JP2909765B2 - Zoom lens with short overall length - Google Patents

Zoom lens with short overall length

Info

Publication number
JP2909765B2
JP2909765B2 JP2220966A JP22096690A JP2909765B2 JP 2909765 B2 JP2909765 B2 JP 2909765B2 JP 2220966 A JP2220966 A JP 2220966A JP 22096690 A JP22096690 A JP 22096690A JP 2909765 B2 JP2909765 B2 JP 2909765B2
Authority
JP
Japan
Prior art keywords
lens
group
variable
overall length
object side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2220966A
Other languages
Japanese (ja)
Other versions
JPH04104114A (en
Inventor
伸一 三原
勉 鵜澤
敦次郎 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2220966A priority Critical patent/JP2909765B2/en
Priority to US07/712,980 priority patent/US5189558A/en
Publication of JPH04104114A publication Critical patent/JPH04104114A/en
Application granted granted Critical
Publication of JP2909765B2 publication Critical patent/JP2909765B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/144Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only
    • G02B15/1441Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being positive
    • G02B15/144113Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being positive arranged +-++

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、全長の短い大口径の変倍レンズに関するも
のである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a large-aperture zoom lens having a short overall length.

[従来の技術] 最近、ビデオカメラの小型軽量化、低コスト化の進展
は著しく、カムコーダー市場は大幅に活性化し、一般の
ユーザーに急速に普及しつつある。
[Related Art] In recent years, the size and weight of video cameras have been remarkably reduced, and the camcorder market has been significantly activated and rapidly spread to general users.

ビデオカメラは、電気回路基板,アクチュエーター
系,光学系からなっており、従来特に電気系を中心に小
型,低コスト化が進められてきたが、最近になって撮像
光学系の大幅な小型化が急進展している。撮像光学系の
小型,低コスト化は、イメージャーの小型化技術、回転
対称非球面加工技術、TTL自動合焦検出技術の進展を効
果的に利用した新しいタイプの変倍レンズの開発がなさ
れている。この新しい変倍レンズの一つとして、特開昭
62−178917号公報,特開平2−39011号公報,特開平2
−53017号公報等に記載されているレンズ系のように、
正の屈折力を有する第1群と、負の屈折力を有する第2
群とからなる変倍群と、非球面を有する正の単レンズの
みからなり常時固定の第3群と、少なくとも1枚の負レ
ンズを有し全体として2枚乃至3枚のレンズよりなり変
倍時および被写体距離変化等による焦点位置調節のため
に可動の第4群ととり構成されたレンズ系が知られてい
る。このようにコンペンセーターを兼ねたリアーフォー
カスを採用したり非球面を導入することによって構成枚
数を10枚以下に減らし、それによって余分なスペースを
減らすことが出来るので、前玉径を大幅に小さく出来る
か全長を短くすることも可能である。
Video cameras consist of an electric circuit board, an actuator system, and an optical system. Conventionally, miniaturization and cost reduction have been promoted especially in the electric system in recent years. It is making rapid progress. In order to reduce the size and cost of the imaging optical system, a new type of zoom lens has been developed that effectively utilizes the advances in imager miniaturization technology, rotationally symmetric aspherical surface processing technology, and TTL automatic focus detection technology. I have. As one of the new zoom lenses,
JP-A-62-178917, JP-A-2-39011, JP-A-2-39011
As in the lens system described in -53017,
A first group having a positive refractive power and a second group having a negative refractive power
A zooming group consisting of a group, a third group consisting of only a positive single lens having an aspheric surface, which is fixed at all times, and two to three lenses as a whole having at least one negative lens There is known a lens system configured as a movable fourth group for adjusting a focal position according to time and a change in subject distance. By adopting a rear focus that also serves as a compensator or introducing an aspheric surface in this way, the number of components can be reduced to 10 or less, which can reduce the extra space, so the front lens diameter can be significantly reduced It is also possible to shorten the overall length.

しかし、上記の従来例よりも更に小型,軽量化するこ
とへの要望が強く特にレンズ系全長の一層短縮が望まれ
ている。
However, there is a strong demand for further reduction in size and weight as compared with the above-described conventional example, and in particular, further reduction in the overall length of the lens system is desired.

[発明が解決しようとする課題] 前述の従来例は、バックフォーカスが必要以上に長く
そのため全長が十分短くなったとは言い難い。特に第3
群,第4群のレンズ構成を工夫することによって全長を
一層短くする可能性がある。
[Problems to be Solved by the Invention] In the above-mentioned conventional example, it is hard to say that the back focus is longer than necessary and the overall length is sufficiently short. Especially the third
By devising the lens configuration of the group and the fourth group, the total length may be further shortened.

本発明は、以上の点に鑑みなされたもので前述のよう
な4群構成のレンズ系で、第3群と第4群のレンズ構成
を工夫することによって全長が極めて短く、前玉径が小
さい小型軽量低コストな高変倍率の大口径変倍レンズを
提供することを目的とするものである。
The present invention has been made in view of the above points, and is a four-unit lens system as described above. By devising the third and fourth lens units, the overall length is extremely short and the front lens diameter is small. It is an object of the present invention to provide a large-aperture zoom lens having a small size, light weight and low cost and a high zoom ratio.

[課題を解決するための手段] 本発明の変倍レンズは、前記の目的を達成するため
に、物体側から順に、正の屈折力を有する第1群と負の
屈折力を有する第2群とよりなる変倍系と、正の屈折力
を有し常時固定の第3群と、正の屈折力を有し変倍時お
よび被写体距離の変化時の焦点位置調節のために可動の
第4群とより構成され、第3群又は第4群の少なくとも
一つのレンズに非球面又は不均質媒質を用いたレンズ系
で、第3群を物体側から順に1枚又は2枚の正レンズと
像側に強い凹面を向けた1枚の負レンズとにて構成し、
第4群を1枚の両凸レンズのみにて構成し、更に次の条
件(1)乃至条件(3)を満足するようにしたものであ
る。
[Means for Solving the Problems] To achieve the above object, a variable power lens according to the present invention comprises, in order from the object side, a first group having a positive refractive power and a second group having a negative refractive power. A third lens unit having a positive refractive power and constantly fixed, and a fourth movable lens having a positive refractive power and movable for focal position adjustment during zooming and when the subject distance changes. A lens system comprising an aspheric surface or an inhomogeneous medium for at least one lens of the third group or the fourth group, wherein one or two positive lenses and an image of the third group are sequentially arranged from the object side. Consists of one negative lens with a strong concave surface on the side,
The fourth unit includes only one biconvex lens, and satisfies the following conditions (1) to (3).

ただしfW,fTは広角端および望遠端における全系の焦
点距離、R31,R36は夫々第3群の最も物体側の面および
最も像側の面の曲率半径、N31,N33は夫々第3群の最も
物体側のレンズおよび最も像側のレンズの屈折率、DIII
は第3群の最も物体側の面から最も像側の面までの距
離、DIVは第4群の肉厚である。
Where f W and f T are the focal lengths of the entire system at the wide-angle end and the telephoto end, R 31 and R 36 are the radii of curvature of the surface closest to the object side and the surface closest to the image side of the third group, respectively, N 31 and N 33 Is the refractive index of the lens closest to the object side and the lens closest to the image side in the third group, respectively, and D III
Is the distance from the surface closest to the object in the third group to the surface closest to the image, and DIV is the thickness of the fourth group.

本発明のレンズ系のレンズ構成上の特徴は、従来例に
比べて、第3群にてかなり光束を収斂させ光束径を小さ
くしてからほぼアフォーカルに射出し、これを第4群に
入射させるようにしたため第4群の焦点距離を短く出
来、バックフォーカスを短くすることが出来、これによ
ってレンズ系の全長を短くし得るようにした。つまり第
3群,第4群を上記のようにして両群のトータルの全長
を短くし全系の全長を短くし得るようにした。このよう
に第3群に入射する発散光束を急速に収斂させるために
は、第3群の最も物体側の面に強い収斂作用を持たせね
ばならない。
The feature of the lens configuration of the lens system of the present invention is that, compared with the conventional example, the third lens group converges the light beam considerably, makes the light beam diameter smaller, emits the light beam almost afocally, and makes it incident on the fourth group. As a result, the focal length of the fourth unit can be shortened, and the back focus can be shortened, whereby the overall length of the lens system can be shortened. That is, the total length of the third and fourth groups was shortened as described above so that the total length of the entire system could be shortened. In order to rapidly converge the divergent light beam incident on the third lens unit, the surface of the third lens unit closest to the object must have a strong convergence effect.

上記の理由から第3群の最も物体側の面のパワーを規
定したのが条件(1)である。
The condition (1) defines the power of the surface closest to the object in the third lens group for the above reason.

この条件(1)の上限を越えて前記の面のパワーが弱
くなりすぎると第3群で十分に光束を収斂させることが
出来ず、レンズ系の全長を短くすることが出来ない。ま
た条件(1)の下限を越えて前記の面のパワーが強くな
りすぎると非球面や不均質媒質を用いても球面収差やコ
マ収差を良好に補正することが困難になる。
If the power of the surface becomes too weak beyond the upper limit of the condition (1), the third lens unit cannot sufficiently converge the light beam, and the total length of the lens system cannot be shortened. If the power of the surface becomes too strong beyond the lower limit of the condition (1), it becomes difficult to satisfactorily correct spherical aberration and coma even when an aspherical surface or an inhomogeneous medium is used.

第3群内で急速に収斂させた光束をほぼアフォーカル
にて射出させ第4群に入射するようにしないと、第4群
にて焦点調節を行なった時球面収差やコマ収差の変動が
大きくなりすぎるので好ましくない。このようにほぼア
フォーカルにて射出するようにするためには、第3群内
では十分に光束を収束する必要があり強い発散力を持た
せる面は最も像側の面にしなければならない。
Unless the light flux rapidly converged in the third lens group is emitted almost afocally and made not to enter the fourth lens group, fluctuations in spherical aberration and coma become large when focusing is performed in the fourth lens group. It is not preferable because it becomes too much. In order to emit light almost afocal in this way, it is necessary to sufficiently converge the light flux in the third lens unit, and the surface having a strong diverging power must be the surface closest to the image.

条件(2)は、この第3群の最も像側の面のパワーを
規定したものである。この条件(2)の上限を越えてこ
の面のパワーが強くなりすぎると第3群より射出する光
束が発散光になり、第4群による焦点調節により球面収
差,コマ収差の変動が大きくなりやすいばかりか、バッ
クフォーカスが長くなり全長が長くなる。又下限を越え
前記の面のパワーが弱くなりすぎると第3群により急速
に収斂させた光束をほぼアフォーカルにて射出させるこ
とが出来なくなり、焦点調節による球面収差,コマ収差
の変動が大きくなり好ましくない。
The condition (2) defines the power of the surface on the most image side of the third lens unit. If the power on this surface exceeds the upper limit of the condition (2) and becomes too strong, the luminous flux emitted from the third lens unit becomes divergent light, and the fluctuation of spherical aberration and coma aberration tends to increase due to the focus adjustment by the fourth lens unit. Not only that, the back focus becomes longer and the overall length becomes longer. If the power of the surface becomes too weak below the lower limit, the light flux rapidly converged by the third lens unit cannot be emitted almost afocally, and the fluctuation of spherical aberration and coma due to focus adjustment becomes large. Not preferred.

なお、第3群の面R31,R36が非球面の場合や最も物体
側,最も像側のレンズが不均質媒質の場合は、条件
(1),(2)のR31,R36,N31,N33の値は、光軸近傍の
値を用いる。
When the surfaces R 31 and R 36 of the third lens unit are aspherical, or when the lens closest to the object side and the image side is an inhomogeneous medium, R 31 , R 36 , and R 36 of the conditions (1) and (2) are used. As the values of N 31 and N 33 , values near the optical axis are used.

以上のように条件(1),(2)が満足されれば、バ
ックフォーカスを短くしつつ性能を良好にし得る。しか
しバックフォーカスを短くしても、レンズ群の総厚が無
意味に厚いとレンズ系の全長を短くする効果が半減する
ことになる。第3群の総厚が大であれば、条件(1),
(2)を満足しなくともバックフォーカスを短くするこ
とは可能であるか、全長は短くならない。つまり条件
(1),(2)を満足することにより第3群の総厚を薄
くし、しかもバックフォーカスを短くすることが出来
る。
If the conditions (1) and (2) are satisfied as described above, the performance can be improved while shortening the back focus. However, even if the back focus is shortened, if the total thickness of the lens unit is insignificantly increased, the effect of shortening the entire length of the lens system is reduced by half. If the total thickness of the third group is large, condition (1),
Even if (2) is not satisfied, it is possible to shorten the back focus, or the overall length does not decrease. That is, by satisfying the conditions (1) and (2), the total thickness of the third lens unit can be reduced, and the back focus can be shortened.

同様に第4群も極力薄くすることが望ましい。そのた
めに条件(3)にて第3群と第4群との厚みの総和を規
定した。条件(3)の上限を越えると、バックフォーカ
スを短く出来ても全長を短くしにくい。又条件(3)の
下限を越えると、正レンズの縁内の確保が難しくなるの
で好ましくない。
Similarly, it is desirable to make the fourth group as thin as possible. For this purpose, the total sum of the thicknesses of the third group and the fourth group is defined under the condition (3). When the value exceeds the upper limit of the condition (3), it is difficult to shorten the overall length even if the back focus can be shortened. If the lower limit of the condition (3) is exceeded, it is difficult to secure the inside of the edge of the positive lens.

以上述べたようにして極めて全長の短い変倍レンズを
得ることが出来るが、さらに全長を短くするためには、
次の条件(4),(5)を満足することが好ましい。
As described above, it is possible to obtain a variable power lens having an extremely short overall length, but in order to further reduce the overall length,
It is preferable to satisfy the following conditions (4) and (5).

(4) 1.0×10-3<DT/fT 2<7.0×10-3 (5) 0.9<f4/fW<3.5 ただしDTは望遠端で無限遠合焦時の第3群と第4群の
間隔、f4は第4群の焦点距離である。
(4) 1.0 × 10 -3 <D T / f T 2 <7.0 × 10 -3 (5) 0.9 <f 4 / f W <3.5 where D T is the same as that of the third lens group at the telephoto end when focused on infinity. distance of the fourth group, f 4 is the focal length of the fourth group.

条件(4)は、第3群と第4群の間隔を規定したもの
である。本発明の目的からすると上記の間隔は極力小さ
い値の方がよいが、フォーカシングのためのスペースと
して必要十分量確保しなければならない。
Condition (4) defines the distance between the third group and the fourth group. For the purpose of the present invention, the above-mentioned interval is preferably as small as possible, but it is necessary to secure a necessary and sufficient amount of space for focusing.

第3群からの射出光がアフォーカルであると仮定する
と、ある被写体距離に対する第4群の繰出し量はΔは次
のように与えられる。
Assuming that the light emitted from the third lens group is afocal, the extension amount Δ of the fourth lens group with respect to a certain subject distance is given as follows.

Δ=a・β2 I II III・f4 2 ただしaは定数、βI II IIIは第1群,第2群,第3
群のトータルの倍率である。
Δ = a · β 2 I II III · f 4 2 provided that a is a constant, beta I II III Group 1, Group 2, 3
This is the total magnification of the group.

繰出量Δは全系の焦点距離で決まるので望遠端の焦点
距離が長い程多くのスペースを要する。
Since the feeding amount Δ is determined by the focal length of the entire system, a longer focal length at the telephoto end requires more space.

条件(4)の上限を越えるとより近距離にフォーカシ
ング出来るので好ましいが、至近距離性能やスペースの
ことを考慮すると好ましくない。又下限を越えるとフォ
ーカシングのためのスペースは節約出来るが近距離への
フォーカシングがしにくくなる。
Exceeding the upper limit of the condition (4) is preferable because focusing can be performed at a shorter distance. However, it is not preferable in consideration of short distance performance and space. If the lower limit is exceeded, space for focusing can be saved, but focusing to a short distance becomes difficult.

条件(5)は、第4群の焦点距離を規定したものであ
る。βI II III・f4は全系の焦点距離であるので、繰出
量Δは、f4には依存しない。又f4は短い程バックフォー
カスが短くなるためf4は極力短い方が好ましい。しかし
f4があまり短いと第4群と像面との間にフィルター類を
配置するためのスペースがなくなる。条件(5)の上限
を越えるとバックフォーカスが長くなりやすく、又下限
を越えると、フィルター類を配置するスペースが少なく
なる。
Condition (5) defines the focal length of the fourth group. Since β I II III · f 4 is the focal length of the entire system, the feeding amount Δ does not depend on f 4 . The f 4 is f 4, the back focus becomes shorter as short as possible is preferably short. However
If f 4 is too short, there is no space for placing filters between the fourth lens unit and the image plane. When the value exceeds the upper limit of the condition (5), the back focus tends to increase, and when the value exceeds the lower limit, the space for arranging the filters decreases.

次に性能面も考慮して一層良好な変倍レンズを得るた
めには、下記の条件(6),(7),(8)を満足する
ことが好ましい。
Next, it is preferable to satisfy the following conditions (6), (7), and (8) in order to obtain a better zoom lens taking performance into consideration.

(6) −0.9<(R31+R32)/(R31−R32)<−0.1 (7) 0.3<(R35+R36)/(R35R−36)<2.3 (8) 0.6<R41/R36<2.4 ただしR31,R32は夫々第3群の最も物体側のレンズの
物体側および像側の面の曲率半径、R35,R36は夫々第3
群の最も像側のレンズの物体側および像側の面の曲率半
径、R41は第4群の最も物体側の面の曲率半径である。
(6) -0.9 <(R 31 + R 32) / (R 31 -R 32) <- 0.1 (7) 0.3 <(R 35 + R 36) / (R 35 R- 36) <2.3 (8) 0.6 <R 41 / R 36 <2.4 provided that R 31, R 32 are each curvature of the surface on the object side and the image side of the most object side lens of the third group radius, R 35, R 36 are each third
The most image side of the object side and the radius of curvature of the image side of the lens group, R 41 is the radius of curvature of the most object side surface of the fourth group.

条件(6)は、第3群の最も物体側の正レンズのシェ
ープファクターを規定したものである。この条件の下限
を越えると球面収差の補正がしにくくなり又上限を越え
るとレンズ系の小型化を達成しにくくなる。
The condition (6) defines the shape factor of the positive lens closest to the object in the third lens unit. Exceeding the lower limit of this condition makes it difficult to correct spherical aberration, while exceeding the upper limit makes it difficult to achieve downsizing of the lens system.

条件(7)は、第3群の最も像側の負レンズのシェー
プファクターを規定したものである。この条件の下限を
越えるとレンズ系の小型化を達成しにくくなり上限を越
えると球面収差を補正しにくくなる。
The condition (7) defines the shape factor of the negative lens closest to the image side in the third lens unit. Exceeding the lower limit of this condition makes it difficult to reduce the size of the lens system, while exceeding the upper limit makes it difficult to correct spherical aberration.

条件(8)は、第3群の最も像側の面の曲率半径R36
と第4群の最も物体側の面の曲率半径R41との比を規定
したものである。第3群と第4群との間隔は可変である
が、ほぼアフォーカルであるために球面収差の変動は少
ない。しかしアフォーカル度は焦点距離によって変動す
るので、フォーカシング時の球面収差の変動をより少な
くするためには、R36とR41の値は極力近い方がよい。条
件(8)の上限,下限のいずれより外れても球面収差の
ほか非点収差の変動が大きくなる。
Condition (8) is that the radius of curvature R 36 of the most image side surface of the third lens unit is
When it defines the ratio of the radius of curvature R 41 of the most object side surface of the fourth group. The distance between the third lens unit and the fourth lens unit is variable, but the spherical aberration is small because it is almost afocal. However, since the afocal degree varies depending on the focal length, the values of R 36 and R 41 should be as close as possible to reduce the fluctuation of spherical aberration during focusing. Beyond either the upper limit or the lower limit of the condition (8), the fluctuation of astigmatism as well as spherical aberration increases.

尚、上記の各条件に関しても非球面又は不均質媒質の
場合は、光軸近傍の値を用いることとする。
In the case of an aspherical surface or an inhomogeneous medium, a value near the optical axis is used for each of the above conditions.

[実施例] 次に本発明の全長の短い変倍レンズの各実施例を示
す。
Examples Next, examples of the variable power lens having a short overall length according to the present invention will be described.

実施例1 f=6.900〜38.800,F/1.45〜F/2.23 2ω=49.0゜〜9.2゜ r1=46.6262 d1=1.1000 n1=1.84666 ν=23.78 r2=21.8337 d2=4.6000 n2=1.60311 ν=60.70 r3=−53.5341 d3=0.1500 r4=14.4337 d4=2.9000 n1=1.60311 ν=60.70 r5=33.8040 d5=D1(可変) r6=−152.2103 d6=0.9000 n4=1.69680 ν=55.52 r7=6.5436 d7=2.3000 r8=−9.8267 d8=0.8000 n5=1.60311 ν=60.70 r9=8.4818 d9=1.9000 n6=1.84666 ν=23.78 r10=45.4524 d10=D2(可変) r11=∞(絞り) d11=1.7000 r12=10.0679(非球面) d12=3.6000 n7=1.58913 ν=60.97 r13=−62.2959 d13=0.1500 r14=8.9432 d14=4.0000 n8=1.72000 ν=50.25 r15=−71.7917 d15=0.1500 r16=−202.7666 d16=0.8000 n9=1.82518 ν=25.43 r17=5.4043 d17=D3(可変) r18=7.7606(非球面) d18=3.3000 n10=1.58913 ν10=60.97 r19=−41.3529 d19=D4(可変) r20=∞ d20=6.0000 n11=1.51633 ν11=64.15 r21=∞ 非球面係数 (第12面) P=1.0000,A4=−0.15714×10-3 A6=−0.18163×10-5,A8=0.70381×10-8 (第18面) P=1.0000,A4=−0.22486×10-3 A6=−0.50608×10-5,A8=0.27776×10-7 f 6.900 16.362 38.800 D1 0.900 6.827 11.236 D2 11.636 5.708 1.300 D3 4.465 2.700 5.987 D4 3.521 5.287 2.000 全長(広角端)=52.959,前玉有効径=21.0 DT/fT 2=3.977×10-3,f41/fW=1.649 (R31+R32)/(R31−R32)=−0.722 (R35+R36)/(R35−R36)=0.948 R41/R36=1.436 実施例2 f=6.900〜38.799,F/1.44〜F/2.17 2ω=49.0゜〜9.2゜ r1=33.6905 d1=1.2000 n1=1.84666 ν=23.78 r2=20.4286 d2=4.4000 n2=1.60311 ν=60.70 r3=−283.3472 d3=0.1500 r4=20.9192 d4=3.1000 n3=1.60311 ν=60.70 r5=70.1720 d5=D1(可変) r6=107.1270 d6=0.8000 n4=1.80610 ν=40.95 r7=5.7148 d7=2.2000 r8=−8.3221 d8=0.7000 n5=1.60738 ν=56.81 r9=7.8205 d9=2.1000 n6=1.84666 ν=23.78 r10=−126.6923 d10=D2(可変) r11=∞(絞り) d11=1.5000 r12=9.2402(非球面) d12=3.8000 n7=1.58913 ν=60.97 r13=−62.7605 d13=0.1500 r14=9.0124 d14=4.0000 n8=1.58913 ν=60.97 r15=−69.0295 d15=0.1500 r16=26.1836 d16=0.8000 n9=1.84666 ν=23.78 r17=5.1686 d17=D3(可変) r18=6.7364(非球面) d18=4.0000 n10=1.48749 ν10=70.20 r19=−21.1553 d19=D4(可変) r20=∞ d20=6.0000 n11=1.51633 ν11=64.15 r21=∞ 非球面係数 (第12面) P=1.000,A4=−0.25905×10-3 A6=−0.23436×10-5,A8=0.62261×10-8 (第18面) P=1.000,A4=−0.39540×10-3 A6=−0.69335×10-5,A8=−0.11826×10-7 f 6.900 16.362 38.799 D1 0.600 9.340 15.258 D2 8.329 3.958 1.000 D3 4.044 2.500 5.508 D4 3.464 5.008 2.000 全長(広角端)=49.669,前玉有効径=21.7 DT/fT 2=3.659×10-3,f4/fW=1.594 (R31+R32)/(R31−R32)=−0.734 (R35+R36)/(R35−R36)=1.492 R41/R36=1.303 実施例3 f=6.900〜38.800,F/1.44〜F/2.04 2ω=49.0゜〜9.2゜ r1=41.7937 d1=1.2000 n1=1.84666 ν=23.78 r2=22.8622 d2=4.1000 n2=1.60311 ν=60.70 r3=−118.8556 d3=0.2000 r4=19.1412 d4=3.0000 n3=1.60311 ν=60.70 r5=73.3694 d5=D1(可変) r6=80.3217 d6=0.9000 n4=1.69680 ν=55.52 r7=7.7697 d7=2.8000 r8=−11.2903 d8=0.8000 n5=1.60311 ν=60.70 r9=10.5774 d9=2.0000 n6=1.84666 ν=23.78 r10=37.1339 d10=D2(可変) r11=∞(絞り) d11=1.7000 r12=7.9500(非球面) d12=4.6000 n7=1.69680 ν=55.52 r13=−30.1367 d13=0.2000 r14=29.2800 d14=3.7303 n8=1.84666 ν=23.78 r15=6.0792 d15=D3(可変) r16=7.5823(非球面) d16=3.1000 n9=1.60311 ν=60.70 r17=−32.4893 d17=D4(可変) r18=∞ d18=6.0000 n10=1.51633 ν10=64.15 r19=∞ 非球面係数 (第12面) P=1.000,A4=−0.25835×10-3 A6=−0.30075×10-5,A8=−0.32127×10-7 (第16面) P=1.000,A4=−0.36853×10-3 A6=0.74935×10-5,A8=−0.52612×10-6 f 6.900 16.362 38.800 D1 0.600 7.480 12.823 D2 13.523 6.644 1.300 D3 3.589 2.200 5.481 D4 3.892 5.281 2.000 全長(広角端)=54.023,前玉有効径=21.5 DT/fT 2=3.641×10-3,f4/fW=1.522 (R31+R32)/(R31−R32)=−0.583 (R35+R36)/(R35−R36)=1.524 R41/R36=1.247 実施例4 f=6.900〜38.800,F/2.06〜F/2.05 2ω=49.0゜〜9.2゜ r1=49.0000 d1=1.2000 n1=1.84666 ν=23.78 r2=24.6210 d2=4.1000 n2=1.60311 ν=60.70 r3=−87.7864 d3=0.2000 r4=17.6736 d4=3.2000 n3=1.60311 ν=60.70 r5=58.6771 d5=D1(可変) r6=151.1492 d6=0.9000 n4=1.69680 ν=55.52 r7=7.1029 d7=2.6500 r8=−11.0922 d8=0.8000 n5=1.60311 ν=60.70 r9=10.2657 d9=1.8000 n6=1.84666 ν=23.78 r10=94.4742 d10=D2(可変) r11=∞(絞り) d11=1.7000 r12=6.3725(非球面) d12=3.1500 n7=1.69680 ν=55.52 r13=−50.1345 d13=0.1500 r14=27.9103 d14=2.7421 n8=1.84666 ν=23.78 r15=5.0177 d15=D3(可変) r16=7.8414(非球面) d16=3.4000 n9=1.60311 ν=60.70 r17=−22.6625 d17=D4(可変) r18=∞ d18=6.0000 n10=1.51633 ν10=64.15 r19=∞ 非球面係数 (第12面) P=1.000,A4=−0.36365×10-3 A6=0.66028×10-5,A8=−0.14291×10-6 (第16面) P=1.000,A4=−0.27343×10-3 A6=−0.85428×10-5、A8=−0.23185×10-6 f 6.900 16.362 38.800 D1 0.700 7.606 13.000 D2 13.600 6.694 1.300 D3 3.885 2.800 6.580 D4 4.694 5.780 2.000 全長(広角端)=52.959,前玉有効径=21.4 DT/fT 2=4.371×10-3,f4/fW=1.461 (R31+R32)/(R31−R32)=−0.774 (R35+R36)/(R35−R36)=1.438 R41/R36=1.563 実施例5 f=6.900〜38.800,F/1.41〜F/1.99 2ω=49.0゜〜9.2゜ r1=43.0767 d1=1.2000 n1=1.80518 ν=25.43 r2=19.5560 d2=4.2000 n2=1.60311 ν=60.70 r3=−600.3543 d3=0.1500 r4=20.8028 d4=3.3000 n3=1.65844 ν=50.86 r5=127.7478 d5=D1(可変) r6=40.8164 d6=0.8000 n4=1.69680 ν=55.52 r7=6.1997 d7=2.3000 r8=−8.3248 d8=0.7000 n5=1.60311 ν=60.70 r9=8.9835 d9=2.0000 n6=1.84666 ν=23.78 r10=86.3663 d10=D2(可変) r11=∞(絞り) d11=1.5000 r12=8.2684(非球面) d12=4.600 n7=1.58913 ν=60.97 r13=−15.6514 d13=0.1500 r14=54.7313 d14=5.0896 n8=1.84666 ν=23.78 r15=7.8285 d15=D3(可変) r16=7.0945(非球面) d16=4.0000 n9=1.48749 ν=70.20 r17=−11.6664 d17=D4(可変) r18=∞ d18=6.0000 n10=1.51633 ν10=64.15 r19=∞ 非球面係数 (第12面) P=1.000,A4=−0.40016×10-3 A6=−0.17286×10-5,A8=−0.37067×10-7 (第16面) P=1.000,A4=−0.69721×10-3 A6=−0.33798×10-5,A8=−0.37651×10-6 f 6.900 16.362 38.800 D1 0.600 9.406 15.230 D2 8.315 3.911 1.000 D3 3.459 2.500 5.959 D4 4.501 5.459 2.000 全長(広角端)=50.953,前玉有効径=21.0 DT/fT 2=3.958×10-3,f4/fW=1.410 (R31+R32)/(R31−R32)=−0.309 (R35+R36)/(R35−R36)=1.334 R41/R36=0.906 実施例6 f=6.900〜38.801,F/2.05〜F/2.31 2ω=49.0゜〜9.2゜ r1=45.0881 d1=1.2000 n1=1.84666 ν=23.78 r2=24.4553 d2=4.0000 n2=1.60311 ν=60.70 r3=−107.4135 d3=0.1500 r4=18.5213 d4=3.2000 n3=1.60311 ν=60.70 r5=53.3680 d5=D1(可変) r6=134.7229 d6=0.8000 n4=1.80100 ν=34.97 r7=5.5979 d7=1.8000 r8=−8.5882 d8=0.7000 n5=1.60311 ν=60.70 r9=7.5579 d9=2.0000 n6=1.84666 ν=23.78 r10=−102.2128 d10=D2(可変) r11=∞(絞り) d11=1.5000 r12=6.2817(非球面) d12=3.700 n7=1.48749 ν=70.20 r13=−14.3111 d13=0.1500 r14=21.9781 d14=4.8468 n8=1.84666 ν=23.78 r15=5.6367 d15=D3(可変) r16=6.8129(非球面) d16=4.3000 n9=1.48749 ν=70.20 r17=−12.5214 d17=D4(可変) r18=∞ d18=6.0000 n10=1.51633 ν10=64.15 r19=∞ 非球面係数 (第12面) P=1.0000,A4=−0.74041×10-3 A6=−0.58991×10-5,A8=−0.23369×10-6 (第16面) P=1.0000,A4=−0.53942×10-3 A6=−0.15165×10-4,A8=−0.35044×10-6 f 6.900 16.362 38.801 D1 0.600 9.258 15.286 D2 8.343 4.013 1.000 D3 3.839 2.500 5.856 D4 4.017 5.356 2.000 全長(広角端)=49.236,前玉有効径=21.5 DT/fT 2=3.890×10-3,f4/fW=1.415 (R31+R32)/(R31−R32)=−0.390 (R35+R36)/(R35−R36)=1.690 R41/R36=1.209 実施例7 f=6.700〜50.440,F/1.44〜F/2.11 2ω=50.4゜〜7.2゜ r1=53.9356 d1=1.5000 n1=1.84666 ν=23.78 r2=28.6454 d2=4.8000 n2=1.56873 ν=63.16 r3=−103.6510 d3=0.1500 r4=20.9530 d4=3.4500 n1=1.60311 ν=60.70 r5=55.3350 d5=D1(可変) r6=35.1277 d6=1.1000 n4=1.69680 ν=55.52 r7=7.6963 d7=2.9000 r8=−9.8110 d8=1.0000 n5=1.60311 ν=60.70 r9=12.3932 d9=2.0000 n6=1.84666 ν=23.78 r10=99.8484 d10=D2(可変) r11=∞(絞り) d11=1.5000 r12=13.9316(非球面) d12=3.5000 n7=1.69680 ν=55.52 r13=−51.9617 d13=0.2000 r14=11.2530 d14=2.5000 n8=1.60311 ν=60.70 r15=30.6895 d15=0.6200 r16=−192.3609 d16=1.2100 n9=1.84666 ν=23.78 r17=11.1804 d17=D3(可変) r18=12.3060(非球面) d18=3.3000 n10=1.56873 ν10=63.16 r19=−20.0283 d19=D4(可変) r20=∞ d20=1.0000 n11=1.51633 ν11=64.15 r21=∞ d21=0.7000 r22=∞ d22=5.8600 n12=1.54771 ν11=62.83 r23=∞ d23=1.2100 r24=∞ d24=0.6000 n13=1.48749 ν13=70.20 r25=∞ 非球面係数 (第12面) P=0.5388,A4=−0.10978×10-4 A6=−0.48118×10-7 (第18面) P=0.6118,A4=−0.22709×10-3 A6=−0.40034×10-7 f 6.700 18.383 50.440 D1 0.700 18.815 18.075 D2 18.875 8.760 1.500 D3 4.812 2.591 6.626 D4 3.503 5.724 1.690 全長(広角端)=64.957,前玉有効径=24.3 DT/fT 2=2.604×10-3,f4/fW=2.077 (R31+R32)/(R31−R32)=−0.577 (R35+R36)/(R35−R36)=0.890 R41/R36=1.101 実施例8 f=6.700〜50.440,F/1.43〜F/2.26 2ω=50.4゜〜7.2゜ r1=48.9885 d1=1.5000 n1=1.84666 ν=23.78 r2=24.8892 d2=4.5000 n2=1.60311 ν=60.70 r3=−377.4066 d3=0.1500 r4=23.4540 d4=3.4000 n1=1.63854 ν=55.38 r5=100.3216 d5=D1(可変) r6=104.0635 d6=1.1000 n4=1.69680 ν=55.52 r7=7.2555 d7=2.6000 r8=−9.8423 d8=1.0000 n5=1.60311 ν=60.70 r9=10.3952 d9=2.0000 n6=1.84666 ν=23.78 r10=95.3109 d10=D2(可変) r11=∞(絞り) d11=1.5000 r12=11.7960(非球面) d12=4.0000 n7=1.60311 ν=60.70 r13=−33.4377 d13=0.2000 r14=11.0871 d14=2.6500 n8=1.56873 ν=63.16 r15=33.0044 d15=0.3500 r16=106.7443 d16=0.9000 n9=1.84666 ν=23.78 r17=10.3881 d17=D3(可変) r18=13.2932(非球面) d18=3.1000 n10=1.56873 ν10=63.16 r19=−19.6489 d19=D4(可変) r20=∞ d20=1.0000 n11=1.51633 ν11=64.15 r21=∞ d21=0.7000 r22=∞ d22=5.8600 n12=1.54771 ν11=62.83 r23=∞ d23=1.2100 r24=∞ d24=0.6000 n13=1.48749 ν13=70.20 r25=∞ 非球面係数 (第12面) P=1.0000,A4=−0.10430×10-3 A6=−0.49710×10-6,A8=0.20608×10-8 (第18面) P=1.0000,A4=−0.20376×10-3 A6=−0.22521×10-5,A8=0.29150×10-7 f 6.700 18.383 50.440 D1 0.800 11.933 19.316 D2 13.844 6.422 1.500 D3 4.760 2.510 6.762 D4 3.608 5.858 1.606 全長(広角端)=59.299,前玉有効径=24.6 DT/fT 2=2.658×10-3,f4/fW=2.154 (R31+R32)/(R31−R32)=−0.478 (R35+R36)/(R35−R36)=1.216 R41/R36=1.280 実施例9 f=6.700〜50.440,F/1.45〜F/2.29 2ω=50.4゜〜7.2゜ r1=55.4246 d1=1.4000 n1=1.84666 ν=23.78 r2=27.2103 d2=5.2000 n2=1.56873 ν=63.16 r3=−87.4611 d3=0.1500 r4=20.1075 d4=3.3000 n1=1.60311 ν=60.70 r5=55.4501 d5=D1(可変) r6=46.3576 d6=0.9000 n4=1.60311 ν=60.70 r7=7.6705 d7=3.3000 r8=−10.4549 d8=0.9000 n5=1.60311 ν=60.70 r9=***7 d9=2.4000 n6=1.80518 ν=25.43 r10=44.8278 d10=D2(可変) r11=∞(絞り) d11=1.5000 r12=10.5254 d12=5.5403 n7(屈折率分布型レンズ1) r13=−122.1190 d13=0.2000 r14=57.2174 d14=1.2363 n8(屈折率分布型レンズ2) r15=10.9471 d15=D3(可変) r16=−16.3464 d16=3.6384 n9(屈折率分布型レンズ3) r17=−38.6328 d17=D4(可変) r18=∞ d18=5.8600 n10=1.54771 ν10=62.83 r19=∞ d19=1.2100 r20=∞ d20=0.60000 n11=1.48749 ν11=70.20 r21=∞ 屈折率分布型レンズ1 波長 N0 N1 587.56 1.60311 −0.96088×10-3 656.28 1.60008 −0.86366×10-3 486.13 1.61002 −0.86201×10-3 波長 N2 587.56 0.13611×10-4 656.28 0.15883×10-4 486.13 0.17095×10-4 屈折率分布型レンズ2 波長 N0 N1 587.56 1.68893 −0.44201×10-2 656.28 1.68248 −0.51824×10-2 486.13 1.70465 −0.52764×10-2 波長 N2 587.56 0.62536×10-4 656.28 0.73930×10-4 486.13 0.77591×10-4 屈折率分析型レンズ3 波長 N0 N1 587.56 1.60311 −0.18390×10-2 656.28 1.60008 −0.17437×10-2 486.13 1.61002 −0.16776×10-2 波長 N2 587.56 0.19369×10-5 656.28 0.29650×10-5 486.13 0.55626×10-5 f 6.700 18.383 50.440 D1 0.700 10.328 17.277 D2 18.077 8.449 1.500 D3 4.538 2.475 7.063 D4 4.787 6.849 2.262 全長(広角端)=64.965,前玉有効径=25.5 DT/fT 2=2.776×10-3,f4/fW=2.342 (R31+R32)/(R31−R32)=−0.841 (R35+R36)/(R35−R36)=1.473 R41/R36=1.493 実施例10 f=6.700〜50.440,F/1.45〜F/2.30 2ω=50.4゜〜7.2゜ r1=56.9259 d1=1.4000 n1=1.84666 ν=23.78 r2=27.5385 d2=5.1000 n2=1.56873 ν=63.16 r3=−87.4998 d3=0.1500 r4=20.8150 d4=3.3000 n1=1.60311 ν=60.70 r5=63.8668 d5=D1(可変) r6=91.6022 d6=0.9000 n4=1.60311 ν=60.70 r7=7.8421 d7=3.2000 r8=−10.9528 d8=0.8000 n5=1.60311 ν=60.70 r9=9.7328 d9=2.4000 n6=1.80518 ν=25.43 r10=57.9526 d10=D2(可変) r11=∞(絞り) d11=1.5000 r12=10.6401 d12=7.2176 n7(屈折率分布型レンズ) r13=−34.2560 d13=0.2000 r14=−866.5188 d14=0.9000 n8=1.84666 ν=23.78 r15=12.4001 d15=D3(可変) r16=−11.5959(非球面) d16=4.0000 n9=1.48749 ν=70.20 r17=−18.0077 d17=D4(可変) r18=∞ d18=5.8600 n10=1.54771 ν10=62.83 r19=∞ d19=1.2100 r20=∞ d20=0.60000 n11=1.48749 ν11=70.20 r21=∞ 非球面係数 P=1.0000,A4=−0.19046×10-3 A6=−0.61255×10-6,A8=0.85120×10-7 屈折率分布型レンズ 波長 N0 N1 587.56 1.60311 −0.18280×10-2 656.28 1.60008 −0.18174×10-2 486.13 1.61002 −0.18543×10-2 波長 N2 587.56 −0.14795×10-5 656.28 −0.16875×10-5 486.13 0.13249×10-5 f 6.700 18.383 50.440 D1 0.700 10.587 17.422 D2 18.222 8.335 1.500 D3 4.424 2.405 7.032 D4 4.870 6.889 2.262 全長(広角端)=64.956,前玉有効径=25.0 DT/fT 2=2.764×10-3,f4/fW=2.260 (R31+R32)/(R31−R32)=−0.526 (R35+R36)/(R35−R36)=0.972 R41/R36=0.935 実施例11 f=6.900〜38.800,F/1.44〜F/2.08 2ω=49.0゜〜9.2゜ r1=48.3921 d1=1.1000 n1=1.84666 ν=23.78 r2=22.6029 d2=4.4000 n2=1.60311 ν=60.70 r3=−88.9707 d3=0.1500 r4=16.1314 d4=3.3000 n1=1.69680 ν=55.52 r5=48.9345 d5=D1(可変) r6=175.6903 d6=0.9000 n4=1.83400 ν=37.16 r7=6.1347 d7=2.6000 r8=−8.6183 d8=0.8000 n5=1.60311 ν=60.70 r9=9.2778 d9=2.3000 n6=1.84666 ν=23.78 r10=−114.7736 d10=D2(可変) r11=11.4364(非球面) d11=3.6000 n7=1.58913 ν=60.97 r12=−31.1462 d12=0.9000 r13=∞(絞り) d13=0.1500 r14=9.6567 d14=3.2000 n8=1.72000 ν=50.25 r15=−151.5857 d15=0.1500 r16=106.9332 d16=0.8000 n9=1.84666 ν=23.78 r17=−6.2325 d17=D3(可変) r18=8.0472(非球面) d18=3.3000 n10=1.58913 ν10=60.97 r19=−38.5309 d19=D4(可変) r20=∞ d20=6.0000 n11=1.51633 ν11=64.15 r21=∞ 非球面係数 (第11面) P=1.0000,A4=−0.15016×10-3 A6=−0.17588×10-5,A8=0.21506×10-7 (第18面) P=1.0000,A4=−0.11980×10-3 A6=−0.12802×10-4,A8=0.31248×10-6 f 6.900 16.326 38.800 D1 0.900 7.000 11.465 D2 11.165 5.066 0.600 D3 4.332 2.500 5.803 D4 3.470 5.303 2.000 全長(広角端)=52.955,前玉有効径=21.2 DT/fT 2=3.855×10-3,f4/fW=1.682 (R31+R32)/(R31−R32)=−0.463 (R35+R36)/(R35−R36)=1.124 R41/R36=1.291 実施例12 f=6.700〜50.44,F/1.44〜F/2.11 2ω=50.4゜〜7.2゜ r1=55.1109 d1=1.3000 n1=1.84666 ν=23.78 r2=28.8970 d2=4.8000 n2=1.56873 ν=63.16 r3=−92.8429 d3=0.1500 r4=20.7944 d4=3.4500 n1=1.60311 ν=60.70 r5=51.7240 d5=D1(可変) r6=100.5677 d6=0.9000 n4=1.72000 ν=50.25 r7=9.0549 d7=3.2000 r8=−11.5198 d8=0.8000 n5=1.60311 ν=60.70 r9=12.5374 d9=2.0000 n6=1.84666 ν=23.78 r10=73.5525 d10=D2(可変) r11=14.7025(非球面) d11=3.3000 n7=1.69680 ν=55.52 r12=−55.8822 d12=1.0000 r13=∞(絞り) d13=1.5000 r14=9.4162 d14=2.6000 n8=1.69680 ν=55.52 r15=30.8448 d15=0.7000 r16=−32.9050 d16=0.8000 n9=1.84666 ν=23.78 r17=10.4169 d17=D3(可変) r18=10.1889(非球面) d18=3.6000 n10=1.56873 ν10=63.16 r19=−14.9311 d19=D4(可変) r20=∞ d20=1.0000 n11=1.51633 ν11=64.15 r21=∞ d21=5.8600 n11=1.54771 ν11=62.83 r22=∞ d22=1.2100 r23=∞ d23=0.6000 n11=1.48749 ν13=70.20 r24=∞ 非球面係数 (第11面) P=1.0000,A4=−0.18511×10-4 A6=−0.10252×10-5,A8=0.13963×10-7 (第18面) P=1.0000,A4=−0.37628×10-3 A6=−0.47003×10-6,A8=−0.24529×10-7 f 6.700 18.383 50.44 D1 0.700 10.890 18.161 D2 18.161 7.971 0.700 D3 4.709 2.563 6.507 D4 2.718 4.864 0.920 全長(広角端)=63.025,前玉有効径=25.7 DT/fT 2=2.558×10-3,f4/fW=1.676 (R31+R32)/(R31−R32)=−0.583 (R35+R36)/(R35−R36)=0.519 R41/R36=0.978 ただしr1,r2,…はレンズ各面の曲率半径、d1,d2,…は
各レンズの肉厚およびレンズ間隔、n1,n2,…は各レンズ
の屈折率、ν12,…は各レンズのアッベ数である。
Example 1 f = 6.900 to 38.800, F / 1.45 to F / 2.23 2ω = 49.0 ゜ to 9.2 ゜ r 1 = 46.6262 d 1 = 1.1000 n 1 = 1.84666 ν 1 = 23.78 r 2 = 21.8337 d 2 = 4.6000 n 2 = 1.60311 ν 2 = 60.70 r 3 = -53.5341 d 3 = 0.1500 r 4 = 14.4337 d 4 = 2.9000 n 1 = 1.60311 ν 3 = 60.70 r 5 = 33.8040 d 5 = D 1 (variable) r 6 = -152.2103 d 6 = 0.9000 n 4 = 1.69680 v 4 = 55.52 r 7 = 6.5436 d 7 = 2.3000 r 8 = -9.8267 d 8 = 0.8000 n 5 = 1.60311 v 5 = 60.70 r 9 = 8.4818 d 9 = 1.9000 n 6 = 1.84666 v 6 = 23.78 r 10 = 45.4524 d 10 = D 2 (variable) r 11 = ∞ (aperture) d 11 = 1.7000 r 12 = 10.0679 (aspheric surface) d 12 = 3.6000 n 7 = 1.58913 ν 7 = 60.97 r 13 = −62.2959 d 13 = 0.1500 r 14 = 8.9432 d 14 = 4.0000 n 8 = 1.72000 ν 8 = 50.25 r 15 = -71.7917 d 15 = 0.1500 r 16 = -202.7666 d 16 = 0.8000 n 9 = 1.82518 ν 9 = 25.43 r 17 = 5.4043 d 17 = D 3 (variable) r 18 = 7.7606 (aspherical) d 18 = 3.3000 n 10 = 1.58913 ν 10 60.97 r 19 = -41.3529 d 19 = D 4 ( variable) r 20 = ∞ d 20 = 6.0000 n 11 = 1.51633 ν 11 = 64.15 r 21 = ∞ aspherical coefficients (twelfth surface) P = 1.0000, A 4 = - 0.15714 × 10 -3 A 6 = −0.18163 × 10 -5 , A 8 = 0.70381 × 10 -8 (Surface 18) P = 1.0000, A 4 = −0.22486 × 10 -3 A 6 = −0.50608 × 10 -5 , A 8 = 0.27776 × 10 -7 f 6.900 16.362 38.800 D 1 0.900 6.827 11.236 D 2 11.636 5.708 1.300 D 3 4.465 2.700 5.987 D 4 3.521 5.287 2.000 Overall length (wide-angle end) = 52.959, front lens effective diameter = 21.0 D T / f T 2 = 3.977 × 10 -3 , f 41 / f W = 1.649 (R 31 + R 32 ) / (R 31 -R 32 ) =-0.722 (R 35 + R 36 ) / (R 35 -R 36 ) = 0.948 R 41 / R 36 = 1.436 Example 2 f = 6.900 to 38.799, F / 1.44 to F / 2.17 2ω = 49.0 ゜ to 9.2 ゜ r 1 = 33.6905 d 1 = 1.2000 n 1 = 1.84666 ν 1 = 23.78 r 2 = 20.4286 d 2 = 4.4000 n 2 = 1.60311 ν 2 = 60.70 r 3 = -283.3472 d 3 = 0.1500 r 4 = 20.9192 d 4 = 3.1000 n 3 = 1.60311 ν 3 = 60.70 r 5 = 70.1720 d 5 = D 1 ( Variable) r 6 = 107.1270 d 6 = 0.8000 n 4 = 1.80610 v 4 = 40.95 r 7 = 5.7148 d 7 = 2.2000 r 8 = -8.3221 d 8 = 0.7000 n 5 = 1.60738 v 5 = 56.81 r 9 = 7.8205 d 9 = 2.1000 n 6 = 1.84666 ν 6 = 23.78 r 10 = −126.6923 d 10 = D 2 (variable) r 11 = ∞ (aperture) d 11 = 1.5000 r 12 = 9.2402 (aspherical surface) d 12 = 3.8000 n 7 = 1.58913 ν 7 = 60.97 r 13 = -62.7605 d 13 = 0.1500 r 14 = 9.0124 d 14 = 4.0000 n 8 = 1.58913 ν 8 = 60.97 r 15 = -69.0295 d 15 = 0.1500 r 16 = 26.1836 d 16 = 0.8000 n 9 = 1.84666 ν 9 = 23.78 r 17 = 5.1686 d 17 = D 3 (variable) r 18 = 6.7364 (aspherical surface) d 18 = 4.0000 n 10 = 1.48749 ν 10 = 70.20 r 19 = − 21.1553 d 19 = D 4 (variable) r 20 = ∞ d 20 = 6.0000 n 11 = 1.51633 ν 11 = 64.15 r 21 = ∞ Aspherical coefficient (Twelfth surface) P = 1.000, A 4 = −0.25905 × 10 -3 A 6 = -0.23436 x 10 -5 , A 8 = 0.62261 x 10 -8 (Surface 18) P = 1.000, A 4 = -0.39540 x 10 -3 A 6 = -0.69335 x 10 -5 , A 8 =- 0.11826 × 10 -7 f 6.900 16.362 38.799 D 1 0.600 9.340 15.258 D 2 8.329 3.958 1.000 D 3 4.044 2.500 5.508 D 4 3.464 5.008 2.000 Overall length (wide-angle end) = 49.669, front lens effective diameter = 21.7 D T / f T 2 = 3.659 × 10 -3 , f 4 / f W = 1.594 (R 31 + R 32 ) / (R 31 -R 32 ) =-0.734 (R 35 + R 36 ) / (R 35 -R 36 ) = 1.492 R 41 / R 36 = 1.303 Example 3 f = 6.900 to 38.800, F / 1.44 to F / 2.04 2ω = 49.0 ゜ to 9.2 1 r 1 = 41.7937 d 1 = 1.2000 n 1 = 1.84666 ν 1 = 23.78 r 2 = 22.8622 d 2 = 4.1000 n 2 = 1.60311 ν 2 = 60.70 r 3 = -118.8556 d 3 = 0.2000 r 4 = 19.1412 d 4 = 3.0000 n 3 = 1.60311 ν 3 = 60.70 r 5 = 73.3694 d 5 = D 1 ( Variable) r 6 = 80.3217 d 6 = 0.9000 n 4 = 1.69680 v 4 = 55.52 r 7 = 7.7697 d 7 = 2.8000 r 8 = -11.2903 d 8 = 0.8000 n 5 = 1.60311 v 5 = 60.70 r 9 = 10.5774 d 9 = 2.0000 n 6 = 1.84666 v 6 = 23.78 r 10 = 37.1339 d 10 = D 2 (variable) r 11 = ∞ (aperture) d 11 = 1.7000 r 12 = 7.9500 (aspherical surface) d 12 = 4.6000 n 7 = 1.69680 v 7 = 55.52 r 13 = -30.1367 d 13 = 0.2000 r 14 = 29.2800 d 14 = 3.7303 n 8 = 1.84666 ν 8 = 23.78 r 15 = 6.0792 d 15 = D 3 (variable) r 16 = 7.5823 (aspherical surface) d 16 = 3.1000 n 9 = 1.60311 v 9 = 60.70 r 17 = -32.4893 d 17 = D 4 (variable) r 18 = ∞ d 18 = 6.000 n 10 = 1.51633 v 10 = 64.15 r 19 = ∞ Aspherical surface coefficient (Twelfth surface) P = 1.000, A 4 = −0.25835 × 10 −3 A 6 = −0.30075 × 10 −5 , A 8 = −0.32127 × 10 −7 (Sixteenth surface) P = 1.000 , A 4 = −0.36853 × 10 -3 A 6 = 0.74935 × 10 -5 , A 8 = −0.52612 × 10 -6 f 6.900 16.362 38.800 D 1 0.600 7.480 12.823 D 2 13.523 6.644 1.300 D 3 3.589 2.200 5.481 D 4 3.892 5.281 2.000 Overall length (wide-angle end) = 54.023, front lens effective diameter = 21.5 D T / f T 2 = 3.641 × 10 -3 , f 4 / f W = 1.522 (R 31 + R 32 ) / (R 31 -R 32 ) =-0.583 (R 35 + R 36 ) / (R 35 -R 36 ) = 1.524 R 41 / R 36 = 1.247 Example 4 f = 6.900-38.800, F / 2.06-F / 2.05 2ω = 49.0 ゜ -9.2 ゜ r 1 = 49.0000 d 1 = 1.2000 n 1 = 1.84666 ν 1 = 23.78 r 2 = 24.6210 d 2 = 4.1000 n 2 = 1.60311 ν 2 = 60.70 r 3 = -87.7864 d 3 = 0.2000 r 4 = 17.6736 d 4 = 3.2000 n 3 = 1.60311 ν 3 = 60.70 r 5 = 58.6771 d 5 = D 1 ( Variable) r 6 = 151.1492 d 6 = 0.9000 n 4 = 1.69680 v 4 = 55.52 r 7 = 7.1029 d 7 = 2.6500 r 8 = -11.0922 d 8 = 0.8000 n 5 = 1.60311 v 5 = 60.70 r 9 = 10.2657 d 9 = 1.8000 n 6 = 1.84666 v 6 = 23.78 r 10 = 94.4742 d 10 = D 2 (variable) r 11 = ∞ (aperture) d 11 = 1.7000 r 12 = 6.3725 (aspherical surface) d 12 = 3.1500 n 7 = 1.69680 v 7 = 55.52 r 13 = -50.1345 d 13 = 0.1500 r 14 = 27.9103 d 14 = 2.7421 n 8 = 1.84666 ν 8 = 23.78 r 15 = 5.0177 d 15 = D 3 (variable) r 16 = 7.8414 (aspheric surface) d 16 = 3.4000 n 9 = 1.60311 ν 9 = 60.70 r 17 = −22.6625 d 17 = D 4 (variable) r 18 = ∞ d 18 = 6.0000 n 10 = 1.51633 ν 10 = 64.15 r 19 = ∞ Aspherical surface coefficient (Twelfth surface) P = 1.000, A 4 = −0.36365 × 10 -3 A 6 = 0.60628 × 10 -5 , A 8 = −0.14291 × 10 -6 (Sixteenth surface) P = 1.000, A 4 = -0.27343 x 10 -3 A 6 = -0.85428 x 10 -5 , A 8 = -0.23 185 x 10 -6 f 6.900 16.362 38.800 D 1 0.700 7.606 13.000 D 2 13.600 6.694 1.300 D 3 3.885 2.800 6.580 D 4 4.694 5.780 2.000 Overall length (wide-angle end) = 52.959, front lens effective diameter = 21.4 D T / f T 2 = 4.371 × 10 -3 , f 4 / f W = 1.461 (R 31 + R 32 ) / (R 31 -R 32 ) =-0.774 (R 35 + R 36 ) / (R 35 -R 36 ) = 1.438 R 41 / R 36 = 1.563 Example 5 f = 6.900 to 38.800, F / 1.41 to F / 1.99 2ω = 49.0 ゜ to 9.2 ゜ r 1 = 43.0767 d 1 = 1.2000 n 1 = 1.80518 ν 1 = 25.43 r 2 = 19.5560 d 2 = 4.2000 n 2 = 1.60311 ν 2 = 60.70 r 3 = -600.3543 d 3 = 0.1500 r 4 = 20.8028 d 4 = 3.3000 n 3 = 1.65844 ν 3 = 50.86 r 5 = 127.7478 d 5 = D 1 ( Variable) r 6 = 40.8164 d 6 = 0.8000 n 4 = 1.69680 v 4 = 55.52 r 7 = 6.1997 d 7 = 2.3000 r 8 = -8.3248 d 8 = 0.7000 n 5 = 1.60311 v 5 = 60.70 r 9 = 8.9835 d 9 = 2.0000 n 6 = 1.84666 ν 6 = 23.78 r 10 = 86.3663 d 10 = D 2 (variable) r 11 = ∞ (aperture) d 11 = 1.5000 r 12 = 8.2684 (aspherical surface) d 12 = 4.600 n 7 = 1.58913 ν 7 = 60.97 r 13 = -15.6514 d 13 = 0.1500 r 14 = 54.7313 d 14 = 5.0896 n 8 = 1.84666 ν 8 = 23.78 r 15 = 7.8285 d 15 = D 3 ( variable) r 1 6 = 7.0945 (aspherical surface) d 16 = 4.0000 n 9 = 1.48749 ν 9 = 70.20 r 17 = -11.6664 d 17 = D 4 (variable) r 18 = ∞ d 18 = 6.000 n 10 = 1.51633 ν 10 = 64.15 r 19 = ∞ Aspherical surface coefficient (Twelfth surface) P = 1.000, A 4 = −0.40016 × 10 −3 A 6 = −0.17286 × 10 −5 , A 8 = −0.37067 × 10 −7 (Sixteenth surface) P = 1.000 , A 4 = −0.69721 × 10 −3 A 6 = −0.33798 × 10 −5 , A 8 = −0.37651 × 10 −6 f 6.900 16.362 38.800 D 1 0.600 9.406 15.230 D 2 8.315 3.911 1.000 D 3 3.459 2.500 5.959 D 4 4.501 5.459 2.000 Overall length (wide-angle end) = 50.953, front lens effective diameter = 21.0 D T / f T 2 = 3.958 × 10 -3 , f 4 / f W = 1.410 (R 31 + R 32 ) / (R 31 -R 32 ) =-0.309 (R 35 + R 36 ) / (R 35 -R 36 ) = 1.334 R 41 / R 36 = 0.906 Example 6 f = 6.900 to 38.801, F / 2.05 to F / 2.31 2ω = 49.0 ゜ to 9.2 1 r 1 = 45.0881 d 1 = 1.2000 n 1 = 1.84666 ν 1 = 23.78 r 2 = 24.4553 d 2 = 4.0000 n 2 = 1.60311 ν 2 = 60.70 r 3 = -107.4135 d 3 = 0.1500 r 4 = 18.5213 d 4 = 3.2000 n 3 = 1.60311 ν 3 = 60.70 r 5 = 53.3680 d 5 = D 1 ( Variable) r 6 = 134.7229 d 6 = 0.8000 n 4 = 1.80100 v 4 = 34.97 r 7 = 5.5979 d 7 = 1.8000 r 8 = −8.5882 d 8 = 0.7000 n 5 = 1.60311 v 5 = 60.70 r 9 = 7.5579 d 9 = 2.0000 n 6 = 1.84666 v 6 = 23.78 r 10 = −102.2128 d 10 = D 2 (variable) r 11 = ∞ (aperture) d 11 = 1.5000 r 12 = 6.2817 (aspherical surface) d 12 = 3.700 n 7 = 1.48749 v 7 = 70.20 r 13 = -14.3111 d 13 = 0.1500 r 14 = 21.9781 d 14 = 4.8468 n 8 = 1.84666 ν 8 = 23.78 r 15 = 5.6367 d 15 = D 3 ( variable) r 16 = 6.8129 (aspherical) d 16 = 4.3000 n 9 = 1.48749 ν 9 = 70.20 r 17 = -12.5214 d 17 = D 4 ( variable) r 18 = ∞ d 18 = 6.0000 n 10 = 1.51633 ν 10 = 64.15 r 19 = ∞ Aspherical surface coefficient (Twelfth surface) P = 1.0000, A 4 = -0.74041 x 10 -3 A 6 = -0.58991 x 10 -5 , A 8 = -0.23369 x 10 -6 (Sixteenth surface) P = 1.0000, A 4 = −0.53942 × 10 -3 A 6 = −0.15165 × 10 -4 , A 8 = −0.35044 × 10 -6 f 6.900 16.362 38.801 D 1 0.600 9.258 15.286 D 2 8.343 4.013 1.000 D 3 3.839 2.500 5.856 D 4 4.017 5.356 2.000 Overall length (wide-angle end) = 49.236, front lens effective diameter = 21.5 D T / f T 2 = 3.890 × 10 -3 , f 4 / f W = 1.415 (R 31 + R 32 ) / (R 31 -R 32 ) =-0.390 (R 35 + R 36 ) / (R 35 -R 36 ) = 1.690 R 41 / R 36 = 1.209 Example 7 f = 6.700 to 50.440, F / 1.44 to F / 2.11 2ω = 50.4 ゜ to 7.2 ゜ r 1 = 53.9356 d 1 = 1.5000 n 1 = 1.84666 ν 1 = 23.78 r 2 = 28.6454 d 2 = 4.8000 n 2 = 1.56873 ν 2 = 63.16 r 3 = -103.6510 d 3 = 0.1500 r 4 = 20.9530 d 4 = 3.4500 n 1 = 1.60311 ν 3 = 60.70 r 5 = 55.3350 d 5 = D 1 ( Variable) r 6 = 35.1277 d 6 = 1.1000 n 4 = 1.69680 ν 4 = 55.52 r 7 = 7.6963 d 7 = 2.9000 r 8 = −9.8110 d 8 = 1.0000 n 5 = 1.60311 ν 5 = 60.70 r 9 = 12.3393 d 9 = 2.0000 n 6 = 1.84666 v 6 = 23.78 r 10 = 99.8484 d 10 = D 2 (variable) r 11 = ∞ (aperture) d 11 = 1.5000 r 12 = 13.9316 (aspherical surface) d 12 = 3.5000 n 7 = 1.69680 v 7 = 55.52 r 13 = -51.9617 d 13 = 0.2000 r 14 = 11.2530 d 14 = 2.5000 n 8 = 1.60311 ν 8 = 60.70 r 15 = 30.6895 d 15 = 0.6200 r 16 = 192.3609 d 16 = 1.2100 n 9 = 1.84666 ν 9 = 23.78 r 17 = 11.1804 d 17 = D 3 ( variable) r 18 = 12.3060 (aspherical) d 18 = 3.3000 n 10 = 1.56873 ν 10 = 63.16 r 19 = -20.0283 d 19 = D 4 (variable) r 20 = ∞ d 20 = 1.0000 n 11 = 1.51633 ν 11 = 64.15 r 21 = ∞ d 21 = 0.7000 r 22 = ∞ d 22 = 5.8600 n 12 = 1.54771 ν 11 = 62.83 r 23 = ∞ d 23 = 1.2100 r 24 = ∞ d 24 = 0.6000 n 13 = 1.48749 ν 13 = 70.20 r 25 = ∞ aspherical coefficients (twelfth surface) P = 0.5388, A 4 = -0.10978 × 10 -4 A 6 = −0.48118 × 10 −7 (Section 18) P = 0.6118, A 4 = −0.22709 × 10 −3 A 6 = −0.40034 × 10 −7 f 6.700 18.383 50.440 D 1 0.700 18.815 18.075 D 2 18.875 8.760 1.500 D 3 4.812 2.591 6.626 D 4 3.503 5.724 1.690 Overall length (wide-angle end) = 64.957, front lens effective diameter = 24.3 D T / f T 2 = 2.604 × 10 -3 , f 4 / f W = 2.077 (R 31 + R 32 ) / (R 31 -R 32 ) =-0.577 (R 35 + R 36 ) / (R 35 -R 36 ) = 0.890 R 41 / R 36 = 1.101 Example 8 f = 6.700 to 50.440, F / 1.43 to F / 2.26 2ω = 50.4 ゜ to 7.2 ゜ r 1 = 48.9885 d 1 = 1.5000 n 1 = 1.84666 ν 1 = 23.78 r 2 = 24.8892 d 2 = 4.5000 n 2 = 1.60311 ν 2 = 60.70 r 3 = -377.4066 d 3 = 0.1500 r 4 = 23.4540 d 4 = 3.4000 n 1 = 1.63854 ν 3 = 55.38 r 5 = 100.3216 d 5 = D 1 ( Variable) r 6 = 104.0635 d 6 = 1.1000 n 4 = 1.69680 ν 4 = 55.52 r 7 = 7.2555 d 7 = 2.6000 r 8 = −9.8423 d 8 = 1.0000 n 5 = 1.60311 ν 5 = 60.70 r 9 = 10.3952 d 9 = 2.0000 n 6 = 1.84666 v 6 = 23.78 r 10 = 95.3109 d 10 = D 2 (variable) r 11 = ∞ (aperture) d 11 = 1.5000 r 12 = 11.7960 (aspherical surface) d 12 = 4.0000 n 7 = 1.60311 v 7 = 60.70 r 13 = -33.4377 d 13 = 0.2000 r 14 = 11.0871 d 14 = 2.6500 n 8 = 1.56873 ν 8 = 63.16 r 15 = 33.0044 d 15 = 0.3500 r 16 = 106.7443 d 16 = 0.9000 n 9 = 1.84666 ν 9 = 23.78 r 17 = 10.3881 d 17 = D 3 ( variable) r 18 = 13.2932 (aspherical) d 18 = 3.1000 n 10 = 1.56873 ν 10 = 63.16 r 19 = -19.6489 d 19 = D 4 (variable) r 20 = ∞ d 20 = 1.0000 n 11 = 1.51633 ν 11 = 64.15 r 21 = ∞ d 21 = 0.7000 r 22 = ∞ d 22 = 5.8600 n 12 = 1.54771 ν 11 = 62.83 r 23 = ∞ d 23 = 1.2100 r 24 = ∞ d 24 = 0.6000 n 13 = 1.48749 ν 13 = 70.20 r 25 = ∞ aspherical coefficients (twelfth surface) P = 1.0000, A 4 = -0.10430 × 10 -3 A 6 = −0.49710 × 10 -6 , A 8 = 0.20608 × 10 -8 (Side 18) P = 1.000, A 4 = −0.20376 × 10 -3 A 6 = −0.22521 × 10 -5 , A 8 = 0.29150 × 10 − 7 f 6.700 18.383 50.440 D 1 0.800 11.933 19.316 D 2 13.844 6.422 1.500 D 3 4.760 2.510 6.762 D 4 3.608 5.858 1.606 Overall length (wide-angle end) = 59.299, front lens effective diameter = 24.6 D T / f T 2 = 2.658 × 10 -3 , f 4 / f W = 2.154 (R 31 + R 32 ) / (R 31 -R 32 ) =-0.478 (R 35 + R 36 ) / (R 35 -R 36 ) = 1.216 R 41 / R 36 = 1.280 Example 9 f = 6.700 to 50.440, F / 1.45 to F / 2.29 2ω = 50.4 ゜ to 7.2 ゜ r 1 = 55.4246 d 1 = 1.4000 n 1 = 1.84666 ν 1 = 23.78 r 2 = 27.2103 d 2 = 5.2000 n 2 = 1.56873 ν 2 = 63.16 r 3 = -87.4611 d 3 = 0.1500 r 4 = 20.1075 d 4 = 3.3000 n 1 = 1.60311 ν 3 = 60.70 r 5 = 55.4501 d 5 = D 1 ( Variable) r 6 = 46.3576 d 6 = 0.9000 n 4 = 1.60311 v 4 = 60.70 r 7 = 7.6705 d 7 = 3.3000 r 8 = -10.4549 d 8 = 0.9000 n 5 = 1.60311 v 5 = 60.70 r 9 = ***7 d 9 = 2.4000 n 6 = 1.80518 ν 6 = 25.43 r 10 = 44.8278 d 10 = D 2 (variable) r 11 = ∞ (aperture) d 11 = 1.5000 r 12 = 10.5254 d 12 = 5.5403 n 7 (index-refraction type lens 1) r 13 = -122.1190 d 13 = 0.2000 r 14 = 57.2174 d 14 = 1.2363 n 8 ( gradient index lens 2) r 15 = 10.9471 d 15 = D 3 ( Yes ) R 16 = -16.3464 d 16 = 3.6384 n 9 ( gradient index lens 3) r 17 = -38.6328 d 17 = D 4 ( variable) r 18 = ∞ d 18 = 5.8600 n 10 = 1.54771 ν 10 = 62.83 r 19 = ∞ d 19 = 1.2100 r 20 = ∞ d 20 = 0.60000 n 11 = 1.48749 ν 11 = 70.20 r 21 = 分布 refractive index distribution type lens 1 wavelength N 0 N 1 587.56 1.60311 -0.96088 × 10 -3 656.28 1.60008 -0.86366 × 10 -3 486.13 1.61002 −0.86201 × 10 -3 wavelength N 2 587.56 0.13611 × 10 -4 656.28 0.15883 × 10 -4 486.13 0.17095 × 10 -4 Refractive index distributed lens 2 wavelength N 0 N 1 587.56 1.68893 −0.44201 × 10 -2 656.28 1.68248 -0.51824 × 10 -2 486.13 1.70465 -0.52764 × 10 -2 wavelength N 2 587.56 0.62536 × 10 -4 656.28 0.73930 × 10 -4 486.13 0.77591 × 10 -4 Refractive index analysis lens 3 wavelength N 0 N 1 587.56 1.60311 -0.18390 × 10 -2 656.28 1.60008 -0.17437 × 10 -2 486.13 1.61002 -0.16776 × 10 -2 wavelength N 2 587.56 0.19369 × 10 -5 656.28 0.29650 × 10 -5 486.13 0.55626 × 10 -5 f 6.700 18.383 50.440 D 1 0.700 10.328 17.277 D 2 18.077 8.449 1.500 D 3 4.538 2.475 7.063 D 4 4.787 6.849 2.262 Overall length (wide angle end) = 64.965, front lens effective diameter = 25.5 D T / f T 2 = 2.776 × 10 -3 , f 4 / f W = 2.342 (R 31 + R 32 ) / (R 31 -R 32 ) =-0.841 (R 35 + R 36 ) / (R 35 -R 36 ) = 1.473 R 41 / R 36 = 1.493 Example 10 f = 6.700-50.440, F / 1.45-F / 2.30 2ω = 50.4 ゜ -7.2 ゜ r 1 = 56.9259 d 1 = 1.4000 n 1 = 1.84666 ν 1 = 23.78 r 2 = 27.5385 d 2 = 5.1000 n 2 = 1.56873 ν 2 = 63.16 r 3 = -87.4998 d 3 = 0.1500 r 4 = 20.8150 d 4 = 3.3000 n 1 = 1.60311 ν 3 = 60.70 r 5 = 63.8668 d 5 = D 1 ( Variable) r 6 = 91.6022 d 6 = 0.9000 n 4 = 1.60311 v 4 = 60.70 r 7 = 7.8421 d 7 = 3.2000 r 8 = -10.9528 d 8 = 0.8000 n 5 = 1.60311 v 5 = 60.70 r 9 = 9.7328 d 9 = 2.4000 n 6 = 1.80518 ν 6 = 25.43 r 10 = 57.9526 d 10 = D 2 (variable) r 11 = ∞ (aperture) d 11 = 1.5000 r 12 = 10.66401 d 12 = 7.2176 n 7 (refractive index distributed lens) r 13 = -34.2560 d 13 = 0.2000 r 14 = -866.5188 d 14 = 0.9000 n 8 = 1.84666 ν 8 = 23.78 r 15 = 12.4001 d 15 = D 3 ( variable) r 16 -11.5959 (aspherical) d 16 = 4.0000 n 9 = 1.48749 ν 9 = 70.20 r 17 = -18.0077 d 17 = D 4 ( variable) r 18 = ∞ d 18 = 5.8600 n 10 = 1.54771 ν 10 = 62.83 r 19 = ∞ d 19 = 1.2100 r 20 = ∞ d 20 = 0.60000 n 11 = 1.48749 ν 11 = 70.20 r 21 = ∞ Aspherical surface coefficient P = 1.0000, A 4 = −0.19046 × 10 -3 A 6 = −0.61255 × 10 -6 , A 8 = 0.85 120 × 10 -7 Refractive index distribution lens Wavelength N 0 N 1 587.56 1.60311 −0.18280 × 10 -2 656.28 1.60008 −0.18174 × 10 -2 486.13 1.61002 −0.18543 × 10 -2 Wavelength N 2 587.56 −0.14795 × 10 -5 656.28 -0.16875 × 10 -5 486.13 0.13249 × 10 -5 f 6.700 18.383 50.440 D 1 0.700 10.587 17.422 D 2 18.222 8.335 1.500 D 3 4.424 2.405 7.032 D 4 4.870 6.889 2.262 Length (wide angle end) = 64.956, the front lens Effective diameter = 25.0 D T / f T 2 = 2.764 × 10 -3 , f 4 / f W = 2.260 (R 31 + R 32 ) / (R 31 -R 32 ) =-0.526 (R 35 + R 36 ) / (R 35 -R 36 ) = 0.972 R 41 / R 36 = 0.935 Example 11 f = 6.900 to 38.800, F / 1.44 to F / 2.08 2ω = 49.0 ゜ to 9.2 ゜ r 1 = 48.3921 d 1 = 1.1000 n 1 = 1.84666 ν 1 = 23.78 r 2 = 22.6029 d 2 = 4.4000 n 2 = 1.60311 ν 2 = 60.70 r 3 = −88.9707 d 3 = 0.1500 r 4 = 16.1314 d 4 = 3.3000 n 1 = 1.69680 v 3 = 55.52 r 5 = 48.9345 d 5 = D 1 ( variable) r 6 = 175.6903 d 6 = 0.9000 n 4 = 1.83400 ν 4 = 37.16 r 7 = 6.1347 d 7 = 2.6000 r 8 = -8.6183 d 8 = 0.8000 n 5 = 1.60311 ν 5 = 60.70 r 9 = 9.2778 d 9 = 2.3000 n 6 = 1.84666 v 6 = 23.78 r 10 = −114.7736 d 10 = D 2 (variable) r 11 = 11.4364 (aspherical surface) d 11 = 3.6000 n 7 = 1.58913 v 6 = 60.97 r 12 = −31.1462 d 12 = 0.9000 r 13 = ∞ (stop) d 13 = 0.1500 r 14 = 9.6567 d 14 = 3.2000 n 8 = 1.72000 ν 8 = 50.25 r 15 = -151.5857 d 15 = 0.1500 r 16 = 106.9332 d 16 = 0.8000 n 9 = 1.84666 v 9 = 23.78 r 17 = −6.2325 d 17 = D 3 (variable) r 18 = 8.0472 (aspherical surface) d 18 = 3.3000 n 10 = 1.58913 v 10 = 60.97 r 19 = −38.5309 d 19 = D 4 (variable) r 20 = ∞ d 20 = 6.0000 n 11 = 1.51633 ν 11 = 64.15 r 21 = ∞ Aspherical coefficient (11th surface) P = 1.0000, A 4 = −0.15016 × 10 − 3 A 6 = -0.17588 x 10 -5 , A 8 = 0.21506 x 10 -7 (Stage 18) P = 1.0000, A 4 = -0.11980 x 10 -3 A 6 = -0.12802 x 10 -4 , A 8 = 0.31248 × 10 -6 f 6.900 16.326 38.800 D 1 0.900 7.000 11.465 D 2 11.165 5.066 0.600 D 3 4.332 2.500 5.803 D 4 3.470 5.303 2.000 Overall length (wide-angle end) = 52.955, front lens effective diameter = 21.2 D T / f T 2 = 3.855 × 10 -3 , f 4 / f W = 1.682 (R 31 + R 32 ) / (R 31 -R 32 ) =-0.463 (R 35 + R 36 ) / (R 35 -R 36 ) = 1.124 R 41 / R 36 = 1.291 Example 12 f = 6.700 to 50.44, F / 1.44 to F / 2.11 2ω = 50.4 ゜ to 7.2 ゜ r 1 = 55.1109 d 1 = 1.3000 n 1 = 1.84666 ν 1 = 23.78 r 2 = 28.8970 d 2 = 4.8000 n 2 = 1.56873 ν 2 = 63.16 r 3 = -92.8429 d 3 = 0.1500 r 4 = 20.7944 d 4 = 3.4500 n 1 = 1.60311 ν 3 = 60.70 r 5 = 51.7240 d 5 = D 1 ( Variable) r 6 = 100.5677 d 6 = 0.9000 n 4 = 1.72000 v 4 = 50.25 r 7 = 9.0549 d 7 = 3.2000 r 8 = -11.5198 d 8 = 0.8000 n 5 = 1.60311 v 5 = 60.70 r 9 = 12.5374 d 9 = 2.0000 n 6 = 1.84666 v 6 = 23.78 r 10 = 73.5525 d 10 = D 2 (variable) r 11 = 14.7025 (aspherical surface) d 11 = 3.3000 n 7 = 1.69680 v 6 = 55.52 r 12 = -55.8822 d 12 = 1.0000 r 13 = ∞ (stop) d 13 = 1.5000 r 14 = 9.4162 d 14 = 2.6000 n 8 = 1.69680 ν 8 = 55.52 r 15 = 30.8448 d 15 = 0.7000 r 16 = -3 2.9050 d 16 = 0.8000 n 9 = 1.84666 ν 9 = 23.78 r 17 = 10.4169 d 17 = D 3 ( variable) r 18 = 10.1889 (aspherical) d 18 = 3.6000 n 10 = 1.56873 ν 10 = 63.16 r 19 = -14.9311 d 19 = D 4 (variable) r 20 = ∞ d 20 = 1.0000 n 11 = 1.51633 ν 11 = 64.15 r 21 = ∞ d 21 = 5.8600 n 11 = 1.54771 ν 11 = 62.83 r 22 = ∞ d 22 = 1.2100 r 23 = ∞ d 23 = 0.6000 n 11 = 1.48749 ν 13 = 70.20 r 24 = ∞ aspherical coefficients (surface No. 11) P = 1.0000, A 4 = -0.18511 × 10 -4 A 6 = -0.10252 × 10 -5, A 8 = 0.13963 × 10 -7 (Stage 18) P = 1.0000, A 4 = −0.37628 × 10 -3 A 6 = −0.47003 × 10 -6 , A 8 = −0.24529 × 10 -7 f 6.700 18.383 50.44 D 1 0.700 10.890 18.161 D 2 18.161 7.971 0.700 D 3 4.709 2.563 6.507 D 4 2.718 4.864 0.920 Overall length (wide-angle end) = 63.025, front lens effective diameter = 25.7 D T / f T 2 = 2.558 × 10 -3 , f 4 / f W = 1.676 (R 31 + R 32 ) / (R 31 -R 32 ) =-0.583 (R 35 + R 36 ) / (R 35 -R 36 ) = 0.519 R 41 / R 36 = 0.978 However r 1, r 2, ... curvature radius of each lens surface, d 1, d 2, ... is the thickness and lens distance of each lens, n 1, n 2, ... Is the refractive index of each lens, and ν 1 , ν 2 ,... Are Abbe numbers of each lens.

上記実施例1乃至実施例12のレンズ構成は、夫々第1
図乃至第12図に示す通りである。
The lens configurations of the first to twelfth embodiments are respectively the first lens configuration.
This is as shown in FIGS.

実施例1,3,4,7,9,10,11,12は、第1群と第3群が常時
固定である。これらのうち実施例1と実施例7は、第3
群が2枚の正レンズと像側に強い曲面を向けた負レンズ
とからなり、又実施例3,4,9,10,11,12は、第3群が1枚
の正レンズと像側に強い凹面を向けた負レンズとからな
っている。
In the first, third, fourth, seventh, ninth, tenth, eleventh and twelfth embodiments, the first and third units are fixed at all times. Of these, Examples 1 and 7 are the third
The group consists of two positive lenses and a negative lens with a strong curved surface facing the image side. In Examples 3, 4, 9, 10, 11, and 12, the third group has one positive lens and the image side. The lens consists of a negative lens with a strong concave surface.

実施例1,3,4,7,11,12は、第3群の最も物体側の面と
第4群の物体側の面が光軸から離れるにしたがって曲率
が小さくなるような非球面である。又実施例9は第3
群,第4群のすべてのレンズが光軸から離れるにしたが
って屈折率が減少するような不均質媒質で構成されてい
る。実施例10は、第3群の物体側の正レンズが光軸から
離れるにしたがって、屈折率が減少するような不均質媒
質で構成されており、更に第4群の物体面か光軸からは
なれるにしたがって、曲率が小さくなるような非球面で
構成されている。
The first, third, fourth, seventh, eleventh, and twelfth examples are aspheric surfaces in which the curvature of the third-group most object-side surface and the fourth-group object-side surface decreases as the distance from the optical axis increases. . Example 9 is the third
All the lenses of the group and the fourth group are formed of an inhomogeneous medium whose refractive index decreases as the distance from the optical axis increases. In the tenth embodiment, the positive lens on the object side in the third group is formed of an inhomogeneous medium whose refractive index decreases as the distance from the optical axis increases. It is composed of an aspherical surface such that the curvature becomes smaller as the distance becomes smaller.

実施例2,5,6,8は、第3群のみが常時固定で、第1群
と第2群とが変倍時にある一定の比率で逆方向へ移動す
る。
In the second, fifth, sixth and eighth embodiments, only the third lens unit is fixed at all times, and the first and second lens units move in opposite directions at a certain fixed ratio during zooming.

実施例2と実施例8は、第3群と第4群の構成が夫々
実施例1と実施利7とにほぼ同じで実施例5と実施例6
は、第3群と第4群の構成が夫々実施例3と実施例4と
ほぼ同じである。
In the second and eighth embodiments, the configurations of the third and fourth groups are substantially the same as those of the first and seventh embodiments, respectively, and the fifth and sixth embodiments are the same.
The configurations of the third and fourth units are almost the same as those of the third and fourth embodiments, respectively.

実施例11および12は、第3群の最も物体側の正レンズ
と次のレンズとの間に絞りを設けたもので、実施例1の
ように絞りを第3群より物体側へ配置するよりも、全長
を短く収差状況を良好にするためには有利である。それ
は第3群と第4群とで形成される結像系としての全長を
実施例1の場合に比べて少し長くしやすいからである。
In the eleventh and twelfth embodiments, a stop is provided between the positive lens closest to the object side of the third lens unit and the next lens, and the stop is arranged closer to the object side than the third lens unit as in the first embodiment. However, it is advantageous to shorten the overall length and improve the aberration situation. This is because the total length of the image forming system formed by the third and fourth units can be slightly longer than that in the first embodiment.

実施例1などで用いている非球面の形状は、面頂(面
と光軸との交点)を原点、光軸方向をx軸、光軸と垂直
な方向をy軸とする時、次の式にて表わされる。
The shape of the aspherical surface used in the first embodiment and the like is such that when the origin is the vertex (the intersection of the surface and the optical axis), the optical axis direction is the x axis, and the direction perpendicular to the optical axis is the y axis, It is represented by the formula.

ただしCは面頂での曲率、pは円錐定数、A2iは非球
面係数である。
Where C is the curvature at the top of the surface, p is the conic constant, and A 2i is the aspheric coefficient.

又実施例9,10で用いている不均質媒質(屈折率分布型
レンズ)の屈折率分布は次の式で表わされる。
The refractive index distribution of the heterogeneous medium (refractive index type lens) used in Examples 9 and 10 is represented by the following equation.

n(r)=N0+N1r2+N2r4+・・・ ただしrは光軸からの距離、n(r)は距離rにおけ
る屈折率、N0は軸上での屈折率、N1,N2,・・・は分布係
数である。
n (r) = N 0 + N 1 r 2 + N 2 r 4 + ··· where r is the distance from the optical axis, n (r) is the refractive index at distance r, N 0 is the refractive index on the axis, N 1 , N 2 ,... Are distribution coefficients.

[発明の効果] 本発明の変倍レンズは、リレー系である正の第4群を
工夫することにより構成枚数が少なく、変倍比が大で明
るいレンズ系である。
[Effects of the Invention] The variable power lens of the present invention is a bright lens system having a small number of components, a large variable power ratio, and a large zoom ratio by devising the fourth positive lens unit that is a relay system.

【図面の簡単な説明】[Brief description of the drawings]

第1図乃至第12図は夫々本発明の実施例1乃至実施例12
の断面図、第13図,第14図,第15図は、夫々実施例1の
広角端,中間焦点距離,望遠端の収差曲線図、第16図,
第17図,第18図は夫々実施例2の広角端,中間焦点距
離,望遠端の収差曲線図、第19図,第20図,第21図は夫
々実施例3の広角端,中間焦点距離,望遠端の収差曲線
図、第22図,第23図,第24図は夫々実施例4の広角端,
中間焦点距離,望遠端の収差曲線図、第25図,第26図,
第27図は夫々実施例5の広角端,中間焦点距離,望遠端
の収差曲線図、第28図,第29図,第30図は夫々実施例6
の広角端,中間焦点距離,望遠端の収差曲線図、第31
図,第32図,第33図は夫々実施例7の広角端,中間焦点
距離,望遠端の収差曲線図、第34図,第35図,第36図は
夫々実施例8の広角端,中間焦点距離,望遠端の収差曲
線図、第37図,第38図,第39図は夫々実施例9の広角
端,中間焦点距離,望遠端の収差曲線図、第40図,第41
図,第42図は夫々実施例10の広角端,中間焦点距離,望
遠端の収差曲線図、第43図,第44図,第45図は夫々実施
例11の広角端,中間焦点距離,望遠端の収差曲線図、第
46図,第47図,第48図は夫々実施例12の広角端,中間焦
点距離,望遠端の収差曲線図である。
1 to 12 show Embodiments 1 to 12 of the present invention, respectively.
13, 14, and 15 are aberration curve diagrams at the wide-angle end, an intermediate focal length, and a telephoto end, respectively, of FIG.
17 and 18 are aberration curve diagrams at the wide-angle end, an intermediate focal length, and a telephoto end of the second embodiment, respectively. FIGS. 19, 20, and 21 are respectively the wide-angle end and the intermediate focal length of the third embodiment. FIG. 22, FIG. 23, and FIG. 24 are aberration curve diagrams at the telephoto end, respectively.
Aberration curves at the intermediate focal length, telephoto end, FIG. 25, FIG. 26,
FIG. 27 is an aberration curve diagram at the wide angle end, an intermediate focal length, and a telephoto end of the fifth embodiment, and FIGS. 28, 29, and 30 are respectively the sixth embodiment.
Of aberration curves at wide-angle end, intermediate focal length, and telephoto end,
FIGS. 32 and 33 are aberration curve diagrams at the wide-angle end, an intermediate focal length, and a telephoto end of the seventh embodiment, respectively. FIGS. 34, 35, and 36 are respectively the wide-angle end and the middle of the eighth embodiment. FIGS. 37, 38, and 39 are aberration curve diagrams at the wide-angle end, an intermediate focal length, and a telephoto end of the ninth embodiment, respectively, and FIGS. 40, 41.
FIGS. 42 and 43 are aberration curve diagrams at the wide angle end, an intermediate focal length, and a telephoto end of the tenth embodiment, respectively. FIGS. 43, 44, and 45 are respectively the wide angle end, the intermediate focal length, and the telephoto end of the eleventh embodiment. Edge aberration curve diagram, No.
46, 47, and 48 are aberration curves at the wide angle end, an intermediate focal length, and a telephoto end of the twelfth embodiment, respectively.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) G02B 9/00 - 17/08 G02B 21/02 - 21/04 G02B 25/00 - 25/04 ──────────────────────────────────────────────────続 き Continued on the front page (58) Fields surveyed (Int. Cl. 6 , DB name) G02B 9/00-17/08 G02B 21/02-21/04 G02B 25/00-25/04

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】物体側から順に正の屈折力を有する第1群
と、負の屈折力を有する第2群とよりなる変倍系と、正
の屈折力を有し常時固定の第3群と、正の屈折力を有し
変倍時および被写体距離の変化等の時に焦点位置を調節
するために可動である第4群とよりなる変倍レンズにお
いて、前記第3群が物体側より順に1枚又は2枚の正レ
ンズと、像側に強い凹面を向けた1枚の負レンズとにて
構成され、前記第4群が両凸レンズ1枚にて構成され、
第3群又は大4群が少なくとも一つのレンズが非球面を
有するか不均質媒質からなり、次の条件(1),
(2),(3)を満足する全長の短い変倍レンズ。 ただし、fW,fTは夫々広角端,望遠端における全系の焦
点距離、DIIIは第3群の最も物体側の面頂から最も像側
の面頂までの距離、DIVは第4群の肉厚、R31,R36は夫々
第3群の最も物体側の面および最も像側の面の曲率半
径、N31,N33は夫々第3群の最も物体側のレンズおよび
最も像側のレンズの屈折率である。
1. A zooming system comprising a first lens unit having a positive refractive power and a second lens unit having a negative refractive power in order from the object side, and a constantly fixed third lens unit having a positive refractive power. And a fourth lens group having a positive refractive power and a fourth group movable to adjust the focal position at the time of zooming and a change in subject distance, etc., wherein the third group is arranged in order from the object side. One or two positive lenses, and one negative lens with a strong concave surface facing the image side, and the fourth group is composed of one biconvex lens;
The third unit or the large fourth unit includes at least one lens having an aspherical surface or made of a heterogeneous medium, and the following conditions (1),
A zoom lens having a short overall length that satisfies (2) and (3). Where f W and f T are the focal lengths of the entire system at the wide-angle end and the telephoto end, respectively, D III is the distance from the vertex on the object side to the vertex on the image side of the third unit, and D IV is the fourth The thickness of the group, R 31 and R 36 are the radii of curvature of the most object side surface and the most image side surface of the third group, respectively, and N 31 and N 33 are the most object side lens and the most image of the third group, respectively. The refractive index of the lens on the side.
JP2220966A 1990-06-11 1990-08-24 Zoom lens with short overall length Expired - Fee Related JP2909765B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2220966A JP2909765B2 (en) 1990-08-24 1990-08-24 Zoom lens with short overall length
US07/712,980 US5189558A (en) 1990-06-11 1991-06-10 Vari-focal system having short total length

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2220966A JP2909765B2 (en) 1990-08-24 1990-08-24 Zoom lens with short overall length

Publications (2)

Publication Number Publication Date
JPH04104114A JPH04104114A (en) 1992-04-06
JP2909765B2 true JP2909765B2 (en) 1999-06-23

Family

ID=16759348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2220966A Expired - Fee Related JP2909765B2 (en) 1990-06-11 1990-08-24 Zoom lens with short overall length

Country Status (1)

Country Link
JP (1) JP2909765B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3476668B2 (en) * 1998-01-14 2003-12-10 松下電器産業株式会社 Zoom lens, video camera and electronic still camera using the same
JP4545849B2 (en) * 1999-08-27 2010-09-15 キヤノン株式会社 Variable magnification optical system
CN1222805C (en) 2000-06-21 2005-10-12 松下电器产业株式会社 Zoom lens, and its manufacturing method
JP2009198799A (en) * 2008-02-21 2009-09-03 Sony Corp Collapsible zoom lens
JP2011232620A (en) 2010-04-28 2011-11-17 Olympus Imaging Corp Imaging optical system and electronic imaging apparatus equipped with the same
JP5645520B2 (en) * 2010-07-20 2014-12-24 キヤノン株式会社 Zoom lens and imaging apparatus having the same

Also Published As

Publication number Publication date
JPH04104114A (en) 1992-04-06

Similar Documents

Publication Publication Date Title
JP3253405B2 (en) Two-group zoom lens
JP2817916B2 (en) Zoom lens for high zoom ratio compact camera
JP2628633B2 (en) Compact zoom lens
JPH09184982A (en) Zoom lens
JP3206908B2 (en) Compact zoom lens
JP3369654B2 (en) Wide-angle lens
JP5006514B2 (en) Zoom lens and imaging apparatus having the same
JP3292510B2 (en) Zoom lens
JPH0876015A (en) Zoom lens
JP2963520B2 (en) Zoom lens with short overall length
JP3028581B2 (en) High magnification zoom lens
US4364641A (en) Wide angle zoom lens
JP3519815B2 (en) Zoom lens with long back focus
JP3038350B2 (en) Wide-angle zoom lens
JP2909765B2 (en) Zoom lens with short overall length
JP3268824B2 (en) Small two-group zoom lens
JP3260836B2 (en) Wide-angle high zoom lens
JP2005157097A (en) Zoom lens and imaging apparatus equipped with same
JP3234618B2 (en) Large aperture medium telephoto lens
JPH0820598B2 (en) Compact zoom lens
JP3412939B2 (en) Zoom lens
JP3008711B2 (en) Small zoom lens
JPH05346542A (en) Small-sized two-group zoom lens
JP2579215B2 (en) Zoom lens
JP3323839B2 (en) Camera with a small zoom lens

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090409

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090409

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100409

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees