JP2908923B2 - Biochemical automatic analyzer - Google Patents

Biochemical automatic analyzer

Info

Publication number
JP2908923B2
JP2908923B2 JP33515791A JP33515791A JP2908923B2 JP 2908923 B2 JP2908923 B2 JP 2908923B2 JP 33515791 A JP33515791 A JP 33515791A JP 33515791 A JP33515791 A JP 33515791A JP 2908923 B2 JP2908923 B2 JP 2908923B2
Authority
JP
Japan
Prior art keywords
reaction detection
reaction
tubes
detection tube
detection tubes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP33515791A
Other languages
Japanese (ja)
Other versions
JPH05164763A (en
Inventor
稔 稲次
木村彰夫
潔 川島
進 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON DENSHI KK
Original Assignee
NIPPON DENSHI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON DENSHI KK filed Critical NIPPON DENSHI KK
Priority to JP33515791A priority Critical patent/JP2908923B2/en
Publication of JPH05164763A publication Critical patent/JPH05164763A/en
Application granted granted Critical
Publication of JP2908923B2 publication Critical patent/JP2908923B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Automatic Analysis And Handling Materials Therefor (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、サンプル及び試薬が分
注される複数本の反応検出管を回転移動させながら各反
応検出管の測光データを連続的に取得するとともに、反
応検出管を洗浄するようにした生化学自動分析装置に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is to continuously obtain photometric data of each reaction detection tube while rotating a plurality of reaction detection tubes into which a sample and a reagent are dispensed, and to wash the reaction detection tubes. And a biochemical automatic analyzer.

【0002】[0002]

【従来の技術】人体の血清等を対象として各種の化学分
析分析を行うための装置として自動化学分析装置が提案
されている。このような分析装置について、図5を参照
して説明する。図示しない回転テーブル上に設けられた
環状の反応検出管ホルダ1に複数本の反応検出管a〜o
が保持され、例えば時計方向に回転駆動されて一定のサ
イクルで回転と停止が行われ、連続的に分析されるよう
になっている。反応検出管ホルダ1の周囲には、図示し
ないサンプル分注装置、第1試薬及び第2試薬分注装
置、洗浄装置等が配置され、それぞれ位置Aでサンプル
分注、位置Bで第1試薬分注、位置Cで第2試薬分注、
位置Dで洗浄が行われる。1サイクル(1つの反応検出
管に試料を入れてから次の反応検出管に試料を入れるま
でのサイクル)において、反応検出管は(1回転+1ピ
ッチ)分移動するようになっており、図5(a)の停止
状態を所定時間維持した後、ホルダ1は時計方向に所定
時間回転して(1回転+1ピッチ)分移動し、図5
(b)の状態で停止する。このようなサイクルを繰り返
し、洗浄位置Dにおいて、直前まで反応検出管に分注さ
れ混合されたサンプル及び試薬は洗い落とされ、(1回
転+1ピッチ)分移動した位置Aにおいて新たなサンプ
ルが分注され、さらに(1回転+1ピッチ)分移動した
位置Bにおいて第1試薬が、位置Cにおいて第2試薬が
それぞれ分注され、ほぼ1回転する間に各反応検出管が
光源2と光検出器3を結ぶ光軸を横切り、このとき各反
応検出管の吸光度が検出される。以後、回転と停止を1
サイクルとして同様の動作を繰り返すことにより1ピッ
チごとに反応検出管が先に進み、連続的に各反応検出管
の測光が行われる。なお、1サイクルでの移動量は(1
回転−1ピッチ)とし、1サイクルごとに反応検出管が
後に進むようにしても同様である。
2. Description of the Related Art An automatic chemical analyzer has been proposed as an apparatus for performing various chemical analysis analyzes on human serum or the like. Such an analyzer will be described with reference to FIG. A plurality of reaction detection tubes a to o are provided in an annular reaction detection tube holder 1 provided on a rotary table (not shown).
Is held, and is rotated and driven, for example, clockwise to rotate and stop in a fixed cycle, so that analysis is continuously performed. Around the reaction detection tube holder 1, a sample dispensing device (not shown), a first reagent and a second reagent dispensing device, a washing device, and the like are arranged. Note, dispensing the second reagent at position C,
The cleaning is performed at the position D. In one cycle (a cycle from the time when a sample is put into one reaction detection tube to the time when a sample is put into the next reaction detection tube), the reaction detection tube is moved by (one rotation + 1 pitch). After the stop state of (a) is maintained for a predetermined time, the holder 1 rotates clockwise for a predetermined time and moves by (one rotation + 1 pitch).
Stop in the state of (b). By repeating such a cycle, at the washing position D, the sample and the reagent dispensed and mixed into the reaction detection tube until immediately before are washed off, and a new sample is dispensed at the position A moved by (one rotation + 1 pitch). The first reagent is dispensed at a position B further moved by (one rotation + 1 pitch), and the second reagent is dispensed at a position C, and each reaction detection tube is connected to the light source 2 and the light detector 3 during substantially one rotation. Traverses the optical axis connecting, and at this time, the absorbance of each reaction detection tube is detected. After that, rotate and stop 1
By repeating the same operation as a cycle, the reaction detection tubes advance at every pitch, and photometry of each reaction detection tube is continuously performed. The movement amount in one cycle is (1
(Rotation-1 pitch), and the same applies to the case where the reaction detection tube advances after each cycle.

【0003】[0003]

【発明が解決しようとする課題】ところで、上記従来の
分析装置において、分析に使用する反応検出管の総数を
N、1サイクルに検出をかねて移動する反応検出管の数
をMとすると、一般に、 N±1=M の関係がある。1サイクルの時間は回転時間と停止時間
の和となるが、装置における処理能力を上げるためには
1サイクルの時間を短縮する必要がある。しかし、停止
時間を縮めるのには限度があるので回転時間を縮めるこ
とが考えられるが、反応検出管の数が増加し、処理スピ
ードを速くしてほぼ1回転させながら反応検出管を測光
しようとすると、1反応検出管の測光に使用できる時間
が極めて短くなってしまい、信頼性のあるデータを取得
することができない。
By the way, in the above-mentioned conventional analyzer, when the total number of reaction detection tubes used for analysis is N and the number of reaction detection tubes moving for one cycle for detection is M, generally, There is a relationship of N ± 1 = M. The time for one cycle is the sum of the rotation time and the stop time, but it is necessary to reduce the time for one cycle in order to increase the processing capacity of the apparatus. However, there is a limit to shorten the stop time, so it is conceivable to shorten the rotation time. However, the number of reaction detection tubes is increased. Then, the time available for photometry of one reaction detection tube becomes extremely short, and reliable data cannot be obtained.

【0004】また、従来の装置では1サイクルで1ピッ
チずつ移動するために、試料分注の直近の位置で試薬分
注と反応検出管の洗浄を行うことになるため、試料分
注、試薬分注、反応検出管洗浄の位置関係が固定されて
しまい、装置構成上の自由度が無くなり、オペレーショ
ン上の最適配置が不可能になってしまうという問題があ
る。本発明は上記課題を解決するためのもので、各反応
検出管の測光時間を自由に設定でき、装置構成の自由度
を増して装置ユニットの最適配置を行うことができるよ
うにした生化学自動分析装置を提供することを目的とす
る。
[0004] In addition, in the conventional apparatus, since one pitch is moved in each cycle, reagent dispensing and washing of the reaction detection tube are performed at a position near the sample dispensing. Note that there is a problem that the positional relationship of the reaction tube cleaning is fixed, the degree of freedom in the apparatus configuration is lost, and the optimal arrangement in operation becomes impossible. The present invention has been made to solve the above-mentioned problems, and it is possible to freely set the photometric time of each reaction detection tube, increase the degree of freedom of the device configuration, and perform the optimal arrangement of the device unit. An object of the present invention is to provide an analyzer.

【0005】[0005]

【課題を解決するための手段】本発明は、少なくとも回
転テーブルに円周上に配置された複数の反応検出管、所
定位置で反応検出管にサンプルを分注するサンプル分注
装置、所定位置で反応検出管に試薬を分注する試薬分注
装置、反応の進行した反応検出管を洗浄する洗浄装置、
反応検出管の移動中に反応検出管を測光する検出器を備
え、1分析サイクルに複数本の反応検出管を移動させな
がら反応検出管を測光するようにした装置において、反
応検出管の数をN、1分析サイクルで移動する反応検出
管の数をMとしたとき、N±1=A×M(Aは2以上の
整数)、またはNとMの間に1以外の共通の因数が無
く、かつM<N/2とし、反応検出管の移動を繰り返し
行って全ての反応検出管を順次使用して分析するように
したことを特徴とする。
SUMMARY OF THE INVENTION The present invention is directed to a sample dispenser for dispensing a sample to a reaction detection tube at a predetermined position, a plurality of reaction detection tubes arranged at least on a circumference of a rotary table, A reagent dispensing device for dispensing a reagent to a reaction detection tube, a washing device for washing a reaction detection tube in which a reaction has progressed,
A device that has a detector for photometric reaction detection tubes while the reaction detection tubes are moving, and that measures the number of reaction detection tubes while moving a plurality of reaction detection tubes in one analysis cycle. N, where M is the number of reaction detection tubes moving in one analysis cycle, N ± 1 = A × M (A is an integer of 2 or more), or there is no common factor other than 1 between N and M And M <N / 2, and the reaction detection tubes are repeatedly moved to perform analysis using all the reaction detection tubes sequentially.

【0006】[0006]

【作用】本発明は、円周上に配置された複数の反応検出
管を1分析サイクルに複数本分移動させ、サンプル分
注、試薬分注、反応検出管洗浄を行ないつつ、移動中に
反応検出管を測光する装置において、反応検出管の数を
N、1分析サイクルで移動する反応検出管の数をMとし
たとき、N±1=A×M(Aは2以上の整数)、あるい
はNとMの間に1以外の共通の因数が無く、かつM<N
/2とすることにより、装置構成上の自由度を高めて、
装置ユニットの最適配置を容易にし、さらに反応検出管
の測光時間設定の自由度を高くすることが可能となる。
According to the present invention, a plurality of reaction detection tubes arranged on the circumference are moved by a plurality of tubes in one analysis cycle, and a sample is dispensed, a reagent is dispensed, and a reaction detection tube is washed while a reaction detection tube is being moved. In an apparatus for photometry of detection tubes, when the number of reaction detection tubes is N and the number of reaction detection tubes moving in an analysis cycle is M, N ± 1 = A × M (A is an integer of 2 or more), or No common factor other than 1 exists between N and M, and M <N
/ 2 increases the degree of freedom in the device configuration,
The optimum arrangement of the device units is facilitated, and the degree of freedom in setting the photometric time of the reaction detection tube can be increased.

【0007】[0007]

【実施例】図1は本発明の生化学自動分析装置の一実施
例の構成を示す図、図2は反応進行度合と反応検出管位
置との関係を説明する図である。図中、1は反応検出管
ホルダ、2は光源、3は光検出器、a〜oは反応検出
管、10はサンプル分注装置、11は第1試薬分注装
置、12は第2試薬分注装置、13は洗浄装置、14は
A/D変換器、15はCPU、16は操作パネル、17
はCRT、18はプリンタである。
1 is a diagram showing the configuration of an embodiment of the automatic biochemical analyzer of the present invention, and FIG. 2 is a diagram for explaining the relationship between the degree of reaction progress and the position of a reaction detection tube. In the drawing, 1 is a reaction detection tube holder, 2 is a light source, 3 is a photodetector, a to o are reaction detection tubes, 10 is a sample dispenser, 11 is a first reagent dispenser, and 12 is a second reagent dispenser. Injection device, 13 is a cleaning device, 14 is an A / D converter, 15 is a CPU, 16 is an operation panel, 17
Is a CRT and 18 is a printer.

【0008】本実施例は1つの分析ラインにおいて、分
析に使用する反応検出管の総数Nと1サイクルに検出を
かねて移動する反応検出管の数Mの間に、 N±1=A×M(Aは2以上の整数) の関係を持たせ、かつ1サイクルの移動ピッチは反応検
出管の測光時間を大きくとれるように、M<N/2とし
たものである。なお、図1においては説明の便宜上、N
=15、A=4、M=4として説明する。
In this embodiment, in one analysis line, between the total number N of reaction detection tubes used for analysis and the number M of reaction detection tubes moving for one cycle for detection, N ± 1 = A × M ( (A is an integer of 2 or more), and the movement pitch in one cycle is set to M <N / 2 so that the photometric time of the reaction detection tube can be increased. In FIG. 1, for convenience of explanation, N
= 15, A = 4, and M = 4.

【0009】図1は図5と基本構成は同じであり、図示
しない回転テーブル上に置かれた環状試料ホルダ1には
a〜oの15本の反応検出管がセットされ、1サイクル
に4ピッチづつ時計方向に回転するようになっている。
各サイクルの停止時間中にはサンプル分注装置10で反
応検出管に対してサンプルが分注され、さらに第1試薬
分注装置11で第1試薬が、第2分注装置12で第2試
薬がそれぞさ分注され、また測光データが得られた反応
検出管は洗浄装置13で洗浄されるようになっている。
反応検出管についての測光は、試料ホルダ1がほぼ1回
転する間に反応検出管が光源2と光検出器3を結ぶ光軸
を横切るときに吸光度が検出され、検出信号はA/D変
換器14でA/D変換されてCPU15に取り込まれ
る。CPUでは所定のデータ処理を行い、操作パネル1
6を操作することにより処理結果がCRT17、プリン
タ18に出力される。
FIG. 1 has the same basic structure as that of FIG. 5, and fifteen reaction detection tubes a to o are set in an annular sample holder 1 placed on a rotary table (not shown). Each time it rotates clockwise.
During the stop time of each cycle, the sample is dispensed to the reaction detection tube by the sample dispensing device 10, the first reagent is dispensed by the first reagent dispensing device 11, and the second reagent is dispensed by the second dispensing device 12. Each of the reaction detection tubes from which the photometric data is obtained is washed by the washing device 13.
In the photometry of the reaction detection tube, the absorbance is detected when the reaction detection tube crosses the optical axis connecting the light source 2 and the photodetector 3 while the sample holder 1 makes almost one rotation, and the detection signal is an A / D converter. At 14, the data is A / D converted and taken into the CPU 15. The CPU performs predetermined data processing and operates the operation panel 1.
By operating the device 6, the processing result is output to the CRT 17 and the printer 18.

【0010】図示するように、反応検出管がサンプル分
注位置から反時計方向に、 a→b→c→d→e→f→g→h→i→j→k→l→m→n→o の順序で15本セットされており、回転テーブルを時計
方向(図の矢印方向)に回転させて1サイクルに4ピッ
チ(M=4)つづ進ませるようにしたとき、サンプル分
注位置に順次もたらされる反応検出管の順序は、 a→e→i→m→b→f→j→n→c→g→k→o→d→h→l となる。次いで、1サイクルの回転が行われるごとに、
各反応検出管がどの回転位置に移動するかを、例えば図
1の反応検出管aについてみると図2に示すようにな
る。ここで、番号1は図1における反応検出管aの停止
位置、番号2は1サイクル回転して反応検出管aが4ピ
ッチ移動した後の停止位置、以下同様に各番号は1サイ
クル回転ごとの停止位置を示している。この結果は最初
の停止位置の違いだけで他の14個の反応検出管につい
ても同様である。各サイクルにおいて光源2と光検出器
3とを結ぶ光軸を横切るときに吸光度の検出が行われ
る。そこで、番号1の位置でサンプルを分注し、番号2
の位置で第1試薬を分注し、さらに例えば4サイクル進
んだ番号6の位置で第2試薬を分注する。なお、番号は
反応時間(反応の進行度合い)を示し、番号が大きくな
る程試薬分注から時間が経過して反応が進んだことを意
味している。反応が進んだものは適宜洗浄処理を行う
が、洗浄処理のタイミングはある程度反応が進んでいれ
ば必ずしも最終位置である必要はない。したがって、例
えば番号11,15の位置Dー1、番号8,12の位置
Dー2、番号9,13の位置Dー3、番号10,14の
位置Dー4のいずれかで行えばよく、図1では番号1
1,15の位置Dー1に配置している。
[0010] As shown in the figure, the reaction detection tube is moved counterclockwise from the sample dispensing position to a → b → c → d → e → f → g → h → i → j → k → l → m → n → When the rotary table is rotated clockwise (in the direction of the arrow in the figure) to advance by 4 pitches (M = 4) in one cycle, it is sequentially set to the sample dispensing position. The order of the resulting reaction detection tubes is as follows: a → e → i → m → b → f → j → n → c → g → k → o → d → h → l. Then, every time one cycle of rotation is performed,
FIG. 2 shows, for example, the reaction detection tube a in FIG. 1 as to which rotational position each reaction detection tube moves. Here, the number 1 is the stop position of the reaction detection tube a in FIG. 1, the number 2 is the stop position after one cycle of rotation and the reaction detection tube a has moved four pitches, and so on. The stop position is shown. This result is the same for the other 14 reaction detection tubes only by the difference in the initial stop position. In each cycle, the absorbance is detected when the light crosses the optical axis connecting the light source 2 and the photodetector 3. Therefore, the sample is dispensed at the position of No. 1 and
The first reagent is dispensed at the position of No. 6, and the second reagent is further dispensed at the position of No. 6, for example, advanced by four cycles. The number indicates the reaction time (degree of progress of the reaction), and the larger the number, the more time has elapsed since the dispensing of the reagent and the more the reaction has progressed. After the reaction has proceeded, the cleaning process is appropriately performed, but the timing of the cleaning process does not necessarily need to be the final position as long as the reaction has progressed to some extent. Therefore, for example, it may be performed at any of the position D-1 of the numbers 11 and 15, the position D-2 of the numbers 8 and 12, the position D-3 of the numbers 9 and 13, and the position D-4 of the numbers 10 and 14. In FIG. 1, number 1
1, 15 are arranged at position D-1.

【0011】また、反応検出管を2列にして倍の本数に
することにより、N=15,A=4,M=4は変わらな
くても、見掛け上N=30,A=4,M=8とすること
ができる。このように、本実施例では4ピッチづつ移動
させることにより、洗浄装置等の装置ユニットの配置の
自由度が大きくなり、また1サイクル当たりの移動ピッ
チ数が少なくなるために反応検出管1本当たりの測光時
間を長くできるとともに、ピッチ数の変更により容易に
反応検出管1本当たりの測光時間を変えることも可能と
なる。
Further, by doubling the number of reaction detection tubes in two rows, N = 15, A = 4, and M = 4 even if N = 15, A = 4, and M = 4 do not change. 8 can be set. As described above, in the present embodiment, by moving four pitches at a time, the degree of freedom in the arrangement of the device units such as the cleaning device is increased, and the number of movement pitches per cycle is reduced. Can be extended, and the photometric time per reaction detection tube can be easily changed by changing the number of pitches.

【0012】図3はN=27,A=4,M=7の場合に
ついて、サンプル分注位置にある反応検出管についての
1サイクルごとに移動する位置を表したものである。番
号1はサンプル分注位置であり、図2の場合と同様に番
号が大きいほど反応が進んでいることを意味し、番号1
9,23,27の位置Dー1、番号16,20,24の
位置Dー2、番号17,21,25の位置Dー3、番号
18,22,26の位置Dー4のように反応が進行し、
かつ反応時間の順番に反応検出管が並ぶので、洗浄機構
を連続して配置することができる。このように、反応検
出管の本数が増えるにつれて洗浄機構設置可能な箇所が
増え、装置ユニット配置の自由度が増して最適配置が容
易になる。
FIG. 3 shows the position of the reaction detection tube at the sample dispensing position which moves in each cycle when N = 27, A = 4, and M = 7. The number 1 is a sample dispensing position. As in the case of FIG. 2, the larger the number, the more the reaction is progressing.
Reaction as in position D-1, 9,23,27, position D-2 in numbers 16,20,24, position D-3 in numbers 17,21,25, position D-4 in numbers 18,22,26 Progresses,
In addition, since the reaction detection tubes are arranged in the order of the reaction time, the washing mechanism can be arranged continuously. As described above, as the number of reaction detection tubes increases, the number of places where the washing mechanism can be installed increases, and the degree of freedom in arranging device units increases, facilitating optimal arrangement.

【0013】なお、上記実施例は反応検出管の総数
(N)±1と1サイクルに検出をかねて移動する反応検
出管の数Mの間に2以上の共通因数がある場合(M<N
/2)であったが、反応検出管の総数Nと移動ピッチ数
Mの間に2以上の共通因数がなければ1サイクルにMピ
ッチづつ進むことによりすべての反応検出管についての
処理が実行される。
In the above embodiment, there are two or more common factors (M <N) between the total number of reaction detection tubes (N) ± 1 and the number M of reaction detection tubes that move for detection in one cycle.
/ 2), but if there is no common factor of 2 or more between the total number N of reaction detection tubes and the number M of moving pitches, the process proceeds by M pitches in one cycle to execute processing for all reaction detection tubes. You.

【0014】図4はこのような本発明の他の実施例を説
明するための図である。本実施例は1つの分析ラインに
おいて、分析に使用する反応検出管の総数Nと1サイク
ルに検出をかねて移動する反応検出管の数Mの間に1以
外の共通な因数を持たない数にしたものである。なお、
本実施例の場合も各反応検出管の測光時間を大きくとれ
るように、M<N/2とする。
FIG. 4 is a view for explaining such another embodiment of the present invention. In this example, the number of reaction detection tubes used for analysis in one analysis line and the number M of reaction detection tubes that move for one cycle without detection have no common factor other than 1 between the total number N of reaction detection tubes. Things. In addition,
Also in the case of this embodiment, M <N / 2 is set so that the photometric time of each reaction detection tube can be increased.

【0015】図示の例は、N=28、M=5の場合につ
いてサンプル分注位置にある反応検出管が1サイクルご
とにどの位置へ移動するかを表したものであり、図2、
図3の場合と同様に番号の大きいほど反応が進んだこと
を示している。図から分かるように時計方向に5ピッチ
づつ移動することにより、番号の大きい反応の進んだ箇
所が隣接して現れるので、これらの箇所Dー1〜Dー6
を選んで洗浄位置とすることにより、装置構成上の自由
度が上がり、最適配置が容易になる。
The example shown in FIG. 2 shows to which position the reaction detection tube at the sample dispensing position moves for each cycle when N = 28 and M = 5.
As in the case of FIG. 3, the larger the number, the more the reaction has progressed. As can be seen from the figure, by moving in the clockwise direction by 5 pitches, the places where the reactions with the larger numbers have advanced appear adjacently, and these places D-1 to D-6
Is selected as the cleaning position, the degree of freedom in the apparatus configuration is increased, and the optimum arrangement is facilitated.

【0016】なお、上記説明では、便宜上反応検出管の
総数Nが2桁程度の少ない場合であったが、実際には数
百本のオーダであり、本数が多くなるほど本発明によれ
ば装置構成の自由度が高くなり、図示は省略するがN=
360、M=23として構成した例では洗浄位置の設
定、試薬分注位置の設定、検出管自体の吸光度測光用の
水分注位置の設定等について高い自由度が得られ、装置
構成を容易化することができた。
In the above description, the total number N of the reaction detection tubes is, for convenience, as small as about two digits. However, the number is actually on the order of several hundreds. Is increased, and N =
In the example in which M is set to 360, M = 23, a high degree of freedom can be obtained for setting the washing position, setting the reagent dispensing position, setting the water injection position for measuring the absorbance of the detection tube itself, and simplifies the device configuration. I was able to.

【0017】[0017]

【発明の効果】以上のように本発明によれば、反応検出
管の数と反応検出管の移動の数の関係をN±1=A×M
(Aは2以上の整数)、或いはNとMとの間に1以外の
因数を持たないようにし、かつM<N/2とすることに
より、装置構成の自由度が高くなり、必要なユニットを
自由に配置して最適構成を得ることが容易となる。ま
た、反応検出管の測光時間を長くすることができ、例え
ば、反応検出管本数を400本とし、各測光時間を60
秒とすれば、従来のN±1方式では1本当たりの測光時
間は0.15秒であるのに対して、本発明において、例
えばM=29の場合には2秒となり、測光時間を大きく
とれ、またMの値の設定により測光時間も変えられ、測
光時間設定の自由度を高くすることもできる。
As described above, according to the present invention, the relationship between the number of reaction detection tubes and the number of movements of the reaction detection tubes is expressed as N ± 1 = A × M.
(A is an integer of 2 or more), or a factor other than 1 is not provided between N and M, and M <N / 2. Can be easily arranged to obtain an optimum configuration. Further, the photometric time of the reaction detection tubes can be lengthened. For example, the number of reaction detection tubes is set to 400, and each photometry time is set to 60.
In the case of seconds, the photometric time per line is 0.15 seconds in the conventional N ± 1 system, whereas in the present invention, for example, when M = 29, it is 2 seconds, and the photometric time is large. Also, the photometric time can be changed by setting the value of M, so that the degree of freedom in setting the photometric time can be increased.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の生化学自動分析装置の構成を示す図
である。
FIG. 1 is a diagram showing a configuration of a biochemical automatic analyzer of the present invention.

【図2】 反応進行度合と反応検出管位置との関係を説
明する図である。
FIG. 2 is a diagram illustrating the relationship between the degree of reaction progress and the position of a reaction detection tube.

【図3】 N=27,A=4,M=7の場合についての
反応進行度合と反応検出管位置との関係を説明する図で
ある。
FIG. 3 is a diagram illustrating the relationship between the degree of reaction progress and the position of a reaction detection tube when N = 27, A = 4, and M = 7.

【図4】 本発明の他の実施例を説明する図である。FIG. 4 is a diagram illustrating another embodiment of the present invention.

【図5】 従来の生化学自動分析装置を説明する図であ
る。
FIG. 5 is a diagram illustrating a conventional automatic biochemical analyzer.

【符号の説明】[Explanation of symbols]

1…反応検出管ホルダ、2…光源、3…光検出器、a〜
o…反応検出管、10…サンプル分注装置、11…第1
試薬分注装置、12…第2試薬分注装置、13…洗浄装
置、14…A/D変換器、15…CPU、16…操作パ
ネル、17…CRT、18…プリンタ。
DESCRIPTION OF SYMBOLS 1 ... Reaction detection tube holder, 2 ... Light source, 3 ... Photodetector, a-
o: reaction detection tube, 10: sample dispensing device, 11: first
Reagent dispensing device, 12 second reagent dispensing device, 13 cleaning device, 14 A / D converter, 15 CPU, 16 operation panel, 17 CRT, 18 printer.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 斉藤 進 東京都昭島市武蔵野三丁目1番2号日本 電子株式会社内 (58)調査した分野(Int.Cl.6,DB名) G01N 35/04 G01N 35/02 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Susumu Saito 3-1-2, Musashino, Akishima-shi, Tokyo Japan Electronics Co., Ltd. (58) Field surveyed (Int.Cl. 6 , DB name) G01N 35/04 G01N 35/02

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 少なくとも回転テーブルに円周上に配置
された複数の反応検出管、所定位置で反応検出管にサン
プルを分注するサンプル分注装置、所定位置で反応検出
管に試薬を分注する試薬分注装置、反応の進行した反応
検出管を洗浄する洗浄装置、反応検出管の移動中に反応
検出管を測光する検出器を備え、1分析サイクルに複数
本の反応検出管を移動させながら反応検出管を測光する
ようにした装置において、反応検出管の数をN、1分析
サイクルで移動する反応検出管の数をMとしたとき、N
±1=A×M(Aは2以上の整数)であり、かつM<N
/2とし、反応検出管の移動を繰り返し行って全ての反
応検出管を順次使用して分析するようにしたことを特徴
とする生化学自動分析装置。
1. A sample dispensing apparatus for dispensing a sample to a reaction detection tube at a predetermined position, a plurality of reaction detection tubes arranged at least on a circumference of a rotary table, and dispensing a reagent to a reaction detection tube at a predetermined position. A reagent dispensing device, a washing device for washing a reaction detection tube in which a reaction has progressed, and a detector for photometrically detecting the reaction detection tube while the reaction detection tube is moving, and moving a plurality of reaction detection tubes in one analysis cycle. When the number of reaction detection tubes is N and the number of reaction detection tubes moving in an analysis cycle is M in an apparatus configured to perform photometry on the reaction detection tubes,
± 1 = A × M (A is an integer of 2 or more) and M <N
/ 2, wherein the reaction detection tubes are repeatedly moved to perform analysis by sequentially using all the reaction detection tubes.
【請求項2】 少なくとも回転テーブルに円周上に配置
された複数の反応検出管、所定位置で反応検出管にサン
プルを分注するサンプル分注装置、所定位置で反応検出
管に試薬を分注する試薬分注装置、反応の進行した反応
検出管を洗浄する洗浄装置、反応検出管の移動中に反応
検出管を測光する検出器を備え、1分析サイクルに複数
本の反応検出管を移動させながら反応検出管を測光する
ようにした装置において、反応検出管の数をN、1分析
サイクルで移動する反応検出管の数をMとしたとき、N
とMの間に1以外の共通の因数が無く、かつM<N/2
とし、反応検出管の移動を繰り返し行って全ての反応検
出管を順次使用して分析するようにしたことを特徴とす
る生化学自動分析装置。
2. A sample dispensing device for dispensing a sample to a reaction detection tube at a predetermined position, a plurality of reaction detection tubes arranged at least on a circumference of a rotary table, and dispensing a reagent to a reaction detection tube at a predetermined position. A reagent dispensing device, a washing device for washing a reaction detection tube in which a reaction has progressed, and a detector for photometrically detecting the reaction detection tube while the reaction detection tube is moving, and moving a plurality of reaction detection tubes in one analysis cycle. When the number of reaction detection tubes is N and the number of reaction detection tubes moving in an analysis cycle is M in an apparatus configured to perform photometry on the reaction detection tubes,
And M have no common factor other than 1 and M <N / 2
An automatic biochemical analyzer characterized in that the reaction detection tubes are repeatedly moved to perform analysis by sequentially using all the reaction detection tubes.
JP33515791A 1991-12-18 1991-12-18 Biochemical automatic analyzer Expired - Lifetime JP2908923B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33515791A JP2908923B2 (en) 1991-12-18 1991-12-18 Biochemical automatic analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33515791A JP2908923B2 (en) 1991-12-18 1991-12-18 Biochemical automatic analyzer

Publications (2)

Publication Number Publication Date
JPH05164763A JPH05164763A (en) 1993-06-29
JP2908923B2 true JP2908923B2 (en) 1999-06-23

Family

ID=18285411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33515791A Expired - Lifetime JP2908923B2 (en) 1991-12-18 1991-12-18 Biochemical automatic analyzer

Country Status (1)

Country Link
JP (1) JP2908923B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE29806593U1 (en) * 1998-04-09 1999-08-12 Ilmberger Maschinen Und Zahnra Device for coating a workpiece
JP2008224385A (en) 2007-03-12 2008-09-25 Olympus Corp Analyzer and analytical method
JP5260267B2 (en) * 2008-12-26 2013-08-14 株式会社日立ハイテクノロジーズ Automatic analyzer
JP5532425B2 (en) 2010-08-27 2014-06-25 株式会社日立ハイテクノロジーズ Sample holder for charged particle equipment
JP6858839B2 (en) * 2017-03-14 2021-04-14 株式会社日立ハイテク Automatic analyzer
WO2019073700A1 (en) 2017-10-12 2019-04-18 株式会社日立ハイテクノロジーズ Automated analyzer
CN111201439B (en) 2018-02-26 2024-04-05 株式会社日立高新技术 Automatic analysis device
JP7179861B2 (en) 2018-08-28 2022-11-29 株式会社日立ハイテク AUTOMATIC ANALYZER AND METHOD THEREOF
US20210389337A1 (en) 2019-01-18 2021-12-16 Hitachi High-Tech Corporation Automatic analysis device, automatic analysis system, and automatic analysis method for analytes

Also Published As

Publication number Publication date
JPH05164763A (en) 1993-06-29

Similar Documents

Publication Publication Date Title
JP3063584B2 (en) Automatic analyzer
JP2708437B2 (en) Automatic analyzer
US5037612A (en) Method and apparatus for analyzing fluid sample
US4329061A (en) Turntable device for analyzing chemical substances
JP2908923B2 (en) Biochemical automatic analyzer
JPS61274268A (en) Automatic chemical analyzer
US5212094A (en) Automatic chemical analyzer
JPH06103311B2 (en) Multi-item automatic analyzer
US5292482A (en) Automatic analyzing apparatus and automatic analyzing method
JP2731144B2 (en) Automatic chemical analyzer
JPH0980055A (en) Automatic multiple item analyzer
JPS62228935A (en) Automatic chemical analyzing instrument
JP2533094B2 (en) Automatic chemical analyzer
JP2001208760A (en) Composite biochemical/immunological automatic analyzer
JP2533096B2 (en) Automatic chemical analyzer
JPH0577981B2 (en)
EP4152007A1 (en) Analysis device, analysis method and program
JPH073431B2 (en) Automatic chemical analyzer
JP3375184B2 (en) Automatic chemical analyzer
JPH01287465A (en) Apparatus and method of analysis in which liquid can be stirred
JPS62121364A (en) Reagent dispensing method for automatic chemical analyzing instrument
JP2677552B2 (en) Automatic chemical analyzer
JPS6325558A (en) Automatic chemical analyzer
JPS6340861A (en) Automatic chemical analyser
JP2590382B2 (en) Automatic analyzer measurement method

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990316

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080402

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090402

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090402

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100402

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110402

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110402

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120402

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120402

Year of fee payment: 13