JP2905895B2 - Radiation measurement equipment - Google Patents

Radiation measurement equipment

Info

Publication number
JP2905895B2
JP2905895B2 JP30799189A JP30799189A JP2905895B2 JP 2905895 B2 JP2905895 B2 JP 2905895B2 JP 30799189 A JP30799189 A JP 30799189A JP 30799189 A JP30799189 A JP 30799189A JP 2905895 B2 JP2905895 B2 JP 2905895B2
Authority
JP
Japan
Prior art keywords
radiation
detector
calculating
shift
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30799189A
Other languages
Japanese (ja)
Other versions
JPH03167447A (en
Inventor
久子 菅
順一 鈴木
敏嗣 植田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP30799189A priority Critical patent/JP2905895B2/en
Publication of JPH03167447A publication Critical patent/JPH03167447A/en
Application granted granted Critical
Publication of JP2905895B2 publication Critical patent/JP2905895B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement Of Radiation (AREA)

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明は半導体放射線検出器を用いて紙,プラスチッ
ク,ゴムなどの物理量(坪量,水分等)を測定する放射
線応用測定装置の放射線検出器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial application field> The present invention relates to a radiation detector of a radiation application measuring apparatus for measuring physical quantities (basis weight, moisture, etc.) of paper, plastic, rubber, etc. using a semiconductor radiation detector. It is about.

<従来の技術> 放射線(例えばβ線)が物質層を通過すると,電離作
用や励起作用等によって次第にエネルギーを失って減衰
し,更にこの様な非弾性散乱を多数回受けて進行方向が
変化する。従って測定物の物理量(例えば厚さ)が増す
に伴い通過するβ線の量は減少する。この様な原理を応
用し,シート状の種々の物質の物理量を測定する装置が
知られている。
<Conventional technology> When radiation (for example, β-rays) passes through a material layer, it gradually loses energy due to ionization and excitation, and attenuates, and further undergoes such inelastic scattering many times to change its traveling direction. . Therefore, as the physical quantity (for example, thickness) of the measured object increases, the amount of β-ray passing therethrough decreases. An apparatus that measures the physical quantity of various sheet-like substances by applying such a principle is known.

この様な放射線応用測定装置は第5図に示す様に放射
線源(以下,単に線源という)1と放射線検出器(以
下,単に検出器という)2を対向させて配置し,その間
に被測定物3を挟んで測定するように構成されている。
この線源からの放射線の空間強度分布は第6図に示す様
に正面が最も強く,正面から遠ざかる程弱いガウス分布
となる。従って線源1と検出器2がX,Y方向またはZ方
向に相対的に移動した場合には,検出器2に入射する放
射線量が変化して出力変動を生じるという問題がある。
In such a radiation applied measuring apparatus, a radiation source (hereinafter simply referred to as a radiation source) 1 and a radiation detector (hereinafter simply referred to as a detector) 2 are arranged facing each other as shown in FIG. It is configured to measure with the object 3 interposed therebetween.
As shown in FIG. 6, the spatial intensity distribution of the radiation from this source is the strongest at the front, and becomes weaker as the distance from the front increases. Accordingly, when the radiation source 1 and the detector 2 move relatively in the X, Y or Z directions, there is a problem that the radiation dose incident on the detector 2 changes and the output fluctuates.

従来,この種の出力変動を除去する装置として第7図
(イ),(ロ),(ハ)に示すようなものが提案されて
いる。即ち,検出器の放射線を受ける部分2a(以下,単
に受光部という)に放射線の照射方向およびX方向に対
して直角に吸収板6を配置して,線源1と受光部2aとの
位置関係の変化に起因する出力変動を軽減したものであ
る。
Hitherto, as shown in FIGS. 7 (a), 7 (b) and 7 (c), there have been proposed devices for removing this kind of output fluctuation. That is, an absorption plate 6 is arranged at a portion 2a (hereinafter simply referred to as a light receiving portion) of the detector which receives the radiation at right angles to the radiation irradiation direction and the X direction, and the positional relationship between the radiation source 1 and the light receiving portion 2a. This reduces output fluctuations caused by changes in.

第7図(イ)は線源1と受光部2aおよび吸収板6の関
係を平面図で示すもので,吸収板6は検出器の受光部の
中央部にX方向に対して直角に,線源は受光部の中央に
配置されている。吸収板6は長さlが受光部の直径より
も長く,幅Wが線源より広く受光窓の直径より小さいAl
板からなり,受光部2aの前面の中央部に取付けられて,
線源1の放射線ビームの最も強い部分の一部を遮って受
光部2aに入射する放射線量を減少させている。線源1は
通常安全対策として金属箱等で包まれており,更に線源
箱の出口が薄い金属板等で覆われているので,線源1か
ら放射された放射線は直進しにくく散乱線となる。この
ため,放射線ビームの強さは線源1の正面が最も強く正
面から遠ざかる程弱くなる。
FIG. 7 (a) is a plan view showing the relationship between the radiation source 1, the light receiving portion 2a, and the absorbing plate 6, and the absorbing plate 6 is located at the center of the light receiving portion of the detector at right angles to the X direction. The source is located at the center of the light receiving section. The absorption plate 6 has a length l longer than the diameter of the light receiving portion, and a width W larger than that of the radiation source and smaller than the diameter of the light receiving window.
It is attached to the center of the front of the light receiving section 2a,
A part of the strongest part of the radiation beam of the radiation source 1 is blocked to reduce the amount of radiation incident on the light receiving part 2a. The source 1 is usually wrapped in a metal box or the like as a safety measure, and the exit of the source box is covered with a thin metal plate or the like. Become. For this reason, the intensity of the radiation beam is strongest in front of the radiation source 1 and becomes weaker as the distance from the front increases.

第7図(ロ)は検出器2がX方向(向かって左側)に
X1ずれた状態を示す側面図で,Rは放射線の等価線量を示
している。この様なずれが発生した場合,向かって左側
は線源から遠ざかるので出力は弱くなるが,向かって右
側は吸収板6に遮られていた放射線の最も強い部分が受
光面を照射する様になるので出力は強くなる。従って受
光部が受ける放射線の総量は変化せず,ずれによる出力
変動は発生しない。
FIG. 7 (b) shows the detector 2 in the X direction (left side as viewed).
A side view of the X 1 shift state, R represents an equivalent dose of radiation. When such a shift occurs, the output becomes weaker because the left side is farther from the radiation source, but the strongest part of the radiation blocked by the absorbing plate 6 irradiates the light receiving surface on the right side. So the output will be stronger. Therefore, the total amount of radiation received by the light receiving unit does not change, and no output fluctuation due to the deviation occurs.

第7図(ハ)は検出器がZ方向(図では上方向)にz1
ずれた状態を示す側面図で,この例では受光面が熱源に
近付くので吸収板6で覆われていない部分は出力が増加
る様に作用し,同時に放射線の強い部分がより広く吸収
板6で覆われることになるので放射線の総量は変化せ
ず,ずれによる出力変動は発生しない。
FIG. 7 (c) shows that the detector is z 1 in the Z direction (upward in the figure).
This is a side view showing a shifted state. In this example, since the light-receiving surface approaches the heat source, the portion not covered by the absorbing plate 6 acts to increase the output, and at the same time, the portion where the radiation is strong is wider by the absorbing plate 6. Since it is covered, the total amount of radiation does not change, and the output does not fluctuate due to the deviation.

上記構成によれば,線源と検出器の関係がX,Z方向に
移動しても放射線量の総量をほぼ同一にすることが可能
である。なお,Y方向のずれに対しては図示した吸収板で
は対応できない。
According to the above configuration, the total amount of radiation can be made substantially the same even if the relationship between the radiation source and the detector moves in the X and Z directions. Note that the illustrated absorbing plate cannot cope with the displacement in the Y direction.

<発明が解決しようとする課題> しかしながら,上記従来の放射線応用測定装置におい
ては,検出器の前面に吸収板を用いて放射感度を調整し
ている為検出器の感度が1/2〜1/5に低下してしまうとい
う問題があった。また,吸収板を用いた場合,その配置
場所は被測定物の性質に合わせて試行錯誤しながら決定
する必要があった。
<Problems to be solved by the invention> However, in the above-mentioned conventional radiation applied measurement device, the sensitivity of the detector is reduced to 1/2 to 1 / since the radiation sensitivity is adjusted by using an absorbing plate in front of the detector. There was a problem that it would drop to 5. Also, when an absorbing plate is used, its location must be determined by trial and error according to the properties of the object to be measured.

本発明は上記従来技術の課題に鑑みて成されたもの
で,検出感度を低下させることなくXおよびY方向のず
れに対して出力変動のない放射線応用測定装置を実現す
ることを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-described problems of the related art, and has as its object to realize a radiation applied measurement apparatus that does not change output in the X and Y directions without lowering detection sensitivity.

<課題を解決するための手段> 上記課題を解決するための本発明の構成は,空気強度
がガウス分布となる放射線源から放射され,被測定物を
透過してくる放射線を半導体放射線検出器により検出
し,前記被測定物の物理量の測定を行う放射線応用測定
装置X方向に2つの領域に分割された同一出力を有する
半導体放射線検出素子と,前記各半導体検出素子と線源
のX方向の相対的位置ずれによって各素子に生じる出力
差を演算する演算手段と,予め求めた前記検出器と線源
の相対的位置ずれ量とずれ率の関係から前記ずれ量を算
出する算出手段を有し,前記算出したずれ量に起因する
測定誤差を補正するようにしたことを特徴とし, また,同放射線応用測定装置において, X,Y方向に4つの領域に分割された同一出力を有する
半導体放射線検出素子と,前記各半導体検出素子と線源
のXY方向の相対的位置ずれによって各素子に生じる出力
差を演算する演算手段と,予め求めた前記検出器と線源
の相対的位置ずれ量とずれ率の関係から前記ずれ量を算
出する算出手段を有し,前記算出したずれ量に起因する
測定誤差を補正するようにしたことを特徴とし, また,同放射線応用測定装置において, 所定の厚さを有し,X,Y方向に4つの領域に分割された
同一出力を有する第1半導体放射線検出素子と,この第
1検出素子を載置しその合計出力と同一出力を有する第
2半導体放射線検出素子と,前記第1半導体検出素子と
線源のXY方向の相対的位置ずれ及びZ方向の相対的位置
ずれによって第1,第2検出素子に生じる出力差を演算す
る演算手段と,予め求めた前記検出器と線源の相対的位
置ずれ量とずれ率の関係から前記ずれ量を算出する算出
手段を有し,前記算出したずれ量に起因する測定誤差を
補正するようにしたことを特徴とするものである。
<Means for Solving the Problems> According to the configuration of the present invention for solving the above problems, radiation emitted from a radiation source having an air intensity having a Gaussian distribution and transmitted through an object to be measured is detected by a semiconductor radiation detector. A radiation measuring apparatus for detecting and measuring a physical quantity of the object to be measured, a semiconductor radiation detecting element having the same output divided into two regions in the X direction, and a relative position in the X direction between each of the semiconductor detecting elements and the radiation source; Calculating means for calculating an output difference generated in each element due to a target position shift, and calculating means for calculating the shift amount from a relationship between a relative position shift amount of the detector and the radiation source and a shift rate obtained in advance, The apparatus is characterized in that the measurement error caused by the calculated shift amount is corrected, and in the radiation applied measurement device, the semiconductor radiation detection device having the same output divided into four regions in the X and Y directions. Calculating means for calculating an output difference between each element due to the relative displacement between the element and each of the semiconductor detecting elements and the radiation source in the X and Y directions; and a relative displacement and deviation between the detector and the radiation source determined in advance. Calculating means for calculating the amount of deviation from the relationship between the ratios, wherein the measurement error caused by the calculated amount of deviation is corrected; A first semiconductor radiation detecting element having the same output divided into four areas in the X and Y directions, and a second semiconductor radiation detecting element having the first detector mounted thereon and having the same output as the total output. Calculating means for calculating an output difference between the first and second detecting elements due to a relative positional shift in the XY direction and a relative positional shift in the XY direction between the element and the first semiconductor detecting element and the radiation source; No relative position between the detector and the source Has a calculating means for calculating the shift amount from the relation of the amount and displacement rate, is characterized in that so as to correct measurement errors due to the calculated shift amount.

<作用> 放射線源と検出器が相対的にずれると検出器の出力に
変動が生じるとともに各素子間にも出力差が生じ,X,Y,Z
方向にどれだけずれたかにより隣合う素子間の出力差が
異なる(検出器の出力と隣合う素子間の出力差の比から
X,YまたはZ方向のずれ量を検出することができる。)
従ってX,Y,Z方向のずれ量と出力比の関係を予め求めて
おけば何れの方向にどれだけずれているかを知ることが
でき,そのずれ量に応じた出力の割合を求めておけばシ
ート状の物質の物理量の真値を知ることができる。
<Operation> If the radiation source and the detector are relatively displaced, the output of the detector will fluctuate and the output difference will also occur between the elements, and X, Y, Z
The output difference between adjacent elements differs depending on the amount of shift in the direction (from the ratio of the detector output to the output difference between adjacent elements)
A shift amount in the X, Y or Z directions can be detected. )
Therefore, if the relationship between the shift amount in the X, Y, and Z directions and the output ratio is determined in advance, it is possible to know in which direction and how much the shift is, and if the ratio of the output according to the shift amount is determined, It is possible to know the true value of the physical quantity of a sheet-like substance.

<実施例> 第1図は2分割構造型,第2図は4分割構造型の本発
明で使用する半導体検出器の一例を示す平面図である。
これらの図においてV1〜V4は検出素子を示し,例えばCd
Teやシリコンなどで形成されており,線源との相対的な
位置ずれがない場合はいずれの検出素子の出力も同一と
される。
<Embodiment> FIG. 1 is a plan view showing an example of a semiconductor detector used in the present invention of a two-part structure type and FIG. 2 is a four-part structure type.
In these figures, V 1 to V 4 indicate detection elements, for example, Cd
It is made of Te, silicon, etc., and when there is no relative displacement from the radiation source, the outputs of all the detection elements are the same.

はじめに,第1図について説明する。なお,この構造
の検出器はX方向のずれに対してのみ有効でYまたはZ
方向に対するずれに対しては対応できない。
First, FIG. 1 will be described. Note that the detector having this structure is effective only for displacement in the X direction,
It cannot respond to deviations in the direction.

いま,線源が検出器に対してX方向にずれ,線源の中
心がe側にずれたとするとV1の素子の出力はV2よりも強
くなる。例えばずれ量が0の場合V1,V2の素子の出力が
それぞれ5とし,検出器の出力V0が10であったとする。
この場合ずれ率をHとすると H=|V1−V2|/V0は =|5−5|/10=0 であり,この割合いはシートの物理的性質(例えば坪
量)に依存しない。次に線源がe側にずれたとし,V1
出力が6,V2の力が3,検出器の出力が9になったとする。
Now, the shift in the X direction with respect to the source is a detector, the output of the center element of V 1 When shifted to e side of the source becomes stronger than V 2. For example, when the shift amount is 0, it is assumed that the outputs of the elements V 1 and V 2 are 5 and the output V 0 of the detector is 10.
In this case, assuming that the deviation rate is H, H = | V 1 −V 2 | / V 0 is = | 5−5 | / 10 = 0, and this ratio depends on the physical properties (eg, basis weight) of the sheet. do not do. Then the source is the offset to the e side, the output force is 6, V 2 of V 1 is 3, the output of the detector is to become 9.

この場合|V1−V2|/V0は3/9=0.33…となり,この割合
いもシートの坪量に依存しない。即ち,ある相対的なず
れ量とずれ率Hの関係は不変である。従って検出器の出
力とずれ率Hの関係を求め,あらかじめ求めた補正デー
タと比較することにより測定系のずれ量に無関係に被測
定物の物理的特性の正確な値を知ることができる。
In this case, | V 1 −V 2 | / V 0 is 3/9 = 0.33..., And this ratio does not depend on the basis weight of the sheet. That is, the relationship between a certain relative shift amount and the shift rate H is unchanged. Therefore, by obtaining the relationship between the output of the detector and the deviation rate H and comparing it with the correction data obtained in advance, it is possible to know the exact value of the physical characteristic of the device under test irrespective of the deviation amount of the measurement system.

第2図はX,Y方向の図に対して対応可能な4分割検出
器の平面図である。この場合も線源と検出器にずれがな
いばあいV1〜V4の出力は同一出力であるものとする。
FIG. 2 is a plan view of a quadrant detector capable of responding to the X and Y directions. Output when there is no shift in this case as a radiation source detector V 1 ~V 4 is assumed to be the same output.

第3図は本出願人が検出素子としてシリコンを用いて
製作した4分割検出器の素子間のずれ率とずれ量の関係
を示すもので,検出素子の一辺を11mmとし,各素子間を
1mmとした場合(検出器の一辺は23mmとなる)のずれ率|
V3−V4|/V0,|V3−V2|/V0を示すものである。なお,図で
は簡略のためX方向のずれeを0,0.5,1.0mmとしたが実
用に当たっては適当な間隔で多数の線が引かれてそれら
の値がCPUの記憶ユニットに記憶されているものとす
る。
FIG. 3 shows the relationship between the deviation rate and the deviation amount between the elements of a four-divided detector manufactured by the present applicant using silicon as the detection element.
1mm (one side of the detector is 23mm) |
V 3 −V 4 | / V 0 , | V 3 −V 2 | / V 0 . In the figure, the displacement e in the X direction is set to 0, 0.5, 1.0 mm for simplicity, but in practice, many lines are drawn at appropriate intervals and their values are stored in the storage unit of the CPU. And

いま,X,Y方向の未知のずれを有する放射線検出器の各
素子V1〜V4の出力差と検出器の出力の割合い,|V3−V4|/
V0と|V3−V2|/V0がいずれも0.087であった場合はX,Y方
向のずれがいずれも1.0mmであることが分り,同じくそ
の割合いが0.04であった場合はX,Y方向のずれがいずれ
も0.5mmであることが分る。また,|V3−V4|/V0が0.08で|
V3−V2|/V0が0.043であったばあいはY方向のずれが1.
0,X方向のずれが0.5であることが分る。
Now, the output difference between the elements V 1 to V 4 of the radiation detector having unknown deviations in the X and Y directions and the ratio of the output of the detector, | V 3 −V 4 | /
If V 0 and | V 3 −V 2 | / V 0 are both 0.087, it can be seen that the deviations in both the X and Y directions are 1.0 mm, and if the ratio is 0.04, It can be seen that the deviations in the X and Y directions are both 0.5 mm. When | V 3 −V 4 | / V 0 is 0.08, |
If V 3 −V 2 | / V 0 is 0.043, the deviation in the Y direction is 1.
0, the deviation in the X direction is 0.5.

従って,予めX,Y方向のずれ量に対する出力データをC
PUに記憶しておき,検出器の出力と比較することにより
物理特性の真値を求めることができる。
Therefore, the output data for the deviation amount in the X and Y directions is
The true value of the physical characteristic can be obtained by storing the data in the PU and comparing with the output of the detector.

第4図はX,Y方向の他にZ方向のずれに対しても対応
可能とした一実施例を示すもので,この例においては4
分割された正方形の第1の検出器V1〜V4の下に一枚構成
で第1の検出器よりも大きな正方形の第2の検出器V5
形成されている。例えば,ここでX,Y,Z方向にずれがな
い場合,V1〜V4の素子の出力の合計V0とV5の素子の出力
は同一となる様にその高さと大きさが形成されている。
この様な構成においてX,YおよびZ方向のずれの検出は
先に説明した場合と同様の方法で互いにとなり合う素子
間の出力差と検出器の出力の比|V3−V4|/V0,|V3−V2|/V
0,|V0−V5|/|V0+V5|に基づいて算出される。従って予
め全体の出力に対してX,Y,Z方向のずれ量に対するデー
タを記憶しておけば,その記憶データに基づいてZ方向
のずれも考慮した真値を知ることができる。
FIG. 4 shows an embodiment capable of coping with a deviation in the Z direction in addition to the X and Y directions.
Under the first detector V 1 ~V 4 of the divided square in one configuration than the first detector and the second detector V 5 large squares are formed. For example, where X, Y, when there is no displacement in the Z direction, sum V 0 and outputs its height and size as the same element of V 5 of the output of the element of V 1 ~V 4 is formed ing.
In such a configuration, the deviation in the X, Y, and Z directions is detected in the same manner as described above, and the ratio of the output difference between adjacent elements to the output of the detector | V 3 −V 4 | / V 0 , | V 3 −V 2 | / V
0 , | V 0 −V 5 | / | V 0 + V 5 | Therefore, if data on the amount of displacement in the X, Y, and Z directions is stored in advance for the entire output, a true value that also takes into account the displacement in the Z direction can be known based on the stored data.

<発明の効果> 以上,実施例とともに具体的に説明したように本発明
によれば,吸収板を用いないので感度の低下がなく,X,Y
およびZ方向のずれに対する出力変動が少なく感度低下
の割合いの少ない放射線応用測定装置を実現することが
出来る。
<Effects of the Invention> As described above in detail with the embodiment, according to the present invention, since the absorption plate is not used, the sensitivity does not decrease, and the X, Y
In addition, it is possible to realize a radiation application measuring apparatus in which the output fluctuation with respect to the deviation in the Z direction is small and the rate of sensitivity decrease is small.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例を説明するための検出器の構
成図,第2図,第4図は他の実施例を説明する為の検出
器の構成図,第3図は放射線源と検出器のずれ率とずれ
量の関係を示す図,第5図は放射線検出器と線源の位置
関係を説明する図,第6図は放射線の強度分布を示す
図,第7図は従来例の説明図である。 1……放射線源,2……放射線検出器,3……被測定物,V1
〜V5……放射線検出素子。
FIG. 1 is a block diagram of a detector for explaining one embodiment of the present invention, FIGS. 2 and 4 are block diagrams of a detector for explaining another embodiment, and FIG. 3 is a radiation source. Fig. 5 shows the relationship between the displacement rate and the displacement amount of the detector, Fig. 5 illustrates the positional relationship between the radiation detector and the radiation source, Fig. 6 shows the radiation intensity distribution, and Fig. 7 shows the conventional method. It is explanatory drawing of an example. 1 ... radiation source, 2 ... radiation detector, 3 ... DUT, V 1
~ V 5 ... Radiation detection element.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) G01N 9/24 G01T 1/17 G01T 1/24 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 6 , DB name) G01N 9/24 G01T 1/17 G01T 1/24

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】空間強度がガウス分布となる放射線源から
放射され,被測定体を透過してくる放射線を半導体放射
線検出器により検出し,前記被測定体の物理量の測定を
行う放射線応用測定装置において, X方向に2つの領域に分割された同一出力を有する半導
体放射線検出素子と,前記各半導体検出素子と線源のX
方向の相対的位置ずれによって各素子に生じる出力差を
演算する演算手段と,予め求めた前記検出器と線源の相
対的位置ずれ量とずれ率の関係から前記ずれ量を算出す
る算出手段を有し,前記算出したずれ量に起因する測定
誤差を補正するようにしたことを特徴とする放射線応用
測定装置。
1. A radiation applied measuring apparatus for detecting radiation emitted from a radiation source having a spatial intensity having a Gaussian distribution and passing through an object to be measured by a semiconductor radiation detector and measuring a physical quantity of the object to be measured. A semiconductor radiation detecting element having the same output divided into two regions in the X direction;
Calculating means for calculating an output difference generated in each element due to relative positional deviation in the direction, and calculating means for calculating the deviation amount from a relationship between a relative positional deviation amount of the detector and the radiation source and a deviation ratio obtained in advance. A radiation applied measurement apparatus, wherein the measurement error caused by the calculated shift amount is corrected.
【請求項2】空間強度がガウス分布となる放射線源から
放射され,被測定体を透過してくる放射線を半導体放射
線検出器により検出し,前記被測定体の物理量の測定を
行う放射線応用測定装置において, X,Y方向に4つの領域に分割された同一出力を有する半
導体放射線検出素子と,前記各半導体検出素子と線源の
XY方向の相対的位置ずれによって各素子に生じる出力差
を演算する演算手段と,予め求めた前記検出器と線源の
相対的位置ずれ量とずれ率の関係から前記ずれ量を算出
する算出手段を有し,前記算出したずれ量に起因する測
定誤差を補正するようにしたことを特徴とする放射線応
用測定装置。
2. A radiation applied measuring apparatus for detecting radiation emitted from a radiation source having a spatial intensity having a Gaussian distribution and passing through a measured object by a semiconductor radiation detector and measuring a physical quantity of the measured object. A semiconductor radiation detecting element having the same output divided into four regions in the X and Y directions;
Calculating means for calculating an output difference generated in each element due to a relative positional shift in the XY direction; calculating means for calculating the shift amount from a previously determined relationship between the relative shift amount of the detector and the source and the shift rate; A radiation applied measurement apparatus, wherein the measurement error caused by the calculated shift amount is corrected.
【請求項3】空間強度がガウス分布となる放射線源から
放射され,被測定体を透過してくる放射線を半導体放射
線検出器により検出し,前記被測定体の物理量の測定を
行う放射線応用測定装置において, 所定の厚さを有し,X,Y方向に4つの領域に分割された同
一出力を有する第1半導体放射線検出素子と,この第1
検出素子を載置しその合計出力と同一出力を有する第2
半導体放射線検出素子と,前記第1半導体検出素子と線
源のXY方向の相対的位置ずれ及びZ方向の相対的位置ず
れによって第1,第2検出素子に生じる出力差を演算する
演算手段と,予め求めた前記検出器と線源の相対的位置
ずれ量とずれ率の関係から前記ずれ量を算出する算出手
段を有し,前記算出したずれ量に起因する測定誤差を補
正するようにしたことを特徴とする放射線応用測定装
置。
3. A radiation application measuring apparatus for detecting a radiation emitted from a radiation source having a spatial intensity having a Gaussian distribution and transmitting through an object to be measured by a semiconductor radiation detector and measuring a physical quantity of the object to be measured. A first semiconductor radiation detecting element having a predetermined thickness and having the same output divided into four regions in the X and Y directions;
A second device having a detection element mounted thereon and having the same output as the total output thereof
A semiconductor radiation detecting element, and calculating means for calculating an output difference between the first and second detecting elements due to a relative positional shift in the XY direction and a relative positional shift in the XY direction between the first semiconductor detecting element and the radiation source; Calculating means for calculating the shift amount from a relationship between a relative shift amount of the detector and the radiation source determined in advance and a shift ratio, and correcting a measurement error caused by the calculated shift amount; A radiation application measuring device characterized by the above-mentioned.
JP30799189A 1989-11-28 1989-11-28 Radiation measurement equipment Expired - Fee Related JP2905895B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30799189A JP2905895B2 (en) 1989-11-28 1989-11-28 Radiation measurement equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30799189A JP2905895B2 (en) 1989-11-28 1989-11-28 Radiation measurement equipment

Publications (2)

Publication Number Publication Date
JPH03167447A JPH03167447A (en) 1991-07-19
JP2905895B2 true JP2905895B2 (en) 1999-06-14

Family

ID=17975593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30799189A Expired - Fee Related JP2905895B2 (en) 1989-11-28 1989-11-28 Radiation measurement equipment

Country Status (1)

Country Link
JP (1) JP2905895B2 (en)

Also Published As

Publication number Publication date
JPH03167447A (en) 1991-07-19

Similar Documents

Publication Publication Date Title
US6987832B2 (en) Calibration and alignment of X-ray reflectometric systems
GB2299251A (en) Detecting crystalline material using X-ray diffraction
JPS5920806A (en) Method and device for measuring sheet-shaped material
CA1122725A (en) Trapezoidal scintillator for radiation detectors
US3489901A (en) Method and apparatus for radiation measuring the mass of material having a spatially non-uniform mass distribution
JP2905895B2 (en) Radiation measurement equipment
JPH01227050A (en) Method and apparatus for measuring density and others of object
JPH09502014A (en) Device for measuring the weight per unit area
JPH0329410B2 (en)
JP2501819Y2 (en) Radiation applied measurement device
US7242747B2 (en) Method for determining a gsm substance and/or a chemical composition of a conveyed material sample, and a device for this purpose
US6995372B2 (en) Nuclear gauge for measuring a characteristic of a sheet material with sheet position and alignment compensation
JP2722672B2 (en) Radiation measurement equipment
JP3058218B2 (en) Radiation measurement equipment
JP2905448B2 (en) Method and apparatus for setting position of sample stage in X-ray analysis
JPH0219753A (en) Radiation application measuring device
JPH05149775A (en) Measuring instrument utilizing radiation
JP2780324B2 (en) X-ray thickness gauge
JPH04353707A (en) Measuring apparatus utilizing radiation
JP3286010B2 (en) X-ray fluorescence analyzer and X-ray irradiation angle setting method
JPH0799395B2 (en) Radiation applied measurement device
JP2000258146A (en) Radiation thickness measurement device
JPH01153905A (en) Radiation applied measuring instrument
JPH0481684A (en) Apparatus for measuring radioactivity
JP3047563B2 (en) X-ray diffraction method for measuring film thickness

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees