしてp型特性を示
すように結晶成長させるか、あるいは特開平5−183
189号に開示したように、前記p型ドーパントをドー
プした窒化ガリウム系化合物半導体を400℃以上でア
ニーリングする必要がある。特に、活性層3、4、5に
は前記n型ドーパントおよび/またはp型ドーパントを
ドープしてn型あるいはp型とすることにより発光強度
を向上させることができ、さらに発光波長を変えること
もできる。
[0008] These gallium nitride-based compound semiconductors have the property of becoming n-type even if they are non-doped. In order to obtain a preferable n-type, it is necessary to grow a crystal by doping an n-type dopant such as Si, Ge, Te, or Se. More preferred. Further, in order to obtain a p-type, p such as Zn, Mg, Ca, Sr, etc.
Doping a group II element as a type dopant to grow the crystal so as to exhibit p-type characteristics;
As disclosed in Japanese Patent No. 189, it is necessary to anneal a gallium nitride-based compound semiconductor doped with the p-type dopant at 400 ° C. or higher. In particular, the active layers 3, 4, and 5 can be doped with the n-type dopant and / or the p-type dopant to be n-type or p-type, so that the emission intensity can be improved and the emission wavelength can be changed. it can.

【0009】図1の発光素子において、バンドギャップ
エネルギーは活性層3で2.0eV、活性層5で2.3
eV、活性層7で2.7eVであり、その他のクラッド
層は全て3.0eVである。つまり活性層3はおよそ6
20nm、活性層5は539nm、活性層7は459n
mのバンド間発光を示す。
In the light emitting device shown in FIG. 1, the bandgap energy of the active layer 3 is 2.0 eV, and the bandgap energy of the active layer 5 is 2.3 eV.
eV and 2.7 eV for the active layer 7, and 3.0 eV for all other cladding layers. That is, the active layer 3 is approximately 6
20 nm, active layer 5 is 539 nm, active layer 7 is 459 n
m shows the emission between bands.

【0010】以上のような発光素子の電極α、β、γ、
δに表1に示す電圧を印可して発光させ、発光観測面側
から観測される色調を同じく表1に示す。表1におい
て、Rはレッド、Gはグリーン、Bはブルー、Sはシア
ン、Mはマゼンタ、Yはイエロー、Wはホワイトの各発
光色を示す。
[0010] The electrodes α, β, γ,
The voltage shown in Table 1 was applied to δ to emit light, and the color tone observed from the emission observation surface side is also shown in Table 1. In Table 1, R represents red, G represents green, B represents blue, S represents cyan, M represents magenta, Y represents yellow, and W represents white.

【0011】[0011]

【表1】 [Table 1]

【0012】表1に示すように、各電極に所定の電圧を
印可することにより、クラッド層で挟まれた各活性層が
発光するので、一つのチップ内で均一に混色を行うこと
ができる。
As shown in Table 1, when a predetermined voltage is applied to each electrode, each active layer sandwiched by the cladding layers emits light, so that color mixing can be performed uniformly within one chip.

【0013】[実施例2] 図2は本願の他の実施例に係る発光素子の構造を示す模
式断面図であり、図1と同一符号の部分は同一部材を指
している。この図は各活性層を有するダブルへテロ構造
の素子が、それぞれ半絶縁性のGaN層9(以下、i型
GaNという。)により、構造毎に分離されていること
を示している。つまり、バンドギャップエネルギーの異
なる活性層をそれぞれクラッド層で挟み、クラッド層+
活性層+クラッド層よりなる単一の発光素子をi型Ga
Nを介して基板上に3つ積層した構造としている。
Embodiment 2 FIG. 2 is a schematic sectional view showing a structure of a light emitting device according to another embodiment of the present invention, and the same reference numerals as those in FIG. 1 denote the same members . This figure shows a double heterostructure with each active layer
Indicate that the elements are separated for each structure by a semi-insulating GaN layer 9 (hereinafter referred to as i-type GaN). That is, the active layers having different band gap energies are sandwiched between the cladding layers, and the cladding layer +
A single light-emitting element consisting of an active layer
It has a structure in which three layers are stacked on a substrate via N.

【0014】i型GaN層9は、pクラッド層4を結晶
成長させた後、連続して例えばGaNを成長させながら
p型ドーパントをドープすることにより形成できる。そ
の層をi型にするか、p型にするかは、成長条件によっ
て変更可能である。また発光観測面側に対し、この半絶
縁層のバンドギャップエネルギーを活性層よりも大きく
すると、発光が吸収されずに外部に取り出すことができ
る。(なお、GaNのバンドギャップエネルギーは3.
4eV)
The i-type GaN layer 9 can be formed by growing a crystal of the p-cladding layer 4 and then continuously doping a p-type dopant while growing, for example, GaN. Whether the layer is i-type or p-type can be changed depending on the growth conditions. When the band gap energy of the semi-insulating layer is larger than that of the active layer with respect to the emission observation surface side, the emission can be extracted outside without being absorbed. (The band gap energy of GaN is 3.
4 eV)

【0015】図2の発光素子では(クラッド層2+活性
層3+クラッド層4)と、(クラッド層4+活性層5+
クラッド層6)と、(クラッド層6+活性層7+クラッ
ド層8)とがそれぞれ単独の発光素子として、i型Ga
N層9を介して基板上に積層されているので、それぞれ
の電極に電流を流すことにより、各発光素子を自由に発
光させることができる。
In the light emitting device shown in FIG. 2, (cladding layer 2 + active layer 3 + cladding layer 4) and (cladding layer 4 + active layer 5+
The cladding layer 6) and the (cladding layer 6 + active layer 7 + cladding layer 8) are i-type Ga
Since the light-emitting elements are stacked on the substrate with the N layer 9 interposed therebetween, each light-emitting element can emit light freely by supplying a current to each electrode.

【0016】[0016]

【発明の効果】以上説明したように、本願の発光素子は
1チップ、またはウェーハ単位で多色発光が可能である
ので、LEDディスプレイにした際にも、一画素の大き
さを小さくすることができ高精細な画面を得ることがで
きる。またウェーハの中で単位画素を多数作成して混色
できるので、接近した位置でディスプレイを観察しても
ムラのない画像を得ることができる。従って、本願の発
光素子は、将来民生用LEDディスプレイを提供する上
でも非常に利用価値が大きい。
As described above, since the light emitting device of the present invention can emit multicolor light in units of one chip or wafer, it is possible to reduce the size of one pixel even in the case of LED display. And a high-definition screen can be obtained. Further , since a large number of unit pixels can be formed and mixed in a wafer, an image without unevenness can be obtained even when the display is observed at a close position. Therefore, the light-emitting element of the present application is very useful in providing a consumer LED display in the future.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本願の一実施例の発光素子の構造を示す模式
断面図。
FIG. 1 is a schematic cross-sectional view illustrating a structure of a light-emitting element according to an embodiment of the present invention.

【図2】 本願の他の実施例の発光素子の構造を示す模
式断面図。
FIG. 2 is a schematic cross-sectional view illustrating a structure of a light emitting device according to another embodiment of the present application.

【符号の説明】[Explanation of symbols]

1・・・・・サファイア基板 2・・・・・n型Al0.23In0.66Ga0.11Nクラッド
層 3・・・・・n型、あるいはp型In0.89Ga0.11N活
性層 4・・・・・p型Al0.23In0.66Ga0.11Nクラッド
層 5・・・・・n型、あるいはp型In0.63Ga0.37N活
性層 6・・・・・p型Al0.23In0.66Ga0.11Nクラッド
層 7・・・・・n型、あるいはp型Al0.13In0.63Ga
0.24N活性層 8・・・・・p型Al0.23In0.66Ga0.11Nクラッド
層 9・・・・・i型GaN層
1 ... Sapphire substrate 2 ... N-type Al0.23In0.66Ga0.11N cladding layer 3 ... N-type or p-type In0.89Ga0.11N active layer 4 ... p-type Al0.23In0.66Ga0.11N cladding layer 5 ... n-type or p-type In0.63Ga0.37N active layer 6 ... p-type Al0.23In0.66Ga0.11N cladding layer 7 ... ... n-type or p-type Al0.13In0.63Ga
0.24N active layer 8 ... p-type Al0.23In0.66Ga0.11N cladding layer 9 ... i-type GaN layer

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) H01L 33/00 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 6 , DB name) H01L 33/00

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 基板上にInXAlYGa1-X-YN(0≦X
≦1、0≦Y≦1)で表される窒化ガリウム系化合物半
導体が積層されてなる窒化ガリウム系化合物半導体発光
素子において、前記発光素子にはバンドギャップエネル
ギーが異なり、かつInを含む窒化ガリウム系化合物半
導体層を有する活性層が少なくとも二層以上形成されて
おり、それぞれの活性層がn型及びp型のクラッド層で
挟まれたダブルへテロ構造を有することを特徴とする窒
化ガリウム系化合物半導体発光素子。
1. An In X Al Y Ga 1 -XYN (0 ≦ X
In ≦ 1,0 ≦ Y ≦ 1) a gallium nitride-based compound semiconductor light-emitting device of gallium nitride compound semiconductor are laminated represented by the different band gap energy to the light emitting element, and a gallium nitride-based containing In Compound half
At least two or more active layers having a conductor layer are formed, and each active layer is an n-type and p-type cladding layer.
A gallium nitride based compound semiconductor light emitting device having a double hetero structure sandwiched therebetween .
【請求項2】 前記ダブルへテロ構造は、それぞれ半絶
縁性の窒化ガリウム系化合物半導体を介して、単一構造
毎に分離されて形成されていることを特徴とする請求項
1に記載の窒化ガリウム系化合物半導体発光素子。
2. The semiconductor device according to claim 1, wherein each of the double hetero structures has a single structure via a semi-insulating gallium nitride compound semiconductor.
The gallium nitride-based compound semiconductor light-emitting device according to claim 1, wherein the gallium nitride-based compound semiconductor light-emitting device is formed separately from each other .
【請求項3】 前記活性層はバンドギャップエネルギー
の大きい方が発光観測面側に形成されていることを特徴
とする請求項1または2に記載の窒化ガリウム系化合物
半導体発光素子。
3. The gallium nitride-based compound semiconductor light-emitting device according to claim 1, wherein the active layer having a larger band gap energy is formed on a light emission observation surface side.
【請求項4】 前記活性層にはn型ドーパントおよび/
またはp型ドーパントがドープされていることを特徴と
する請求項1乃至3の内のいずれか1項に記載の窒化ガ
リウム系化合物半導体発光素子。
4. An active layer comprising an n-type dopant and / or
4. The gallium nitride-based compound semiconductor light emitting device according to claim 1, wherein the device is doped with a p-type dopant . 5.
JP32776293A 1993-12-24 1993-12-24 Gallium nitride based compound semiconductor light emitting device Expired - Fee Related JP2910023B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32776293A JP2910023B2 (en) 1993-12-24 1993-12-24 Gallium nitride based compound semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32776293A JP2910023B2 (en) 1993-12-24 1993-12-24 Gallium nitride based compound semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JPH07183576A JPH07183576A (en) 1995-07-21
JP2910023B2 true JP2910023B2 (en) 1999-06-23

Family

ID=18202708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32776293A Expired - Fee Related JP2910023B2 (en) 1993-12-24 1993-12-24 Gallium nitride based compound semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP2910023B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11776448B2 (en) 2019-04-10 2023-10-03 Samsung Electronics Co., Ltd. Light emitting diode, manufacturing method of light emitting diode and display device including light emitting diode

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6996150B1 (en) 1994-09-14 2006-02-07 Rohm Co., Ltd. Semiconductor light emitting device and manufacturing method therefor
JPH09153644A (en) * 1995-11-30 1997-06-10 Toyoda Gosei Co Ltd Group-iii nitride semiconductor display device
US7385574B1 (en) 1995-12-29 2008-06-10 Cree, Inc. True color flat panel display module
KR100413803B1 (en) * 1996-07-16 2004-04-14 삼성전자주식회사 Multi-color led and fabricating method thereof
US6031858A (en) * 1996-09-09 2000-02-29 Kabushiki Kaisha Toshiba Semiconductor laser and method of fabricating same
JPH10321906A (en) * 1997-05-16 1998-12-04 Seiwa Electric Mfg Co Ltd Light-emitting diode and display device using the same
JPH11135838A (en) * 1997-10-20 1999-05-21 Ind Technol Res Inst White-color light-emitting diode and manufacture thereof
JP3912043B2 (en) 2001-04-25 2007-05-09 豊田合成株式会社 Group III nitride compound semiconductor light emitting device
JP3758562B2 (en) * 2001-11-27 2006-03-22 日亜化学工業株式会社 Nitride semiconductor multicolor light emitting device
JP4307113B2 (en) 2002-03-19 2009-08-05 宣彦 澤木 Semiconductor light emitting device and manufacturing method thereof
CN1324772C (en) * 2002-06-19 2007-07-04 日本电信电话株式会社 Semiconductor light-emitting device
KR100664980B1 (en) * 2004-03-11 2007-01-09 삼성전기주식회사 Monolithic white light emitting device
JP4653671B2 (en) * 2005-03-14 2011-03-16 株式会社東芝 Light emitting device
JP2006303259A (en) * 2005-04-22 2006-11-02 Ishikawajima Harima Heavy Ind Co Ltd Nitride semiconductor light-emitting device and method of growing nitride semiconductor
CN101263610B (en) * 2005-09-30 2013-03-13 首尔Opto仪器股份有限公司 Light emitting device having vertically stacked light emitting diodes
JP2007251193A (en) * 2007-05-11 2007-09-27 Seiwa Electric Mfg Co Ltd Light emitting diode and display device using the same
JP2009081379A (en) 2007-09-27 2009-04-16 Showa Denko Kk Group iii nitride semiconductor light-emitting device
JP5008631B2 (en) * 2008-10-14 2012-08-22 シャープ株式会社 Phosphor, method for producing the same, and light emitting device using the same
US8519378B2 (en) 2008-10-17 2013-08-27 National University Corporation Hokkaido University Semiconductor light-emitting element array including a semiconductor rod
JP5263881B2 (en) * 2008-12-26 2013-08-14 昭和電工株式会社 Group III nitride semiconductor light emitting device
KR102513080B1 (en) 2016-04-04 2023-03-24 삼성전자주식회사 Led lighting source module and display apparatus
KR102579311B1 (en) 2018-07-13 2023-09-15 삼성전자주식회사 Light emitting diode, manufacturing method of light emitting diode and display device including a light emitting diode
US11621253B2 (en) * 2018-11-02 2023-04-04 Seoul Viosys Co., Ltd. Light emitting device
WO2020121904A1 (en) * 2018-12-14 2020-06-18 国立大学法人大阪大学 Display device and method of manufacturing same
KR102588011B1 (en) * 2022-02-18 2023-10-12 명지대학교 산학협력단 Light emitting diode for realizing multi-color light by using trench without using phosphor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11776448B2 (en) 2019-04-10 2023-10-03 Samsung Electronics Co., Ltd. Light emitting diode, manufacturing method of light emitting diode and display device including light emitting diode

Also Published As

Publication number Publication date
JPH07183576A (en) 1995-07-21

Similar Documents

Publication Publication Date Title
JP2910023B2 (en) Gallium nitride based compound semiconductor light emitting device
US7868316B2 (en) Nitride semiconductor device
JP2791448B2 (en) Light emitting diode
US8399876B2 (en) Semiconductor dies, light-emitting devices, methods of manufacturing and methods of generating multi-wavelength light
US8466449B2 (en) Nitride semiconductor device
US7732826B2 (en) Semiconductor and method of semiconductor fabrication
US8148742B2 (en) Type II broadband or polychromatic LEDs
JP3298390B2 (en) Method for manufacturing nitride semiconductor multicolor light emitting device
US20070007541A1 (en) White light emitting device
JP2007123731A (en) Semiconductor light-emitting element and device thereof
US7915607B2 (en) Nitride semiconductor device
TW200917605A (en) Laser light emitting device
JP2000133883A (en) Nitride semiconductor element
JP3758562B2 (en) Nitride semiconductor multicolor light emitting device
JPH10261818A (en) Light-emitting semiconductor device
JPH0653549A (en) Semiconductor light emitting element and fabrication thereof
JP2001298215A (en) Light-emitting element
KR101123011B1 (en) Nitride Semiconductor Device
JP2976951B2 (en) Display device with nitride semiconductor light emitting diode
JP2004260111A (en) Semiconductor light-emitting element and semiconductor light-emitting device using the same
CN209785931U (en) LED light source
US11264535B1 (en) Pixel device and display using a monolithic blue/green LED combined with red luminescence materials
US20230261135A1 (en) Multi-quantum well structure, light emitting diode and light emitting component
US20230238481A1 (en) Pixel for rgcb micro-display having vertically stacked sub-pixels
US20230282768A1 (en) LED Structure and Manufacturing Method thereof, and LED Device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees