JP2906030B2 - Ceramic-carbide composite sintered body and method for producing the same - Google Patents

Ceramic-carbide composite sintered body and method for producing the same

Info

Publication number
JP2906030B2
JP2906030B2 JP34803495A JP34803495A JP2906030B2 JP 2906030 B2 JP2906030 B2 JP 2906030B2 JP 34803495 A JP34803495 A JP 34803495A JP 34803495 A JP34803495 A JP 34803495A JP 2906030 B2 JP2906030 B2 JP 2906030B2
Authority
JP
Japan
Prior art keywords
ceramic
sintered body
wear
outer frame
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34803495A
Other languages
Japanese (ja)
Other versions
JPH09165275A (en
Inventor
保 明石
孝司 牧
雅人 谷
秀夫 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Coal Mining Co Ltd
Original Assignee
Sumitomo Coal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Coal Mining Co Ltd filed Critical Sumitomo Coal Mining Co Ltd
Priority to JP34803495A priority Critical patent/JP2906030B2/en
Publication of JPH09165275A publication Critical patent/JPH09165275A/en
Application granted granted Critical
Publication of JP2906030B2 publication Critical patent/JP2906030B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、粒粉体の混合、輸
送やスラリーの輸送などの物質輸送機器及び土木建設機
械などのすり減り摩耗(以下、アブレシブ摩耗と呼ぶ)
と同時に、化学的な腐食摩耗を被りやすい部分に利用す
る耐摩耗、耐食材に関わり、特に、セラミック燒結体の
優れた化学的安定性と耐摩耗性を維持しながら上記機械
や構成金属部材への直接溶接接合を可能にした、信頼性
の高い、高品位のセラミック−超硬系複合燒結体とその
製造方法を提供するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to abrasive wear (hereinafter referred to as abrasive wear) of mass transportation equipment such as mixing, transportation and slurry transportation of granular powders, and civil construction equipment.
At the same time, it is concerned with abrasion and corrosion resistant materials that are used in parts that are susceptible to chemical corrosion wear.In particular, while maintaining the excellent chemical stability and abrasion resistance of sintered ceramics, it can be applied to the above machines and metal components. The present invention provides a highly reliable, high-quality ceramic-carbide composite sintered body that enables direct welding bonding of a sintered body and a method of manufacturing the same.

【0002】[0002]

【従来の技術】従来、この種のものにあっては、下記の
ようなものになっている。金属、セラミックスなどの粉
砕、混合、さらにそれらの輸送手段を提供する各種機器
類や土砂、岩石の破砕、輸送を司る土木建設機械類では
その対象処理物の摩耗性が高く、処理物と部材の接触に
よる顕著なすり減り摩耗をうける。また、製紙工業,化
学,肥料工業,食品工業などではこのアブレシブ摩耗の
ほか、化学的腐食の加わった複合摩耗を起こす。単なる
アブレシブ摩耗に対しては強度,硬さの点から一般に超
硬合金が使われている。しかし、併せて、耐薬品性の要
求される耐摩耗材の分野では主にセラミック系燒結体が
利用されている。セラミック燒結体の機械本体あるいは
部材への接合は、その使用される条件や環境を考慮し
て、ネジ止め,焼きばめ,あるいは鋳ぐるみといった機
械的な接合法や、接着剤による接着、活性化ろーによる
ろー接合のような間接材接合法が用いられている。
2. Description of the Related Art Heretofore, this type is as follows. Various equipment that provides crushing and mixing of metals and ceramics, as well as civil engineering and construction machinery that crushes and transports earth and sand and rock, as well as the means of transporting them, have high abrasion properties for the target processing object, and the Significant wear due to contact. Further, in the paper industry, the chemical industry, the fertilizer industry, the food industry, and the like, in addition to the abrasive wear, combined wear with chemical corrosion occurs. For mere abrasive wear, cemented carbide is generally used in terms of strength and hardness. However, in addition, ceramic-based sintered bodies are mainly used in the field of wear-resistant materials requiring chemical resistance. The joining of the ceramic sintered body to the machine body or members is performed by mechanical joining methods such as screwing, shrink fitting, or cast-in, and bonding and activation with an adhesive, considering the conditions and environment in which the ceramic sintered body is used. Indirect material bonding methods such as ro-ro bonding are used.

【0003】[0003]

【発明が解決しようとする課題】従来の技術で述べたも
のにあっては、下記のような問題点を有していた。セラ
ミック燒結体と一般的な金属部材とのネジ止め、焼きば
め、あるいは鋳ぐるみといった機械的な接合法では、そ
の接合の性格上、セラミック燒結体部分での圧縮や引っ
張り応力の発生が避けられず、この応力発生のため、セ
ラミック燒結体の強度が低下したり、また、使用中に破
壊を起こすという問題があった。また、これらの機械的
接合方法では、セラミック部品に局部的に高い応力を発
生させやすく、これが原因となって、セラミック部品の
突然の破壊をもたらすという問題があった。さらに、こ
の応力発生を心配して弱い力で接合しようとすると使用
環境(温度、負荷)の変化で接合部分に緩みができ、正
常な働きができないばかりでなく、ひどい場合には振動
や衝撃でセラミック部品が破壊してしまい、周りの一連
のシステムに大きな損害を与えるという問題もあった。
一方、接着剤による方法は簡単であるが、衝撃的負荷に
弱く、また、多くは200℃以上の温度では接着力が低
下し使えないという耐熱性の問題がある。また、チタン
やジルコニウムのような活性化金属を添加して、セラミ
ックと金属の接合に使えるように改良された活性化ろー
による接合は、ろー接後双方に大きな応力が残りやす
い。残留応力の程度は、接合面積が大きいほど、また、
両者の熱膨張差の大きいほど、そして、接合温度が高い
ほど大きくなる。耐摩耗性の優れた硬質のセラミックの
熱膨張率は、10×10-6以下のものが多く、一方の耐
食性を考慮した金属部材としてはステンレス鋼が主流で
あり、この種のステンレス鋼の熱膨張率は18×10-6
とかなり大きい。このため多くの場合、接合体の変形や
セラミック層の割れが避けられない。このことは接合後
の加工コストの上昇をもたらすことのほか、残留応力に
よるセラミックの突発的破壊をもたらす一因にもなり、
構造部品としての信頼性を著しく損なうという問題があ
った。また、これらの活性ろー材は、耐食性の乏しい材
料であり、耐食性の改善を目的としたセラミック燒結体
の利用意義に反するものである。本発明は以上のような
事情に鑑みなされたもので、鋼やステンレス鋼への直接
溶接できる性質を兼ね備えた超硬部分を、その一部とし
てもつセラミック−超硬系複合燒結体を、温度傾斜を持
たせた通電燒結法を用いて一体に同時燒結することによ
り、耐摩耗性、耐食性に優れた信頼性の高いセラミック
−超硬系複合燒結体よりなる耐摩耗材、及びその製造方
法を提供しようとするものである。
The above-mentioned prior art has the following problems. Mechanical joining methods such as screwing, shrink-fitting, or cast-in of a ceramic sintered body and a general metal member prevent compression and tensile stress from occurring in the ceramic sintered body due to the nature of the joint. However, due to the generation of the stress, there is a problem that the strength of the ceramic sintered body is reduced and the ceramic sintered body is broken during use. In addition, these mechanical joining methods have a problem in that high stress is easily generated locally in the ceramic component, which causes sudden destruction of the ceramic component. In addition, if you try to join with a weak force worried about the occurrence of this stress, the joint may become loose due to changes in the use environment (temperature, load), and not only will not work properly, but if it is severe, vibration and impact There was also a problem that the ceramic component was destroyed, causing serious damage to a series of surrounding systems.
On the other hand, the method using an adhesive is simple, but is susceptible to an impact load, and in many cases, has a heat resistance problem that at a temperature of 200 ° C. or higher, the adhesive strength is reduced and the film cannot be used. In addition, when an activation metal such as titanium or zirconium is added, and the joining is performed by an activation filter which is improved so that it can be used for joining a ceramic and a metal, a large stress is likely to remain in both after the welding. The extent of the residual stress increases as the bonding area increases,
The larger the difference in thermal expansion between the two and the higher the bonding temperature, the larger the difference. Hard ceramics having excellent wear resistance have a thermal expansion coefficient of 10 × 10 −6 or less in many cases. On the other hand, stainless steel is mainly used as a metal member in consideration of corrosion resistance. The expansion rate is 18 × 10 -6
And quite large. Therefore, in many cases, deformation of the joined body and cracking of the ceramic layer are unavoidable. This not only increases the post-joining processing cost, but also contributes to the sudden breakdown of the ceramic due to residual stress,
There is a problem that the reliability as a structural component is significantly impaired. Further, these active fillers are materials having poor corrosion resistance, which is contrary to the significance of using ceramic sintered bodies for the purpose of improving corrosion resistance. The present invention has been made in view of the above circumstances, and a ceramic-carbide composite sintered body having a cemented carbide part having the property of being directly weldable to steel or stainless steel as a part thereof is provided with a temperature gradient. The present invention is to provide a wear-resistant material made of a highly reliable ceramic-carbide composite sintered body excellent in wear resistance and corrosion resistance by simultaneously sintering integrally using an electric current sintering method having a resistance, and a method of manufacturing the same. It is assumed that.

【0004】[0004]

【課題を解決するための手段】上記目的を達成するため
に、本発明は下記のようになるものである。本発明者ら
は、上記のような、耐摩耗材の機械本体への固定方法上
の問題点を解決するための研究を続けてきた。その結
果、加圧条件下での通電燒結法において、成形外枠をそ
の通電経路の1つとして持つ型構成に設計し、その成形
外枠の肉厚を適切に調整し、そこでの通電中の発熱量と
放熱量を適当に制御することにより、燒結体原料部分の
加圧軸方向に必要に応じた温度傾斜をつけることがで
き、この方法により、燒結温度の異なる2種以上の材料
を燒結状態の過不足なく、かつ、残留応力の発生も極め
て少ない状態に一度で一体に燒結できることを見い出
し、本発明者の一人は、特願平6−113696号にお
いて、優れた耐摩耗性とともに鋼材への直接溶接性を兼
ね備えた超硬合金系耐摩耗材と、その製造方法を提供し
た。本発明は、この特願平6−113696号を基に、
さらに研究を重ねた結果達成したものである。すなわ
ち、この発明は、金属系結合相量15〜40重量%より
なる炭化タングステン基超硬合金の溶接可能層1bと、
アルミナ,ジルコニア,炭化珪素,及び窒化珪素の少な
くとも一種以上よりなるセラミック燒結体の耐摩耗層1
aよりなるセラミック−超硬系複合燒結体を成形外枠2
と上下パンチ3,4を用いた通電燒結法により製造する
方法において、成形外枠2の肉厚が耐摩耗層原料粉末1
a1側から溶接可能層原料粉末1b1側へ連続及び/ま
たはステップ状に増加し、溶接可能層原料粉末1b1側
の下パンチ4の端面を成形外枠2の端面と一致するよう
に治具5上に配置し、成形外枠2を少なくとも1つの通
電経路とすることにより、通電中にセラミック−超硬系
燒結体原料粉末11の加圧軸方向に温度傾斜を形成しな
がら該セラミック−超硬系燒結体原料粉末11を燒結す
ることにより、セラミック燒結体の優れた化学的安定性
と耐摩耗性を保ち、機械本体への直接溶接を可能にした
セラミック−超硬系複合燒結体よりなる耐摩耗材及びそ
の製造方法を提供するものである。通常の通電燒結法で
は、黒鉛製成形外枠と上下パンチを用い、まず、成形外
枠に下パンチをセットした状態で燒結しようとする粉末
を充填した後、上パンチを押し込み、加圧する。この状
態で上下パンチを通じて直流または交流、あるいはそれ
らの重畳した電流を流し、燒結しようとする試料の電気
抵抗を利用してジュール熱により燒結する。ここで、成
形外枠が1つの通電経路となるように成形型を設計し、
かつ、その成形外枠の肉厚を加圧軸方向に変化させる
と、その厚み変化に対応してそこでの発熱量と放熱量を
制御でき、試料部分の加圧軸方向に凹凸を含む温度勾配
をつけることができることがわかった。成形外枠を他よ
り薄くした部分では電気抵抗が高くなり、一定電流のも
とでの発熱量は多く、高温となる。一方、厚くした部分
では逆に抵抗が低く、発熱は少なく、低温域を形成す
る。この方法により、燒結に高温を要する材料側ではそ
の周囲の成形外枠の肉厚を他より薄くすることによって
温度を高くでき、同時にもう一方の材料側では必要以上
の温度上昇を押さえることができる。さらに、大きな温
度傾斜が必要な場合には、片側に大きな熱容量をもつ治
具を入れ、ヒートシンクとして利用する方法や、昇温速
度を速くできる場合には、温度が平衡に達する前の過渡
的な温度分布を利用する方法を合わせて用いることがで
きる。ここでの成形外枠の肉厚変化の程度は、成形外枠
には低圧ながら圧力容器としての役割があり、その強度
的に許容される範囲であることが必要である。
Means for Solving the Problems In order to achieve the above object, the present invention is as follows. The present inventors have continued research to solve the above-mentioned problems in the method of fixing the wear-resistant material to the machine body. As a result, in the electric sintering method under the pressurized condition, the molding outer frame is designed as a mold having one of the energizing paths, the thickness of the outer molding frame is appropriately adjusted, By appropriately controlling the amount of heat generation and the amount of heat radiation, a temperature gradient can be provided as needed in the direction of the pressing axis of the raw material portion of the sintered body. By this method, two or more materials having different sintering temperatures can be sintered. One of the present inventors has found that it is possible to perform sintering in a single state in a state where there is no excess or deficiency in the state and the generation of residual stress is extremely small. The present invention provides a cemented carbide-based wear-resistant material having direct weldability and a method for producing the same. The present invention is based on Japanese Patent Application No. 6-113696,
This was achieved as a result of further research. That is, the present invention provides a weldable layer 1b of a tungsten carbide-based cemented carbide having a metallic binder phase content of 15 to 40% by weight,
Wear-resistant layer 1 of ceramic sintered body made of at least one of alumina, zirconia, silicon carbide, and silicon nitride
a-molded ceramic-carbide composite sintered body
And a method of manufacturing by an electric current sintering method using upper and lower punches 3 and 4.
From the a1 side, it increases continuously and / or stepwise to the weldable layer raw material powder 1b1 side, and the jig 5 is placed on the jig 5 so that the end face of the lower punch 4 on the weldable layer raw material powder 1b1 side matches the end face of the molding outer frame 2. And the molding outer frame 2 is provided with at least one current-carrying path, thereby forming a temperature gradient in the pressing axis direction of the ceramic-ceramic-based sintered material powder 11 during energization, and Sintering of sintered body raw material powder 11 keeps the ceramic sintered body excellent chemical stability and wear resistance, and is a wear-resistant material made of a ceramic-carbide composite sintered body that enables direct welding to a machine body. And a method for producing the same. In the normal electric sintering method, a molding outer frame made of graphite and upper and lower punches are used. First, the powder to be sintered is filled in a state in which the lower punch is set in the molding outer frame, and then the upper punch is pressed and pressed. In this state, a direct current or an alternating current or a superimposed current is passed through the upper and lower punches, and the sample is sintered by Joule heat using the electric resistance of the sample to be sintered. Here, the molding die is designed so that the molding outer frame becomes one energization path,
Also, when the thickness of the molding outer frame is changed in the direction of the pressing axis, the amount of heat generation and the amount of heat can be controlled in accordance with the change in the thickness, and a temperature gradient including irregularities in the direction of the pressing axis of the sample portion. It turns out that you can put on. The electrical resistance is high in the part where the molded outer frame is thinner than the others, the amount of heat generated under a constant current is large, and the temperature is high. On the other hand, in the thickened portion, on the other hand, the resistance is low, the heat generation is small, and a low temperature region is formed. By this method, the temperature of the material requiring high temperature for sintering can be raised by making the thickness of the surrounding outer frame thinner than the other, and at the same time, the unnecessary temperature rise can be suppressed on the other material side. . If a large temperature gradient is required, insert a jig with a large heat capacity on one side and use it as a heat sink.If the rate of temperature rise can be increased, transient jigs before the temperature reaches equilibrium A method using a temperature distribution can be used together. The degree of the change in the thickness of the molded outer frame here needs to be in a range that allows the molded outer frame to function as a pressure vessel while having a low pressure, and that its strength is acceptable.

【0005】[0005]

【発明の実施の形態】実施例について図面を参照して説
明する。図1はセラミック燒結体よりなる耐摩耗層1a
と炭化タングステン基超硬合金よりなる溶接可能層1b
を直接燒結接合して構成したセラミック−超硬系複合燒
結体1の断面図である。また、図2,図3は、両層の間
に耐摩耗層1aと溶接可能層1bの混合よりなる中間層
1cを入れ、燒結接合して構成したセラミック−超硬系
複合燒結体1の断面図である。図3において、1c1は
下部中間層、1c2は上部中間層である。ここでの中間
層1cは単に両者の接合を助けるだけでなく、燒結後の
収縮による残留応力の発生を緩和する役割を持つもので
あり、この中間層の組成は必ずしも両者の半々の混合と
する必要はなく、両層の厚みや大きさ、形状に応じて、
また、両者の熱膨張差によって、両層の各組成を端成分
とする範囲で適宜選択することができる。直接接合によ
るか、中間層を入れた接合にするかは、耐摩耗層1aを
構成するセラミック燒結体と溶接可能層1bを構成する
超硬合金との熱膨張差と両層の化学親和性などを考慮
し、また、その使用方法により適宜選択する。一応の目
安としては、両層を構成する材料の熱膨張率差が1×1
-6以下となる組み合わせに対しては、図1の直接燒結
接合を採用できる。また、中間層1cの厚みと層の数
は、両層を構成するセラミックと超硬合金の熱膨張の差
及びその使用環境により適宜決定する。本発明に係る耐
摩耗層1aには、その耐摩耗性、耐食性のほか、溶接可
能層を構成する超硬合金との燒結温度の類似性と燒結性
(燒結のなじみ)を考慮して、多くのセラミックスの中
から、特に、アルミナ,ジルコニア,炭化珪素(以下、
SiC)及び窒化珪素(以下、Si3N4)の少なくと
も1種類以上よりなるセラミック燒結体により構成す
る。耐摩耗層1aは、溶接可能層1bを構成する超硬合
金との熱膨張差を考慮して、例えば、アルミナ−Si
C,アルミナ−Si3N4,ジルコニア−SiC,ジル
コニア−Si3N4,アルミナ−ジルコニア−SiC,
アルミナ−ジルコニア−Si3N4のような組み合わせ
とすることができる。このような、超硬合金に比べ、熱
膨張率の大きいセラミックと小さいセラミックとの組み
合わせは、燒結接合後の残留応力を少なくでき効果的で
ある。アルミナ,ジルコニア,SiC、Si3N4の単
独燒結では、それらの燒結を促進する為一般に少量の酸
化マグネシウム(以下、MgO),酸化イットリウム
(以下、Y2O3),炭化硼素,硼素などの燒結助剤が
用いられるが、本発明においても、セラミック燒結体の
耐摩耗性と耐食性を損なわない範囲で、燒結を助ける目
的で、これらの材料を加え、用いることができる。超硬
合金をステンレス鋼や鋼材へ高い接合強度で溶接するた
めは、その金属系結合相量を15〜40重量%とするこ
とが必要であった。この溶接可能な超硬合金は、機械本
体への溶接性を確保する目的のほか、同時に燒結された
セラミック燒結体で構成された耐摩耗層1aの機械的補
強の役割も果している。この役割を果すことのできる溶
接可能層を構成する超硬合金部分の金属系結合相量は多
くても40重量%、好ましくは30重量%であった。4
0重量%以上では超硬合金の性質より、結合相金属の性
質に近づき、変形が大きくなり補強的役割を果せなくな
り、好ましくない。図5は本発明の1実施例を説明する
ための通電燒結法の概略を示したものである。耐摩耗層
1aと溶接可能層1bの間に中間層1cをもつセラミッ
ク−超硬系複合燒結体1を製造するための燒結試料構成
を示し、結合相量の多い、従って、燒結に高温を要しな
い溶接可能層原料粉末1b1が下パンチ4の上に充填さ
れ、その上に中間層原料粉末1c10,さらに耐摩耗層
原料粉末1a1が積層されている。成形外枠2はそれら
各層の必要燒結温度と燒結前の各層の厚みに応じて加圧
軸方向の肉厚が調整されており、本実施例では、溶接可
能層原料粉末1b1の燒結に関与する肉厚の厚い部分と
耐摩耗層原料粉末1a1の燒結に関与する肉厚の薄い部
分を、中間層原料粉末1c10の入っている部分で連続
して肉厚を減少させて繋いだ断面形状の例を示してい
る。燒結工程では、まず、上記のように肉厚加工された
成形外枠2を下パンチ4より大きな断面積を持つ治具5
の上に置き、下パンチ4を入れ、下パンチ4の下面と成
形外枠2の端面が治具5上で同一平面になるようにセッ
トする。次に、その上に溶接可能層原料粉末1b1、中
間層原料粉末1c10、耐摩耗層原料粉末1a1の順に
積層、充填する。図中、11はセラミック−超硬系複合
燒結体原料粉末である。これに上パンチ3を入れ軽く押
した後、通電燒結機へセットする。そこで、所定圧力ま
で加圧した後、上電極6と下電極7を介して電源8によ
り通電を開始し、加熱、燒結する。成形外枠2と下パン
チ4の下面を治具5の上面に合わせて接するように配置
することにより、大きい熱容量を持つ治具5側への熱伝
導が促進され、成形外枠2の肉厚を大きくした部分での
温度上昇をさらに押さえる効果があり、肉厚を薄くした
高温発生部分との一層大きな温度傾斜を形成することが
できる。必要な温度傾斜の大きさにあわせて治具5の大
きさを調節する。治具5の材質は黒鉛が実用的である。
また、成形外枠2の形状は本発明の重要な構成要素であ
るが、その材質は耐熱性があり、導電性材料であれば特
に制約はないが、実用的には黒鉛が適する。上下パンチ
についても同様である。図7〜図9は、本発明のセラミ
ック−超硬系複合燒結体の製造方法に利用できる成形外
枠2の縦断面形状を示したものである。図10〜図13
は、本発明に係わる製造方法に利用できる成形外枠2
と、セラミック−超硬系複合燒結体原料粉末11の横断
面形状を示したもので、要求される耐摩耗材の最終形状
に応じて適宜選択する。図7は成形外枠2の肉厚がステ
ップで変化する場合であり、比較的急激な温度傾斜を必
要とする耐摩耗層1aと溶接可能層1bを直接接合する
場合に利用する。一方、図8,図9は成形外枠2の肉厚
が連続して変化する場合の例であり、比較的緩やかな温
度勾配を利用する場合に用い、具体的には耐摩耗材の厚
みが大きく、また、中間層厚みも大きくとれる場合に利
用する。成形外枠の横断面形状については、図10は、
円柱の中心に円筒状の中孔を開設したもの、図11は、
円柱の中心に角筒状の中孔を開設したもの、図12は、
角柱の中心に円筒状の中孔を開設したもの、図13は、
角柱の中心に角筒状の中孔を開設したものをそれぞれ示
している。本発明に係わる製造方法においては、成形外
枠2と上下パンチ3,4との嵌合い具合は、通電中の目
的とした温度傾斜を実現する上で特に重要であり、成形
外枠2と上下パンチ3,4とのクリアランスは、それら
両者の間に特に導電性物質を満たさない場合、0.02
mm以下、好ましくは0.01mm以下であった。
Embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows a wear-resistant layer 1a made of a ceramic sintered body.
Layer 1b made of tungsten and tungsten carbide based cemented carbide
FIG. 1 is a cross-sectional view of a ceramic-ultrahard composite sintered body 1 formed by directly sintering and joining. 2 and 3 show a cross section of a ceramic-carbide composite sintered body 1 in which an intermediate layer 1c composed of a mixture of a wear-resistant layer 1a and a weldable layer 1b is put between the two layers and sintered and joined. FIG. In FIG. 3, 1c1 is a lower intermediate layer, and 1c2 is an upper intermediate layer. The intermediate layer 1c has a role not only to assist the joining of the two but also to alleviate the generation of residual stress due to shrinkage after sintering, and the composition of the intermediate layer is not necessarily a half-and-half mixture. No need, depending on the thickness, size and shape of both layers,
In addition, depending on the difference in thermal expansion between the two layers, the composition can be appropriately selected within a range in which each composition of both layers is an end component. Whether direct joining or joining with an intermediate layer is used depends on the difference in thermal expansion between the ceramic sintered body constituting the wear-resistant layer 1a and the cemented carbide constituting the weldable layer 1b, and the chemical affinity of both layers. Is selected, and is appropriately selected depending on the method of use. As a rough guide, the difference in thermal expansion coefficient between the materials constituting both layers is 1 × 1
For combination of the 0 -6, it can be employed directly sintered joint of FIG. The thickness of the intermediate layer 1c and the number of layers are appropriately determined depending on the difference in thermal expansion between the ceramics and the cemented carbide constituting both layers and the environment in which they are used. Considering the similarity of sintering temperature and sinterability (sintering familiarity) with the cemented carbide constituting the weldable layer, in addition to the abrasion resistance and corrosion resistance of the wear-resistant layer 1a according to the present invention, many are considered. Among the ceramics, alumina, zirconia, silicon carbide (hereinafter, referred to as
It is made of a ceramic sintered body made of at least one of SiC) and silicon nitride (hereinafter, Si3N4). The wear-resistant layer 1a is made of, for example, alumina-Si in consideration of a difference in thermal expansion from the cemented carbide constituting the weldable layer 1b.
C, alumina-Si3N4, zirconia-SiC, zirconia-Si3N4, alumina-zirconia-SiC,
A combination such as alumina-zirconia-Si3N4 can be used. Such a combination of a ceramic having a large coefficient of thermal expansion and a ceramic having a small coefficient of thermal expansion as compared with a cemented carbide is effective in reducing residual stress after sintering and joining. In the single sintering of alumina, zirconia, SiC, and Si3N4, a small amount of a sintering aid such as magnesium oxide (hereinafter, MgO), yttrium oxide (hereinafter, Y2O3), boron carbide, or boron is generally used to promote the sintering. However, also in the present invention, these materials can be added and used for the purpose of assisting sintering as long as the wear resistance and corrosion resistance of the ceramic sintered body are not impaired. In order to weld a cemented carbide to stainless steel or a steel material with a high joining strength, the amount of the metal-based binder phase needs to be 15 to 40% by weight. The weldable cemented carbide serves the purpose of ensuring the weldability to the machine body, and at the same time, plays a role of mechanically reinforcing the wear-resistant layer 1a formed of the sintered ceramic sintered body. The amount of the metal-based binder phase in the cemented carbide part constituting the weldable layer capable of fulfilling this role was at most 40% by weight, preferably 30% by weight. 4
If the content is 0% by weight or more, the properties of the cemented carbide become closer to the properties of the binder phase metal than the properties of the cemented carbide. FIG. 5 schematically shows an electric current sintering method for explaining one embodiment of the present invention. 1 shows a sintered sample structure for producing a ceramic-carbide composite sintered body 1 having an intermediate layer 1c between a wear-resistant layer 1a and a weldable layer 1b, which has a large amount of a binder phase and therefore requires a high temperature for sintering. The raw material powder 1b1 to be welded is filled on the lower punch 4, and the raw material powder 1c10 for the intermediate layer and the raw material powder 1a1 for the wear-resistant layer are laminated thereon. The thickness of the molded outer frame 2 in the pressing axis direction is adjusted according to the required sintering temperature of each layer and the thickness of each layer before sintering. In the present embodiment, it is involved in the sintering of the raw material powder 1b1 of the weldable layer. Example of a cross-sectional shape in which a thick part and a thin part involved in sintering of the wear-resistant layer raw material powder 1a1 are continuously reduced in thickness at a part containing the intermediate-layer raw material powder 1c10 and connected. Is shown. In the sintering step, first, the molded outer frame 2 having been thickened as described above is placed on a jig 5 having a larger sectional area than the lower punch 4.
And the lower punch 4 is inserted, and the lower punch 4 and the end surface of the molding outer frame 2 are set on the jig 5 so as to be flush with each other. Next, the raw material powder 1b1 for the weldable layer, the raw material powder 1c10 for the intermediate layer, and the raw material powder 1a1 for the wear-resistant layer are laminated and filled in this order. In the figure, reference numeral 11 denotes a ceramic-ultrahard composite sintered body raw material powder. After the upper punch 3 is put into this and pressed lightly, it is set in the electric sintering machine. Then, after pressurizing to a predetermined pressure, power supply is started by the power supply 8 via the upper electrode 6 and the lower electrode 7, and heating and sintering are performed. By arranging the lower surface of the lower punch 4 so as to be in contact with the lower surface of the molding outer frame 2, heat conduction to the jig 5 having a large heat capacity is promoted, and the thickness of the molding outer frame 2 is increased. This has the effect of further suppressing the temperature rise in the portion where the height is increased, and a larger temperature gradient can be formed with the high temperature generating portion where the thickness is reduced. The size of the jig 5 is adjusted according to the required temperature gradient. The material of the jig 5 is practically graphite.
The shape of the molded outer frame 2 is an important component of the present invention. The material is heat-resistant and is not particularly limited as long as it is a conductive material, but graphite is suitable for practical use. The same applies to the upper and lower punches. FIGS. 7 to 9 show the vertical cross-sectional shapes of the molded outer frame 2 that can be used in the method for producing a ceramic-carbide composite sintered body of the present invention. 10 to 13
Is a molded outer frame 2 that can be used in the manufacturing method according to the present invention.
And the cross-sectional shape of the ceramic-ultrahard composite sintered material powder 11, which is appropriately selected according to the required final shape of the wear-resistant material. FIG. 7 shows a case where the thickness of the molded outer frame 2 changes in steps, which is used when the wear-resistant layer 1a and the weldable layer 1b which require a relatively steep temperature gradient are directly joined. On the other hand, FIGS. 8 and 9 show an example in which the thickness of the molding outer frame 2 changes continuously, which is used when a relatively gentle temperature gradient is used. Specifically, the thickness of the wear-resistant material is large. Also, it is used when the thickness of the intermediate layer can be made large. Regarding the cross-sectional shape of the molded outer frame, FIG.
In the center of the cylinder, a cylindrical hollow was opened.
A square tubular center hole was opened at the center of the cylinder.
The one with a cylindrical bore at the center of the prism, FIG.
Each of the prisms has a square hollow hole at the center of the prism. In the manufacturing method according to the present invention, the degree of fitting between the outer molding frame 2 and the upper and lower punches 3 and 4 is particularly important for realizing a target temperature gradient during energization. The clearance between the punches 3 and 4 is 0.02 if the conductive material is not particularly filled between them.
mm, preferably 0.01 mm or less.

【0006】[0006]

【実施例】【Example】

実施例1 図4を参照して、平均粒径0.5μmのアルミナ粉末
に、平均粒径0.2μmのSi3N4粉末を20重量%
を加え、ボールミル混合し、乾燥して得た粉末(以下、
アルミナ−20%Si3N4)を耐摩耗層原料粉末1a
1とし、また、平均粒径1.5μmの炭化タングステン
(以下、WC)粉末に1〜5μmのニッケル(以下、N
i)粉末30重量%を加え、ボールミル混合、乾燥して
得た粉末(以下、WC−30%Ni)を溶接可能層原料
粉末1b1として用いた。図中、11はセラミック−超
硬系複合燒結体原料粉末である。通電燒結用の成形外枠
2には、図7に示す断面形状を持ち、A−A断面が図1
0となる高さ45mm,中孔径40mmの黒鉛製の型を
用いた。この成形外枠の肉厚は一端から25mmまでを
肉厚6.5mm、他端から20mmまでを17.5mm
とした。また、温度測定用孔は、この成形外枠の薄肉側
を上として、上から20mmの耐摩耗層相当位置と、下
から15mmの溶接可能層相当位置に成形外枠の外周か
らそれぞれ深さ2.5mm、16mmで径3mmのきり
孔を開けた。上パンチ3は径40mm、高さ30mm
を、下パンチ4は径40mm、高さ10mmを、また、
治具5として径75mm、高さ40mmの黒鉛製のブロ
ックを用いた。ここでの上下パンチと成形外枠の内径と
のクリアランスは0.01mm以下であった。これらの
燒結部品を用いて、まず、径75mmの治具の上に、肉
厚の薄い方を上にして成形外枠2を治具5の外径と同心
円状となるように配置し、その中に下パンチ4を押し込
み、この下パンチの上に溶接可能層原料粉末1b1とし
てWC−30%Ni粉末を厚さ10mmとなるように充
填し、その上に耐摩耗層原料粉末1a1としてアルミナ
−20%Si3N4粉末を厚さ10mmとなるように入
れ、上パンチ3をセットして100Kg/cm2 で加圧
した。この燒結試料構成を通電燒結機にセットし、圧力
500Kg/cm2 まで加圧し通電を開始した。耐摩耗
層相当位置での測定温度で1320℃まで約5分で昇温
し、その温度で3分保持した後、通電を停止し、冷却し
た。耐摩耗層相当位置で1320℃に達したときの溶接
可能層相当位置での温度は1100℃であり、3分保持
後は1110℃であった。冷却後回収した燒結体の形状
は径40mm、高さ約11.5mmであった。この燒結
体を加圧方向に平行な面で半分に切断し、その片方の切
断面を研磨し断面を観察した。断面には割れや気孔の発
生はなく、強固に一体燒結されていた。燒結体の固さは
耐摩耗層で1980Kg/mm2 、溶接可能層で104
0Kg/mm2 であった。また、残りの半分を用いて、
WC−30%Niの溶接可能層部分を、径50mm、厚
み40mmのステンレス鋼にニッケル溶接棒を用いてア
ーク溶接試験を試みたところ、超硬合金側への損傷はな
く、充分高い強度で溶接が可能であり、実用的な衝撃強
度を持つものであった。さらに、このステンレス鋼へ溶
接した燒結体を用いて、その耐摩耗層の耐摩耗性試験を
実施した。試験は、研磨機上に#80炭化珪素(Si
C)研磨紙を張り付け、その上に水を掛けながら研磨盤
を約50rpmで回転させた状態で、研磨紙に耐摩耗層
を押しつけ、約5分後の重量減を測定する。この方法で
の重量減は約0.9mgとかなり小さく、良好な耐摩耗
性を示した。 実施例2 図5を参照して、平均粒径0.3μmのアルミナ粉末に
平均粒径0.5μmのSiC粉末50重量%加え、ボー
ルミル混合し、乾燥して得た粉末(以下、アルミナ−5
0%SiC)を耐摩耗層原料粉末1a1とし、また、平
均粒径9μmのWC粉末に1〜5μmのNi粉末と、平
均粒径1μmのコバルト(以下、Co)粉末をそれぞれ
15重量%を加え、ボールミル混合し、乾燥して得た粉
末(以下WC−15%Ni−15%Co)を溶接可能層
原料粉末1b1として用いた。また、アルミナ−50%
SiC粉末60重量%とWC−15%Ni−15%Co
粉末40重量%をボールミル混合、乾燥して得た粉末
(以下、60%(アルミナ−50%SiC)−40%
(WC−15%Ni−15%Co))を中間層原料粉末
1c10として用いた。図中、11はセラミック−超硬
系複合燒結体原料粉末である。通電燒結用の成形外枠2
には、図8,図10に示す断面形状のもので、同心円状
となる高さ40mm、中孔径30mmの黒鉛製の型を用
いた。この成形外枠2の肉厚は、一端から20mmまで
を肉厚7.5mm、他端から15mmまでを15mmと
し、その間を肉厚7.5mmから15mmへ断面で直線
的に増加させた。また、この成形外枠2の薄肉側を上と
して、上から19mmの耐摩耗層相当位置と、下から1
4mmの溶接可能層相当位置に径3mmのきり孔を、成
形外枠の外周から中孔側へそれぞれ深さ3.5mm、1
1mmとなるように穿ち、燒結中の温度をこの2カ所で
測定した。上パンチ3、下パンチ4はそれぞれ高さ30
mm、10mmの黒鉛製とし、成形外枠の内径とそれら
パンチとのクリアランスは0.01mmであった。ま
た、図5の如く、治具5として外径55mm、高さ50
mmの黒鉛製のブロックを用いた。これらの燒結部品を
用いて、まず、径55mmの治具5の上に、肉厚の薄い
方を上にして成形外枠2を、治具5の外径と成形外枠2
の外径が同心円状となるように配置し、その中に高さ1
0mmの下パンチ4を治具5の上面に接するように挿入
した。次に、この下パンチ4の上に順次、溶接可能層原
料粉末1b1としてWC−15%Ni−15%Co粉
末、中間層原料粉末1c10として60%(アルミナ−
50%SiC)−40%(WC−15%Ni−15%C
o)粉末、耐摩耗層原料粉末1a1としてアルミナ−5
0%SiC粉末をそれぞれ厚さ5mmとなるように圧力
100Kg/cm2 で加圧充填し、上パンチ3をセット
した。この燒結試料構成を通電燒結機にセットし、圧力
500Kg/cm2 で加圧し、通電を開始した。成形外
枠2の上から19mmの耐摩耗層相当位置での測定温度
で1380℃まで約6分で昇温し、その温度で2分保持
した後、通電を停止し、冷却した。上記測定温度が13
80℃に達したときの下から14mmの溶接可能層相当
位置での測定温度は1110℃であり、2分保持後は1
125℃であった。冷却後回収した燒結体は径30m
m、高さ約7.5mmであった。この燒結体を実施例1
と同様の方法で評価したところ、断面には割れや気孔は
なく、強固に一体に燒結されていた。この燒結体の硬さ
は耐摩耗層で2450Kg/mm2 、中間層で1350
Kg/mm2 、溶接可能層で1010Kg/mm2 であ
った。さらに、実施例1と同様の方法と手順で残り半分
を用いて、ステンレス鋼への溶接可能層の溶接試験を試
みたところ、実用的強度の溶接が可能であった。また、
この溶接のサンプルを用いて、実施例1と同様の手段と
方法により、耐摩耗層の耐摩耗試験を実施したところ、
重量減は約0.8mgであり、良好な耐摩耗性を示し
た。 比較例1 成形外枠として、実施例2で用いたと同じ材質の黒鉛か
ら作成した外径60mm,高さ40mm,中孔径30m
mの単純円筒を用いた。上下パンチは径30m、高さ2
0mmの同形状のものを用い、実施例2と同様の3種類
の原料粉末を用いた。単純円筒の成形外枠に下パンチを
セットした後、この下パンチ上面から順次、溶接可能層
原料粉末としてWC−15%Ni−15%Co、中間層
原料粉末として60%(アルミナ−50%SiC)−4
0%(WC−15%Ni−15%Co)、耐摩耗層原料
粉末としてアルミナ−50%SiCをそれぞれ厚さ5m
mとなるように100Kg/cm2 で加圧、充填し、上
パンチをセットした。この状態で上下パンチの成形外枠
からのパンチの出具合が同じになるように調整した。測
温用の孔は成形外枠の一端から15mmの耐摩耗層相当
位置と、他端から15mmの溶接可能層相当位置の2ケ
所に成形外枠の外周から深さ11mmの径3mmのきり
孔を加工した。この燒結試料構成を上下電極の間にセッ
トし、500Kg/cm2 に加圧しながら通電を開始し
た。成形外枠の一端から15mmの耐摩耗層相当位置で
の測温で1380℃まで6分で昇温し、その温度で2分
保持して通電を停止し、燒結を終了した。1380℃燒
結保持中のもう一方の測温点溶接可能層相当位置の測定
温度も1380℃であり、温度差は認められなかった。
冷却後、回収した成形外枠には、上下パンチとの間に、
金属光沢をした数mm径の数個の吹き出し物が見られ
た。また、燒結体は成形外枠、上下パンチに強固に接合
しており、成形型を破壊して燒結体を回収した。燒結体
の厚みは約6mmであり、一部大きな欠けがあった。こ
の燒結体を実施例2と同様の手順と方法で観察した。断
面外周に欠けや気孔が見られ、耐摩耗層に数本の横割れ
が観察された。さらに、実施例2と同様の方法により、
ステンレス鋼への溶接試験を実施したところ、溶接可能
層と溶接ビードの界面で割れが発生し、溶接不可能であ
った。また、この溶接により耐摩耗層の割れの増加が観
察された。溶接可能層側の燒結温度が上がりすぎ、超硬
合金中の金属成分が流出し、超硬合金中の金属系結合相
量が15%以下となり、溶接不可能となったものと考察
される。 実施例3 図6を参照して、平均粒径5μmのWC粉末に平均粒径
1.5μmのCo粉末35重量%加え、ボールミル混
合、乾燥して得た粉末(以下、WC−35%Co)を溶
接可能層原料粉末1b1とし、また、平均粒径1μmの
ジルコニア粉末に燒結助材としてY2O3粉末5重量%
を添加、混合、乾燥して得た粉末(以下、ジルコニア−
5%Y2O3)を耐摩耗層原料粉末1a1として用い
た。また、ジルコニア−5%Y2O3粉末40重量%
と、WC−35%Co粉末60重量%を混合、乾燥して
得られた粉末(以下40%(ジルコニア−5%Y2O
3)−60%(WC−35%Co))及び、ジルコニア
−5%Y2O3粉末75重量%とWC−35%Co粉末
25重量%を混合、乾燥して得られた粉末(以下75%
(ジルコニア−5%Y2O3)−25%(WC−35%
Co))を中間層原料粉末1c11,1c21として用
いた。通電燒結用の成形外枠2には図9,図10に示す
断面形状のもので、高さ45mm,中孔径30mmの黒
鉛製の型を用い、この成形外枠2の肉厚は一端から20
mmまでを8mm,他端から15mmまでを20mmと
し、その間を肉厚8mmから20mmまでを、断面でみ
て曲率約5mmの曲線で連続して繋いだ。温度測定用の
孔はこの成形外枠2の薄肉側を上にして、上から17.
5mmの耐摩耗層相当位置と、他端から12.5mmの
溶接可能層相当位置に径3mmのきり孔を成形外枠の外
周からそれぞれ深さ2.5mm,16mmとなるように
あけた。上パンチ3として、径30mm,高さ30m
m、下パンチ4として、径30mm,高さ10mmの黒
鉛製のパンチを用い、また治具5として径80mm,高
さ40mmの黒鉛製のブロックを用いた。ここでの上下
パンチと成形外枠内径とのクリアランスは0.01mm
であった。これらの燒結部品を用いて、まず、径80m
mの治具5のうえに肉厚の薄い方を上にして成形外枠2
を、治具5の外径と成形外枠の外径が同心円状となるよ
うに配置し、その成形外枠の内に下パンチ4を治具5の
上面に接するように押し込んだ。次に、この下パンチ4
の上に順次、溶接可能層原料粉末1b1としてWC−3
5%Coを厚さ8mm,下部中間層原料粉末1c11と
して40%(ジルコニア−5%Y2O3)−60%(W
C−35%Co)を厚さ2.5mm、上部中間層原料粉
末1c21として75%(ジルコニア−5%Y2O3)
−25%(WC−35%Co)を厚さ2.5mm、その
上に耐摩耗層原料粉末1a1としてジルコニア−5%Y
2O3を厚さ8mmとなるように充填し、100Kg/
cm2 で加圧し、上パンチ3をセットした。この燒結試
料構成を通電燒結機にセットし、圧力400Kg/cm
2 まで加圧し、通電を開始した。耐摩耗層相当位置での
測定温度で1280℃まで約5分で昇温し、その温度で
1.5分保持して、通電を停止し、冷却した。耐摩耗層
相当位置で1280℃に達したときの、もう一方の測定
点である溶接可能層相当位置での温度は1060℃であ
り、1.5分保持後の温度は1090℃であった。冷却
後回収した燒結体の形状は径30mm、高さ約13mm
であった。この燒結体を実施例1と同様の方法で観察し
た。燒結体の硬さは耐摩耗層で1150Kg/mm2
溶接可能層で980Kg/mm2 であった。また、実施
例1と同様の方法と手順によるステンレス鋼への溶接試
験を試みたところ、充分高い強度の溶接が可能であっ
た。さらに、この溶接のサンプルを利用した耐摩耗層の
耐摩耗試験では重量減は約1.3mgであり、良好な耐
摩耗性を示した。
Example 1 Referring to FIG. 4, 20 wt% of Si3N4 powder having an average particle size of 0.2 μm was added to alumina powder having an average particle size of 0.5 μm.
, Mixed with a ball mill and dried to obtain a powder (hereinafter, referred to as
Alumina-20% Si3N4) as raw material powder for wear-resistant layer 1a
1, and tungsten carbide (hereinafter, WC) powder having an average particle size of 1.5 μm is coated with nickel of 1 to 5 μm (hereinafter, N).
i) A powder (hereinafter referred to as WC-30% Ni) obtained by adding 30% by weight of a powder, mixing with a ball mill and drying was used as a raw material powder 1b1 for a weldable layer. In the figure, reference numeral 11 denotes a ceramic-ultrahard composite sintered body raw material powder. The molded outer frame 2 for electrical sintering has a sectional shape shown in FIG.
A mold made of graphite having a height of 45 mm and a medium hole diameter of 40 mm, which becomes 0, was used. The thickness of this molded outer frame was 6.5 mm from one end to 25 mm, and 17.5 mm from the other end to 20 mm.
And In addition, the holes for temperature measurement have depths of 2 mm from the outer periphery of the molded outer frame at a position corresponding to a wear-resistant layer of 20 mm from the top and a position corresponding to a weldable layer of 15 mm from the bottom, with the thin side of the molded outer frame facing upward. Drilled holes of 0.5 mm, 16 mm and 3 mm in diameter were made. Upper punch 3 has a diameter of 40 mm and a height of 30 mm
The lower punch 4 has a diameter of 40 mm and a height of 10 mm.
As the jig 5, a graphite block having a diameter of 75 mm and a height of 40 mm was used. The clearance between the upper and lower punches and the inner diameter of the molded outer frame was 0.01 mm or less. Using these sintered parts, first, the forming outer frame 2 is arranged on a jig having a diameter of 75 mm so that the thinner side is upward, so as to be concentric with the outer diameter of the jig 5. The lower punch 4 is pushed into the lower punch, and WC-30% Ni powder is filled as the weldable layer raw material powder 1b1 so as to have a thickness of 10 mm on the lower punch, and alumina is formed thereon as the wear-resistant layer raw material powder 1a1. placed so as to have a thickness of 10mm the 20% Si3 N4 powder was pressurized at 100 Kg / cm 2 by setting the upper punch 3. The sintering sample configuration was set in an electric sintering machine, and the pressure was increased to 500 kg / cm 2 to start energization. The temperature was raised to 1320 ° C. in about 5 minutes at the measurement temperature at the position corresponding to the wear-resistant layer, and the temperature was maintained for 3 minutes. When the temperature reached 1320 ° C. at the position corresponding to the wear-resistant layer, the temperature at the position corresponding to the weldable layer was 1100 ° C., and after holding for 3 minutes, it was 1110 ° C. The shape of the sintered body collected after cooling was 40 mm in diameter and about 11.5 mm in height. This sintered body was cut in half by a plane parallel to the pressing direction, and one of the cut surfaces was polished and the cross section was observed. There were no cracks or porosity in the cross section, and it was strongly sintered integrally. The hardness of the sintered body is 1980 Kg / mm 2 for the wear-resistant layer and 104 for the weldable layer.
It was 0 kg / mm 2 . Also, using the other half,
An arc welding test was performed on a WC-30% Ni weldable layer using a nickel welding rod on stainless steel having a diameter of 50 mm and a thickness of 40 mm. There was no damage to the cemented carbide side, and welding was performed with sufficiently high strength. Was possible and had a practical impact strength. Further, using the sintered body welded to the stainless steel, a wear resistance test of the wear resistant layer was performed. The test was carried out using a # 80 silicon carbide (Si
C) Abrasive paper is stuck, and the abrasion-resistant layer is pressed against the abrasive paper while the polishing board is rotated at about 50 rpm while water is applied thereon, and the weight loss after about 5 minutes is measured. The weight loss by this method was as small as about 0.9 mg, indicating good abrasion resistance. Example 2 Referring to FIG. 5, 50% by weight of an SiC powder having an average particle size of 0.5 μm was added to alumina powder having an average particle size of 0.3 μm, mixed with a ball mill, and dried to obtain a powder (hereinafter, referred to as alumina-5).
0% SiC) as the wear-resistant layer raw material powder 1a1, and 15% by weight of each of WC powder having an average particle size of 9 μm and Ni powder of 1 to 5 μm and cobalt (hereinafter, Co) powder having an average particle size of 1 μm. , Mixed with a ball mill and dried to obtain a powder (hereinafter referred to as WC-15% Ni-15% Co) used as the weldable layer raw material powder 1b1. Also, alumina-50%
60% by weight of SiC powder and WC-15% Ni-15% Co
A powder obtained by mixing and drying 40% by weight of a powder in a ball mill (hereinafter referred to as 60% (alumina-50% SiC) -40%
(WC-15% Ni-15% Co)) was used as the intermediate layer raw material powder 1c10. In the figure, reference numeral 11 denotes a ceramic-ultrahard composite sintered body raw material powder. Forming outer frame 2 for electrical sintering
A graphite mold having a cross-sectional shape shown in FIGS. 8 and 10 and having a concentric height of 40 mm and a medium hole diameter of 30 mm was used. The thickness of the molded outer frame 2 was 7.5 mm from one end to 20 mm, 15 mm from the other end to 15 mm, and the thickness was linearly increased in cross section from 7.5 mm to 15 mm. With the thin side of the molded outer frame 2 as the top, a position corresponding to a wear-resistant layer of 19 mm from the top and 1 mm from the bottom.
Drilled holes of 3 mm in diameter were formed at positions corresponding to a weldable layer of 4 mm from the outer periphery of the molded outer frame to a depth of 3.5 mm, respectively.
It was pierced so as to be 1 mm, and the temperature during sintering was measured at these two places. Upper punch 3 and lower punch 4 each have a height of 30
mm, 10 mm, and the clearance between the inner diameter of the molded outer frame and the punches was 0.01 mm. As shown in FIG. 5, the jig 5 has an outer diameter of 55 mm and a height of 50 mm.
A graphite block of mm was used. Using these sintered parts, first, the forming outer frame 2 is placed on a jig 5 having a diameter of 55 mm with the thinner side facing upward, and the outer diameter of the jig 5 and the outer shape of the forming outer frame 2 are determined.
Are arranged so that their outer diameters are concentric.
The lower punch 4 of 0 mm was inserted so as to be in contact with the upper surface of the jig 5. Next, on the lower punch 4, WC-15% Ni-15% Co powder as the weldable layer raw material powder 1b1 and 60% as the intermediate layer raw material powder 1c10 (alumina
50% SiC) -40% (WC-15% Ni-15% C
o) Powder, alumina-5 as the wear-resistant layer raw material powder 1a1
0% SiC powder was filled under pressure at a pressure of 100 kg / cm 2 so as to have a thickness of 5 mm, and the upper punch 3 was set. The sintering sample configuration was set in an electric sintering machine, pressurized at a pressure of 500 kg / cm 2 , and energization was started. The temperature was raised to 1380 ° C. in about 6 minutes at a measurement temperature at a position corresponding to a wear-resistant layer of 19 mm from the top of the molded outer frame 2 and maintained at that temperature for 2 minutes. The measured temperature is 13
When the temperature reached 80 ° C., the measured temperature at the position corresponding to the weldable layer 14 mm from the bottom was 1110 ° C., and after holding for 2 minutes, 1
125 ° C. The sintered body recovered after cooling is 30m in diameter
m and a height of about 7.5 mm. Example 1
When evaluated by the same method as in the above, there were no cracks or pores in the cross section, and it was firmly and integrally sintered. The hardness of this sintered body was 2450 kg / mm 2 for the wear-resistant layer and 1350 kg for the intermediate layer.
Kg / mm 2, was 1010Kg / mm 2 in weldable layer. Furthermore, when a welding test of a weldable layer to stainless steel was attempted using the other half in the same method and procedure as in Example 1, welding of practical strength was possible. Also,
Using this welding sample, a wear resistance test of the wear resistant layer was performed by the same means and method as in Example 1.
The weight loss was about 0.8 mg, indicating good abrasion resistance. Comparative Example 1 An outer diameter of 60 mm, a height of 40 mm, and a medium hole diameter of 30 m made of graphite of the same material as used in Example 2 as a molded outer frame.
m simple cylinder was used. Upper and lower punches have a diameter of 30m and a height of 2
Three types of raw material powders similar to those in Example 2 were used, each having the same shape of 0 mm. After setting the lower punch on the outer frame of the simple cylinder, WC-15% Ni-15% Co as the weldable layer raw material powder and 60% (alumina-50% SiC ) -4
0% (WC-15% Ni-15% Co), alumina-50% SiC as a wear-resistant layer material powder, each having a thickness of 5 m.
m, pressurized and filled at 100 kg / cm 2 , and set an upper punch. In this state, the upper and lower punches were adjusted so that the degree of punching from the outer frame was the same. There are two holes for temperature measurement at a position equivalent to a wear-resistant layer 15 mm from one end of the molded outer frame and a hole 3 mm in diameter 11 mm deep from the outer periphery of the molded outer frame at two positions corresponding to a weldable layer 15 mm from the other end. Was processed. This sintered sample configuration was set between the upper and lower electrodes, and energization was started while pressurizing to 500 kg / cm 2 . The temperature was raised to 1380 ° C. in 6 minutes by measuring the temperature at a position corresponding to a wear-resistant layer of 15 mm from one end of the molded outer frame, and the temperature was maintained for 2 minutes to stop energization, and the sintering was completed. The temperature measured at the other temperature-measuring point weldable layer during sintering at 1380 ° C. was also 1380 ° C., and no temperature difference was observed.
After cooling, the collected outer frame is placed between the upper and lower punches.
Several blow-offs of several mm diameter with metallic luster were observed. The sintered body was firmly joined to the outer frame and upper and lower punches, and the mold was broken to recover the sintered body. The thickness of the sintered body was about 6 mm, and there were some large chips. This sintered body was observed by the same procedure and method as in Example 2. Chips and pores were observed on the outer periphery of the cross section, and several lateral cracks were observed in the wear-resistant layer. Further, by the same method as in Example 2,
When a welding test was performed on stainless steel, cracks occurred at the interface between the weldable layer and the weld bead, making welding impossible. In addition, an increase in cracks in the wear-resistant layer was observed by this welding. It is considered that the sintering temperature on the weldable layer side was too high, the metal component in the cemented carbide flowed out, and the amount of the metal-based binder phase in the cemented carbide became 15% or less, making welding impossible. Example 3 Referring to FIG. 6, powder obtained by adding 35% by weight of Co powder having an average particle size of 1.5 μm to WC powder having an average particle size of 5 μm, mixing with a ball mill, and drying (hereinafter, WC-35% Co) Is a weldable layer raw material powder 1b1, and 5% by weight of Y2O3 powder as a sintering aid is added to zirconia powder having an average particle size of 1 μm.
Is added, mixed and dried to obtain a powder (hereinafter, zirconia-
5% Y2O3) was used as the wear-resistant layer raw material powder 1a1. Also, zirconia-5% Y2O3 powder 40% by weight
And WC-35% Co powder 60% by weight were mixed and dried to obtain a powder (hereinafter referred to as 40% (zirconia-5% Y2O
3) -60% (WC-35% Co)), a powder obtained by mixing and drying 75% by weight of zirconia-5% Y2O3 powder and 25% by weight of WC-35% Co powder (hereinafter 75%).
(Zirconia-5% Y2O3) -25% (WC-35%
Co)) was used as the intermediate layer raw material powders 1c11 and 1c21. 9 and 10, a graphite mold having a height of 45 mm and a medium hole diameter of 30 mm is used. The thickness of the outer frame 2 is 20 mm from one end.
The distance from the other end was 8 mm, and the distance from the other end to 15 mm was 20 mm, and the distance from 8 mm to 20 mm was continuously connected by a curve having a curvature of about 5 mm in cross section. The hole for temperature measurement is 17.17 from the top, with the thin side of the outer frame 2 facing upward.
Drilled holes having a diameter of 3 mm were formed at a position corresponding to a wear-resistant layer of 5 mm and a position corresponding to a weldable layer of 12.5 mm from the other end so as to have a depth of 2.5 mm and 16 mm from the outer periphery of the molded outer frame, respectively. As upper punch 3, diameter 30mm, height 30m
m, a graphite punch having a diameter of 30 mm and a height of 10 mm was used as the lower punch 4, and a graphite block having a diameter of 80 mm and a height of 40 mm was used as the jig 5. The clearance between the upper and lower punches and the inner diameter of the molding outer frame is 0.01 mm
Met. First of all, using these sintered parts,
m on a jig 5 with the thinner wall facing up
Were arranged so that the outer diameter of the jig 5 and the outer diameter of the molding outer frame were concentric, and the lower punch 4 was pushed into the molding outer frame so as to be in contact with the upper surface of the jig 5. Next, this lower punch 4
WC-3 as a weldable layer raw material powder 1b1
5% Co with a thickness of 8 mm and a lower intermediate layer raw material powder 1c11 of 40% (zirconia-5% Y2O3) -60% (W
C-35% Co) is 2.5% thick and 75% (zirconia-5% Y2O3) as the upper intermediate layer raw material powder 1c21.
-25% (WC-35% Co) with a thickness of 2.5 mm and zirconia-5% Y as a wear-resistant layer raw material powder 1a1 thereon
2O3 is filled to a thickness of 8 mm, and 100 kg /
Pressure was applied at cm 2 , and the upper punch 3 was set. The sintering sample composition was set in an electric sintering machine, and the pressure was 400 kg / cm.
The pressure was increased to 2 to start energization. The temperature was raised to 1280 ° C. in about 5 minutes at the measurement temperature at the position corresponding to the wear-resistant layer, and the temperature was maintained for 1.5 minutes. When the temperature reached 1280 ° C. at the position corresponding to the wear-resistant layer, the temperature at the position corresponding to the weldable layer, which is another measurement point, was 1060 ° C., and the temperature after holding for 1.5 minutes was 1090 ° C. The shape of the sintered body recovered after cooling is 30mm in diameter and about 13mm in height
Met. This sintered body was observed in the same manner as in Example 1. The hardness of the sintered body is 1150 Kg / mm 2 in the wear-resistant layer,
It was 980 kg / mm 2 in the weldable layer. When a welding test was performed on stainless steel using the same method and procedure as in Example 1, welding with sufficiently high strength was possible. Further, in the wear resistance test of the wear resistant layer using the sample of this welding, the weight loss was about 1.3 mg, showing good wear resistance.

【0007】[0007]

【発明の効果】本発明は、上述の通り構成されているの
で次に記載する効果を奏する。以上のように、本発明に
よれば、セラミック−超硬系複合燒結体の通電燒結法に
よる製造において、その成形外枠の加圧軸方向の肉厚
を、燒結しようとする各構成材料の燒結温度に応じて適
切に調整することにより、セラミック−超硬系複合燒結
体原料粉末をその構成材料に合わせた温度傾斜のもとで
過不足なく燒結できる。この方法により、優れた耐摩
耗、耐食性と同時に、ステンレス鋼や鋼に直接溶接でき
る性質を兼ね備えたセラミック−超硬系複合燒結体を短
時間に、低コストで安定して製造することができる。
Since the present invention is configured as described above, the following effects can be obtained. As described above, according to the present invention, in the production of a ceramic-carbide composite sintered body by the electric current sintering method, the thickness of the forming outer frame in the pressing axis direction is determined by sintering each constituent material to be sintered. By appropriately adjusting the temperature according to the temperature, the ceramic-ultrahard composite sintered body raw material powder can be sintered without excess or deficiency under a temperature gradient suitable for the constituent material. According to this method, it is possible to stably produce a ceramic-carbide composite sintered body having excellent wear resistance and corrosion resistance as well as properties capable of being directly welded to stainless steel or steel in a short time and at low cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1でのセラミック−超硬系複合燒結体の
縦断面図である。
FIG. 1 is a longitudinal sectional view of a ceramic-carbide composite sintered body in Example 1.

【図2】実施例2でのセラミック−超硬系複合燒結体の
縦断面図である。
FIG. 2 is a longitudinal sectional view of a ceramic-carbide composite sintered body in Example 2.

【図3】実施例3でのセラミック−超硬系複合燒結体の
縦断面図である。
FIG. 3 is a longitudinal sectional view of a ceramic-carbide composite sintered body in Example 3.

【図4】実施例1でのセラミック−超硬系複合燒結体の
製造方法を説明する縦断面図である。
FIG. 4 is a longitudinal sectional view illustrating a method for manufacturing a ceramic-carbide composite sintered body in Example 1.

【図5】実施例2でのセラミック−超硬系複合燒結体の
製造方法を説明する縦断面図である。
FIG. 5 is a longitudinal sectional view illustrating a method for manufacturing a ceramic-carbide composite sintered body in Example 2.

【図6】実施例3でのセラミック−超硬系複合燒結体の
製造方法を説明する縦断面図である。
FIG. 6 is a longitudinal sectional view illustrating a method for manufacturing a ceramic-carbide composite sintered body in Example 3.

【図7】成形外枠の肉厚がステップで変化している状態
を示す縦断面図である。
FIG. 7 is a longitudinal sectional view showing a state in which the thickness of a molded outer frame changes in steps.

【図8】成形外枠の肉厚が連続して変化している状態を
示す縦断面図である。
FIG. 8 is a longitudinal sectional view showing a state where the thickness of a molded outer frame is continuously changing.

【図9】成形外枠の肉厚が連続して変化している状態を
示す縦断面図である。
FIG. 9 is a longitudinal sectional view showing a state where the thickness of the molded outer frame is continuously changing.

【図10】A−A線断面図である。FIG. 10 is a sectional view taken along line AA.

【図11】A−A線における他の実施例を示す断面図で
ある。
FIG. 11 is a sectional view showing another embodiment taken along line AA.

【図12】A−A線における他の実施例を示す断面図で
ある。
FIG. 12 is a sectional view showing another embodiment taken along line AA.

【図13】A−A線における他の実施例を示す断面図で
ある。
FIG. 13 is a sectional view showing another embodiment taken along line AA.

【符号の説明】[Explanation of symbols]

1 セラミック−超硬系複合燒結体 1a 耐摩耗層 1b 溶接可能層 1c 中間層 2 成形外枠 3 上パンチ 4 下パンチ 5 治具 6 上電極 7 下電極 8 電源 11 セラミック−超硬系複合燒結体原料粉末 1a1 耐摩耗層原料粉末 1b1 溶接可能層原料粉末 1c1 下部中間層 1c2 上部中間層 1c10 中間層原料粉末 1c11 下部中間層原料粉末 1c21 上部中間層原料粉末 REFERENCE SIGNS LIST 1 ceramic-carbide composite sintered body 1a wear-resistant layer 1b weldable layer 1c intermediate layer 2 formed outer frame 3 upper punch 4 lower punch 5 jig 6 upper electrode 7 lower electrode 8 power supply 11 ceramic-carbide composite sintered body Raw material powder 1a1 Wear-resistant layer raw material powder 1b1 Weldable layer raw material powder 1c1 Lower intermediate layer 1c2 Upper intermediate layer 1c10 Intermediate layer raw material powder 1c11 Lower intermediate layer raw material powder 1c21 Upper intermediate layer raw material powder

───────────────────────────────────────────────────── フロントページの続き (72)発明者 安藤 秀夫 北海道赤平市字赤平594番地の1 住友 石炭鉱業株式会社 北海道技術研究所内 (56)参考文献 特開 昭61−270271(JP,A) 特開 平6−173009(JP,A) (58)調査した分野(Int.Cl.6,DB名) C04B 37/02 B22F 7/06 ────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hideo Ando 1 of 594 Akahira, Akabira-shi, Hokkaido Sumitomo Coal Mining Co., Ltd. Hokkaido Technical Research Institute (56) References JP-A-61-270271 (JP, A) Hei 6-173009 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) C04B 37/02 B22F 7/06

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 アルミナ、ジルコニア、炭化珪素及び窒
化珪素の少なくとも一種以上よりなるセラミック燒結体
の耐摩耗層(1a)と、金属系結合相量15〜40重量
%よりなる炭化タングステン基超硬合金の溶接可能層
(1b)が直接燒結接合、または、それらの混合よりな
る中間層(1c)を介して一体に燒結接合されているこ
とを特徴とするセラミック−超硬系複合燒結体。
1. A wear-resistant layer (1a) of a ceramic sintered body comprising at least one of alumina, zirconia, silicon carbide and silicon nitride, and a tungsten carbide-based cemented carbide comprising 15 to 40% by weight of a metallic binder phase. Wherein the weldable layer (1b) is directly sinter-bonded or integrally sinter-bonded via an intermediate layer (1c) made of a mixture thereof.
【請求項2】 直接または中間層(1c)を介して燒結
接合された、金属系結合相量15〜40重量%よりなる
炭化タングステン基超硬合金の溶接可能層(1b)とア
ルミナ、ジルコニア、炭化珪素、及び窒化珪素の少なく
とも一種以上よりなるセラミック燒結体の耐摩耗層(1
a)よりなるセラミック−超硬系複合燒結体を成形外枠
(2)と上下パンチ(3,4)を用いた通電燒結法より
製造する方法において、成形外枠(2)の肉厚が耐摩耗
層原料粉末(1a1)側から溶接可能層原料粉末(1b
1)側へ連続及び/またはステップ状に増加し、溶接可
能層原料粉末(1b1)側の下パンチ(4)の端面を成
形外枠(2)の端面と一致するように治具(5)上に配
置し、成形外枠(2)を少なくとも1つの通電経路とす
ることにより、通電中にセラミック−超硬系燒結体原料
粉末(11)の加圧軸方向に温度傾斜を形成しながら該
セラミック−超硬系燒結体原料粉末(11)を燒結する
ことを特徴とするセラミック−超硬系複合燒結体の製造
方法。
2. A weldable layer (1b) of a tungsten carbide-based cemented carbide having a metallic binder phase content of 15 to 40% by weight bonded directly or via an intermediate layer (1c) and alumina, zirconia, Wear-resistant layer (1) of a ceramic sintered body made of at least one of silicon carbide and silicon nitride
a) A method for producing a ceramic-carbide composite sintered body comprising a) by a current sintering method using a molded outer frame (2) and upper and lower punches (3, 4). Weldable layer material powder (1b) from wear layer material powder (1a1) side
The jig (5) increases continuously and / or stepwise toward the 1) side so that the end face of the lower punch (4) on the side of the powdery material (1b1) of the weldable layer coincides with the end face of the outer frame (2). By disposing the molded outer frame (2) as at least one energizing path, a temperature gradient is formed in the pressing axis direction of the ceramic-carbide sintered raw material powder (11) during energization. A method for producing a ceramic-ultrahard composite sintered body, comprising sintering a ceramic-ultrahard sintered raw material powder (11).
JP34803495A 1995-12-15 1995-12-15 Ceramic-carbide composite sintered body and method for producing the same Expired - Fee Related JP2906030B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34803495A JP2906030B2 (en) 1995-12-15 1995-12-15 Ceramic-carbide composite sintered body and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34803495A JP2906030B2 (en) 1995-12-15 1995-12-15 Ceramic-carbide composite sintered body and method for producing the same

Publications (2)

Publication Number Publication Date
JPH09165275A JPH09165275A (en) 1997-06-24
JP2906030B2 true JP2906030B2 (en) 1999-06-14

Family

ID=18394298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34803495A Expired - Fee Related JP2906030B2 (en) 1995-12-15 1995-12-15 Ceramic-carbide composite sintered body and method for producing the same

Country Status (1)

Country Link
JP (1) JP2906030B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016037401A (en) * 2014-08-05 2016-03-22 日本特殊陶業株式会社 Method for producing ceramic composite, and ceramic composite
CN116000301A (en) * 2022-12-13 2023-04-25 南京理工大学 Tungsten carbide-silicon nitride ceramic composite end mill and preparation method thereof

Also Published As

Publication number Publication date
JPH09165275A (en) 1997-06-24

Similar Documents

Publication Publication Date Title
EP0418078B1 (en) Composite abrasive compacts
US8056650B2 (en) Thermally stable ultra-hard material compact construction
US10124468B2 (en) Polycrystalline diamond constructions having improved thermal stability
EP2300366B1 (en) Method of forming a sintered polycrystalline ultra hard material by pulsed electrical field assisted or spark plasma sintering
JPH09194909A (en) Composite material and its production
JPH0848585A (en) Supported polycrystalline molding having improved physical property and its production
JPH09165273A (en) Decrease of stress in polycrystalline abrasive material layer of composite molding with site bonded carbide/carbide substrate
JP2594785B2 (en) Diamond crystal-sintered carbide composite polycrystal
US20140305045A1 (en) Self-renewing cutting surface, tool and method for making same using powder metallurgy and densification techniques
US8890020B2 (en) Expanded graphite foil heater tube assembly
JP2611934B2 (en) Cemented carbide-based wear-resistant material and method for producing the same
JP2906030B2 (en) Ceramic-carbide composite sintered body and method for producing the same
US20120292118A1 (en) Adnr composite
JP4270515B2 (en) Material for wire drawing dies and wire drawing dies
JP2835709B2 (en) Manufacturing method of composite tool material in which steel and cemented carbide are joined
JPH09315873A (en) Sintered hard alloy based wear resistant material and its production
JP2807874B2 (en) WC-based cemented carbide-based wear-resistant material and method for producing the same
JP2001241285A (en) Excavation tool having cutting blade piece with excellent high-temperature joint strength
JPS62238303A (en) Production of joined body of metallic body and composite metallic material
WO2013074028A1 (en) A gradient weld stud and method of preparation

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S201 Request for registration of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314201

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R314533

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R314533

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080402

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090402

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100402

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110402

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110402

Year of fee payment: 12

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20110402

LAPS Cancellation because of no payment of annual fees