JP2901890B2 - Low-yield-ratio high-strength steel sheet with excellent tensile strength of 590 N / mm2 or more and excellent weld cracking resistance and method for producing the same - Google Patents

Low-yield-ratio high-strength steel sheet with excellent tensile strength of 590 N / mm2 or more and excellent weld cracking resistance and method for producing the same

Info

Publication number
JP2901890B2
JP2901890B2 JP1514195A JP1514195A JP2901890B2 JP 2901890 B2 JP2901890 B2 JP 2901890B2 JP 1514195 A JP1514195 A JP 1514195A JP 1514195 A JP1514195 A JP 1514195A JP 2901890 B2 JP2901890 B2 JP 2901890B2
Authority
JP
Japan
Prior art keywords
less
strength
temperature
yield ratio
tensile strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1514195A
Other languages
Japanese (ja)
Other versions
JPH08209294A (en
Inventor
重雄 岡野
智 竹下
憲一 大江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=11880544&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2901890(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP1514195A priority Critical patent/JP2901890B2/en
Publication of JPH08209294A publication Critical patent/JPH08209294A/en
Application granted granted Critical
Publication of JP2901890B2 publication Critical patent/JP2901890B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、主として超高層の建築
構造物に使用される耐溶接割れ性に優れた引張強度590N
/mm2以上の低降伏比型高張力鋼板に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a 590N tensile strength excellent in weld cracking resistance mainly used for super-high-rise building structures.
The present invention relates to a low-yield-ratio high-strength steel sheet of / mm 2 or more.

【0002】[0002]

【従来の技術】近年、建築構造物は高層化とフロアース
ペースが広大化しており、構造物を支える梁、柱、桁の
本数を減らす大スパン化の要求が強まっている。このた
め、必然的に建築構造用鋼材は高強度化する必要があ
り、従来の引張強度490N/mm2級鋼板から、より強度の高
い引張強度590N/mm2級高張力鋼板を使用しようとする動
きが強まってきた。建築構造用鋼材は地震時における構
造物の安全性確保のために、降伏比を80%以下という優
れた塑性変形能が必要とされるため、このような引張強
度590N/mm2級高張力鋼板であっても降伏比を80%以下に
低減することが要求されるようになった。
2. Description of the Related Art In recent years, building structures have been increased in height and floor space has been widened, and there has been an increasing demand for large spans to reduce the number of beams, columns and girders supporting the structure. For this reason, it is inevitable to increase the strength of steel for building structures, and instead of using a conventional tensile strength of 490 N / mm 2 grade steel sheet, we will try to use a higher strength 590 N / mm 2 grade high strength steel sheet. The movement is getting stronger. For steel for building structure safety of the structure during an earthquake, because the plastic deformability excellent that a yield ratio of 80% or less is required, such a tensile strength 590N / mm 2 class high strength steel plate Even so, it has been required to reduce the yield ratio to 80% or less.

【0003】引張強度が590N/mm2以上の高張力鋼板は、
焼入れ(Q)・焼戻し(T)によって生成するマルテン
サイトやベイナイトを利用して強度を確保しているた
め、一般に降伏比は90%以上と高い。そこで、降伏比を
80%以下に低減するために、従来の焼入れ(Q)・焼戻
し(T)という二つの熱処理の間に、二相域温度(Ac1
点以上Ac3点未満)からの焼入れ(Q’)を施す新しい
熱処理方法(Q−Q’−T法)が開発された。この方法
によれば、ミクロ組織がマルテンサイトやベイナイトの
硬質相に加えて、Q’によって二相域での保持中に軟質
で延性に優れたフェライトが生成するため、低い降伏比
が得られるのである。
A high-strength steel sheet having a tensile strength of 590 N / mm 2 or more is
Since the strength is secured by using martensite and bainite generated by quenching (Q) and tempering (T), the yield ratio is generally as high as 90% or more. Therefore, the yield ratio
In order to reduce the temperature to 80% or less, the two-phase zone temperature (Ac 1 ) is reduced between the two heat treatments of the conventional quenching (Q) and tempering (T).
A new heat treatment method (QQ'-T method) for performing quenching (Q ') from the above point to less than Ac three points) has been developed. According to this method, in addition to the hard phase of martensite or bainite having a microstructure, a soft and highly ductile ferrite is formed by Q ′ during holding in the two-phase region, so that a low yield ratio can be obtained. is there.

【0004】しかしながら、この方法は軟質のフェライ
トを降伏比の低減に利用しているため、所定の強度を確
保するためには添加元素量を多くしなければならず、従
来の引張強度590N/mm2級高張力鋼板よりもPCM(溶接割
れ感受性組成)を高くする必要がある。従って、被覆ア
ーク溶接によるy型溶接割れ試験における割れ防止予熱
温度がQ−T法による従来鋼では室温〜50℃の範囲であ
ったのが、Q−Q’−T法による本鋼板では約 100℃と
なり、耐溶接割れ性が劣化するという問題があった。
However, in this method, since soft ferrite is used for reducing the yield ratio, the amount of added elements must be increased in order to secure a predetermined strength, and the conventional tensile strength is 590 N / mm. it is necessary to increase the P CM (weld crack susceptibility composition) than 2 class high strength steel. Therefore, the crack prevention preheating temperature in the y-type welding crack test by coated arc welding was in the range of room temperature to 50 ° C. in the conventional steel by the QT method, but was about 100 ° C. in the steel sheet by the QQ′-T method. ° C, and there was a problem that the weld crack resistance deteriorated.

【0005】[0005]

【発明が解決しようとする課題】本発明は、引張強度59
0N/mm2以上の低降伏比型高張力鋼板において、80%以下
の降伏比を確保すると同時に、従来のQ−T法による高
降伏比型高張力鋼板と同等以上の優れた耐溶接割れ性を
有する引張強度590N/mm2以上の低降伏比型高張力鋼板を
提供することを目的とするものである。
SUMMARY OF THE INVENTION The present invention has a tensile strength of 59%.
In 0N / mm 2 or more low yield ratio type high tensile steel, and at the same time ensuring the following yield ratio of 80%, equal to or larger than that of the high yield ratio type high tensile steel according to the conventional Q-T method excellent weld crack resistance It is an object of the present invention to provide a low-yield-ratio high-strength steel sheet having a tensile strength of 590 N / mm 2 or more.

【0006】[0006]

【課題を解決するための手段】本発明者らは、引張強度
590N/mm2以上の高強度を確保しつつ、80%以下の降伏比
と良好な溶接性を確保するために、従来のQ−T法によ
る高降伏比型高張力鋼板と同等の低いPCMのままで強度
および低降伏比を確保する手段に関して鋭意研究を行っ
た。その結果、これらを実現するためには従来の低降伏
比型590N/mm2以上の鋼板と同様、硬質相であるマルテン
サイトやベイナイト組織中に軟質相であるフェライトを
混在させることは重要であるが、強度確保の手段として
これまで活用しているマルテンサイトやベイナイトの変
態強化、合金元素による固溶強化のほかに、PCMに影響
を与えない元素であるNbによる析出強化を利用すること
により、低PCMで低降伏比を維持したまま高強度を確保
できるという知見を得た。
Means for Solving the Problems The present inventors have developed a tensile strength.
While ensuring 590N / mm 2 or more high strength, in order to secure 80% or less of yield ratio and good weldability, the conventional Q-T method with high yield ratio type high tensile steel comparably low and P CM We conducted intensive research on means for securing strength and a low yield ratio as they were. As a result, in order to achieve these same manner as conventional low yield ratio 590N / mm 2 or more steel plates, it is important to mix ferrite is soft phase to martensite and bainite in a hard phase but, so far transformation strengthening of martensite and bainite which are used as a means of ensuring strength, in addition to the solid solution strengthening by alloying elements, by utilizing the precipitation strengthening by Nb is an element that does not affect the P CM to give the finding that a high strength while maintaining a low yield ratio at a low P CM can be secured.

【0007】また、Nbの析出強化を活用することによ
り、従来のオフラインでのQ−Q’−T法に替えてオン
ラインでのAcC−Q’−T法、AcC−N’−T法あ
るいはDQ−Q’−T法、DQ−N’−T法を適用し、
低降伏比を維持したままQ−Q’−T法の場合よりも高
強度を実現し得るという知見を得て本発明に至ったもの
である。なお、AcCは熱間圧延後の加速冷却を、DQ
は熱間圧延後の直接焼入れを、N’は二相域温度(Ac1
点以上Ac3点未満)からの再加熱焼きならしを示す。
Further, by utilizing the precipitation strengthening of Nb, an online AcC-Q'-T method, an AcC-N'-T method or a DQ method can be used instead of the conventional off-line QQ'-T method. -Q'-T method and DQ-N'-T method are applied,
The inventors have found that higher strength can be realized than in the case of the QQ'-T method while maintaining a low yield ratio, and have reached the present invention. Note that AcC performs accelerated cooling after hot rolling by DQ
Denotes direct quenching after hot rolling, and N ′ denotes a two-phase region temperature (Ac 1
From the point to less than Ac 3 points).

【0008】このAcC−Q’−T法、AcC−N’−
T法あるいはDQ−Q’−T法、DQ−N’−T法の適
用により、高強度が可能な分だけ添加元素を低減でき、
結果としてPCMを従来のQ−T法による高降伏比型高張
力鋼板と同等以下のレベルまで低減できるため、低降伏
比型高張力鋼板の耐溶接割れ性の改善が可能となるので
ある。
The AcC-Q'-T method, AcC-N'-
By applying the T method, the DQ-Q'-T method, or the DQ-N'-T method, it is possible to reduce the amount of added elements by an amount corresponding to high strength.
Since as a result can reduce the P CM to conventional Q-T method with high yield ratio type high tensile steel and equivalent or lower levels, it become possible to improve the resistance to weld cracking of low yield ratio type high tensile steel.

【0009】すなわち、本発明の要旨は、(1) 質量%
で、C:0.05〜0.15%、 Si:0.05〜0.50%、 Mn:0.30〜1.
80%、 P:0.015%以下、 S:0.005%以下、Al:0.005〜0.
10%、Nb:0.005〜0.100 %を含有し、残部Feおよび不可
避的不純物からなり、粒子径が50nm以下のNbの炭窒化物
を体積分率で0.01〜0.6 %およびフェライトを体積分率
で 2%以上含有し、かつ下記式で求まるPCMが0.22%
以下である耐溶接割れ性に優れた引張強度590N/mm2以上
の低降伏比型高張力鋼板である。 PCM=C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15+V/10+5 ×B (%) …
That is, the gist of the present invention is (1) mass%
And C: 0.05-0.15%, Si: 0.05-0.50%, Mn: 0.30-1.
80%, P: 0.015% or less, S: 0.005% or less, Al: 0.005-0.
10%, Nb: 0.005 to 0.100%, the balance being Fe and unavoidable impurities, Nb carbonitride having a particle diameter of 50 nm or less is 0.01 to 0.6% by volume fraction and ferrite is 2 by volume fraction. % by weight or more, and P CM which is obtained by the following formula 0.22%
This is a low yield ratio type high tensile strength steel sheet having a tensile strength of 590 N / mm 2 or more, which is excellent in resistance to weld cracking as follows. P CM = C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15 + V / 10 + 5 × B (%)…

【0010】(2) 質量%で、C:0.05〜0.15%、 Si:0.05
〜0.50%、 Mn:0.30〜1.80%、 P:0.015%以下、 S:0.0
05%以下、Al:0.005〜0.10%、Nb:0.005〜0.100 %を含
有し、さらに Cu:0.05〜0.50%、 Ni:0.05〜2.00%、 C
r:0.05〜1.00%、 Mo:0.05〜1.00%、 V:0.005〜0.070
%、B:0.0003〜0.0030%、 Ca:0.0005〜0.010 %、Ti:
0.005〜0.025 %、 REM:0.001〜0.010 %の内から選ん
だ1種または2種以上を含有し、残部Feおよび不可避的
不純物からなり、粒子径が50nm以下のNbの炭窒化物を体
積分率で0.01〜0.6 %およびフェライトを体積分率で 2
%以上含有し、かつ前記式で求まるPCMが0.22%以下
である耐溶接割れ性に優れた引張強度590N/mm2以上の低
降伏比型高張力鋼板である。
(2) In mass%, C: 0.05 to 0.15%, Si: 0.05
~ 0.50%, Mn: 0.30 ~ 1.80%, P: 0.015% or less, S: 0.0
Contains 0.05% or less, Al: 0.005 to 0.10%, Nb: 0.005 to 0.100%, Cu: 0.05 to 0.50%, Ni: 0.05 to 2.00%, C
r: 0.05-1.00%, Mo: 0.05-1.00%, V: 0.005-0.070
%, B: 0.0003-0.0030%, Ca: 0.0005-0.010%, Ti:
0.005 to 0.025%, REM: 0.001 to 0.010%, one or more selected from the group consisting of Fe and unavoidable impurities, with a volume fraction of Nb carbonitride with a particle size of 50 nm or less. 0.01 to 0.6% and ferrite in volume fraction 2
% By weight or more, and a P CM has excellent tensile strength 590N / mm 2 or more low yield ratio type high tensile steel in resistance to weld cracking is less 0.22% which is obtained by the formula.

【0011】(3) 質量%で、C:0.05〜0.15%、 Si:0.05
〜0.50%、 Mn:0.30〜1.80%、 P:0.015%以下、 S:0.0
05%以下、Al:0.005〜0.10%、Nb:0.005〜0.100 %を含
有し、かつ前記式で求まるPCMが0.22%以下で、残部
Feおよび不可避的不純物からなる鋼片を、1000〜1250℃
の温度に加熱し、仕上温度が 875℃以上となるように熱
間圧延し、熱間圧延終了後水量密度が0.3m3/m2・分以
上、停止温度が 400〜500 ℃であるオンライン冷却(加
速冷却)を実施し、その後オフラインでAc1点+25℃〜
Ac1点+100 ℃に再加熱し水冷または空冷する二相域熱
処理および 500〜650 ℃に再加熱し空冷するNb炭窒化物
の析出処理を行う耐溶接割れ性に優れた引張強度590N/m
m2以上の低降伏比型高張力鋼板の製造方法である。
(3) In mass%, C: 0.05 to 0.15%, Si: 0.05
~ 0.50%, Mn: 0.30 ~ 1.80%, P: 0.015% or less, S: 0.0
0.05% or less, Al: 0.005 to 0.10% Nb: containing 0.005 to 0.100%, and the following P CM is 0.22% which is obtained by the formula, the remainder
Steel slab consisting of Fe and unavoidable impurities, 1000-1250 ℃
Hot-rolling to a finish temperature of 875 ° C or higher, and after completion of hot rolling, online cooling with a water density of 0.3m 3 / m 2 min or more and a stop temperature of 400 to 500 ° C (Accelerated cooling) and then off-line Ac 1 point + 25 ° C ~
Ac 1 point Re-heated to + 100 ° C and subjected to water- or air-cooled two-phase zone heat treatment and Nb carbonitride pre-heated to 500-650 ° C and air-cooled Tensile strength 590N / m with excellent weld cracking resistance
This is a method for producing a high yield steel sheet having a low yield ratio of m 2 or more.

【0012】(4) 質量%で、C:0.05〜0.15%、 Si:0.05
〜0.50%、 Mn:0.30〜1.80%、 P:0.015%以下、 S:0.0
05%以下、Al:0.005〜0.10%、Nb:0.005〜0.100 %を含
有し、さらに Cu:0.05〜0.50%、 Ni:0.05〜2.00%、 C
r:0.05〜1.00%、 Mo:0.05〜1.00%、 V:0.005〜0.070
%、B:0.0003〜0.0030%、 Ca:0.0005〜0.010 %、Ti:
0.005〜0.025 %、 REM:0.001〜0.010 %の内から選ん
だ1種または2種以上を含有し、かつ前記式で求まる
CMが0.22%以下で、残部Feおよび不可避的不純物から
なる鋼片を、1000〜1250℃の温度に加熱し、仕上温度が
875℃以上となるように熱間圧延し、熱間圧延終了後水
量密度が0.3m3/m2・分以上、停止温度が 400〜500 ℃で
あるオンライン冷却(加速冷却)を実施し、その後オフ
ラインでAc1点+25℃〜Ac1点+100 ℃に再加熱し水冷
または空冷する二相域熱処理および500〜650 ℃に再加
熱し空冷するNb炭窒化物の析出処理を行う耐溶接割れ性
に優れた引張強度590N/mm2以上の低降伏比型高張力鋼板
の製造方法である。
(4) In mass%, C: 0.05 to 0.15%, Si: 0.05
~ 0.50%, Mn: 0.30 ~ 1.80%, P: 0.015% or less, S: 0.0
Contains 0.05% or less, Al: 0.005 to 0.10%, Nb: 0.005 to 0.100%, Cu: 0.05 to 0.50%, Ni: 0.05 to 2.00%, C
r: 0.05-1.00%, Mo: 0.05-1.00%, V: 0.005-0.070
%, B: 0.0003-0.0030%, Ca: 0.0005-0.010%, Ti:
0.005 to 0.025%, REM: containing 0.001 to 0.010% chose one or more but from among, and P CM is below 0.22% which is obtained by the formula, a slab containing the balance of Fe and unavoidable impurities Heating to a temperature of 1000 ~ 1250 ℃, the finishing temperature
Hot rolling to 875 ° C or higher, and after hot rolling, online cooling (accelerated cooling) with a water density of 0.3 m 3 / m 2 min or more and a stop temperature of 400 to 500 ° C. resistance to weld cracking resistance for performing deposition processing offline Ac 1 point + 25 ° C. to Ac 1 point +100 ° C. in reheating water cooled or air cooled to a dual phase region heat treatment and 500-650 reheated Nb carbonitrides for air cooling ° C. This is a method for manufacturing a high yield strength type high strength steel sheet having excellent tensile strength of 590 N / mm 2 or more.

【0013】(5) 熱間圧延終了後、オンラインにて水量
密度が0.3m3/m2・分以上で室温まで冷却(直接焼入れ)
し、その後オフラインでAc1点+25℃〜Ac1点+100 ℃
に再加熱し水冷または空冷する二相域熱処理および 500
〜650 ℃に再加熱し空冷するNb炭窒化物の析出処理を行
う上記(3) または(4) の耐溶接割れ性に優れた引張強度
590N/mm2以上の低降伏比型高張力鋼板の製造方法であ
る。
(5) After the completion of hot rolling, the water volume density is 0.3 m 3 / m 2 · min or more and cooled down to room temperature online (direct quenching)
And, then offline Ac 1 point + 25 ℃ ~Ac 1 point +100 ℃
Two-phase heat treatment with reheating and water or air cooling to 500 and 500
(3) or (4) above, where the tensile strength is excellent in weld cracking resistance.
This is a method for producing a high yield strength type steel sheet having a low yield ratio of 590 N / mm 2 or more.

【0014】[0014]

【作用】まず、PCMの限定理由について説明する。耐溶
接割れ性を改善するには合金元素の添加量を低減するこ
とが有効であり、その指標としてPCMが提案され広く用
いられている。溶接低温割れは、以下の3条件が重なっ
たときに生じる。すなわち、溶接による硬化組織が生
じる。硬化組織に一定以上の応力または歪みが作用し
ている。一定以上の水素が存在する。の3条件であ
る。特に、硬化組織のうちマルテンサイト主体の組織が
割れ易い。さらに硬化組織に水素が拡散し、この拡散性
の水素は鋼を脆化させ、硬化組織に拘束応力が働いてい
る場合に割れを発生させる。予熱することは、溶接後の
冷却速度を遅くすることにより硬化組織の拡散水素量を
減少させることを意味する。上記のように溶接入熱によ
る硬化の程度と割れに及ぼす化学成分の影響を組み合わ
せた感受性の指数としてPCMが提案されている。y型溶
接割れ試験では、拘束溶接により上記の硬化組織に及
ぼす応力(拘束応力)および同一試験雰囲気で実施する
ことにより溶接直後の水素量を一定とし、PCMにより割
れ易さを判断できる。
[Action] First, a description will be given of reasons for limiting the P CM. To improve the resistance to weld cracking resistance, it is effective to reduce the amount of alloy elements, P CM is widely used is proposed as an indicator. Weld cold cracking occurs when the following three conditions overlap. That is, a hardened structure is generated by welding. A certain level of stress or strain is acting on the hardened tissue. There is more than a certain amount of hydrogen. These are the three conditions. In particular, the structure mainly composed of martensite among the hardened structures is easily broken. Further, hydrogen diffuses into the hardened structure, and this diffusible hydrogen embrittles the steel and causes cracking when the hardened structure is subjected to restraint stress. Preheating means reducing the amount of diffused hydrogen in the hardened structure by slowing the cooling rate after welding. P CM has been proposed as an index of sensitivity that combines the effect of chemical composition on the extent and cracking of curing by welding heat input, as described above. The y-type weld cracking test, the amount of hydrogen after welding and fixed by performing in stress (restraint stress) and the same test Atmosphere on the above hardened structure by constraining welding can determine crack susceptibility by P CM.

【0015】CO2 や手溶接等の小入熱溶接は、溶接箇所
の近傍のみ急速加熱、急速冷却されるため拘束条件や冷
却条件が厳しくなるので、溶接割れの危険性が非常に大
きい。特に、建設現場における溶接は、大がかりな装置
を必要としないCO2 や手溶接が適用される。しかしなが
ら、現場溶接では施工能率の面で予熱は困難であるた
め、予熱温度の低減が切望されている。それ故、本発明
では、従来のQ−T法による引張強度590N/mm2以上の高
降伏比型高張力鋼板と同等の優れた耐溶接割れ性、すな
わちCO2 や手溶接等の小入熱溶接においても予熱温度が
50℃以下という特性を有するために、PCMは0.22%以下
とする。
In small heat input welding such as CO 2 and manual welding, rapid heating and cooling are performed only in the vicinity of the welding location, so that the restraining conditions and cooling conditions become severe, and the risk of welding cracks is extremely large. In particular, for welding at a construction site, CO 2 or manual welding that does not require a large-scale device is applied. However, in the field welding, it is difficult to preheat in terms of construction efficiency, and therefore, it is desired to reduce the preheating temperature. Therefore, in the present invention, excellent welding crack resistance equivalent to a high yield ratio type high tensile strength steel sheet having a tensile strength of 590 N / mm 2 or more by the conventional QT method, that is, small heat input such as CO 2 and manual welding. Preheating temperature is also high in welding
In order to have the property that 50 ° C. or less, P CM is less 0.22%.

【0016】次に、Nbの炭窒化物およびフェライトの限
定理由について説明する。高強度と低降伏比を確保する
方法として従来のQ−Q’−T法による低降伏比型高張
力鋼板のように、強度はミクロ組織を硬質相であるマル
テンサイトやベイナイト主体の組織とすることによる変
態強化および合金元素添加による固溶強化により強度を
確保し、低降伏比は軟質相であるフェライトを混在させ
ることにより確保する必要がある。また、ミクロ組織を
マルテンサイト、ベイナイト、フェライトの混合組織と
することは、組織を微細化することにもなり、優れた靱
性を確保する点でも極めて有効な手段ともなる。しかし
ながら、PCMが0.22%以下という化学成分範囲での固溶
強化はあまり期待できず、引張強度590N/mm2以上の高強
度を確保できない。従って、さらなる強度上昇の手段と
してPCMに影響を与えない元素であるNbの析出強化の活
用を試みた。
Next, the reasons for limiting the Nb carbonitride and ferrite will be described. As a method for securing high strength and low yield ratio, as in the low yield ratio type high tensile strength steel sheet by the conventional QQ'-T method, the strength is changed to a structure mainly composed of martensite or bainite which is a hard phase. Therefore, it is necessary to secure strength by transformation strengthening and solid solution strengthening by alloying element addition, and to secure a low yield ratio by mixing ferrite which is a soft phase. Making the microstructure a mixed structure of martensite, bainite, and ferrite also makes the structure finer and is an extremely effective means in terms of securing excellent toughness. However, P CM solid solution strengthening of the chemical composition range of 0.22% or less can not be expected so much, can not be ensured tensile strength 590N / mm 2 or more high strength. Thus, attempts to utilize precipitation strengthening of Nb is an element that does not affect the P CM as a means of further increasing strength.

【0017】実験方法としては、表1に示す化学成分を
有する鋼を、板厚60mmに熱間圧延し、種々の熱処理を施
し引張特性およびミクロ組織を調査した。圧延および熱
処理条件を表2に示す。なお、適用した熱処理は二相域
熱処理であるQ’を含む従来のQ−Q’−T法および加
速冷却(AcC)法を利用したAcC−Q’−T法であ
り、概略を図1に示す。引張特性およびミクロ組織の調
査結果を図2に示す。
As an experimental method, steel having the chemical components shown in Table 1 was hot-rolled to a thickness of 60 mm, subjected to various heat treatments, and investigated for tensile properties and microstructure. Table 2 shows the rolling and heat treatment conditions. The applied heat treatment is a conventional QQ'-T method including Q 'which is a two-phase region heat treatment and an AcC-Q'-T method using an accelerated cooling (AcC) method. Show. FIG. 2 shows the results of examination of the tensile properties and microstructure.

【0018】ここで、Q:Ac3点以上の温度からの再加
熱焼入れ、 AcC:オンラインで圧延終了後直ちに、 450℃まで水
冷、水量密度:0.3m3/m2・分、 Q’:二相域温度(Ac1点以上Ac3点未満)からの再加
熱焼入れ、 T:Ac1点未満の温度からの焼戻しである。
Here, Q: reheating and quenching from a temperature of 3 or more Ac; AcC: immediately after rolling online, water cooling to 450 ° C .; water density: 0.3 m 3 / m 2 · min; Q ': two Reheating and quenching from the phase region temperature (Ac 1 point or more and less than Ac 3 points), T: Tempering from a temperature below Ac 1 point.

【0019】[0019]

【表1】 [Table 1]

【0020】[0020]

【表2】 [Table 2]

【0021】図2より、いずれの熱処理を適用した場合
でも、フェライトを体積分率で 2%以上含有しているこ
とにより降伏比80%以下を満足している。しかし、強度
についてはAcC−Q’−T法を適用した場合にのみ59
0N/mm2以上の高強度が確保可能となる。これは、図2に
示しているように、粒子径が50nm以下、好ましくは20nm
以下の微細で母格子と整合なNb炭窒化物による析出強化
のためである。もっとも、Q−Q’−T法を適用した場
合でもNb炭窒化物の析出が見られるものの、これらは圧
延後の空冷時および焼入れ時の加熱過程において析出し
たものであり、粒子径が50nm以上に粗大化し、整合性も
くずれて非整合であるため、析出強化に寄与しない。そ
れ故、Q−Q’−T法では590N/mm2以上の高強度を確保
することができない。
FIG. 2 shows that the yield ratio of 80% or less is satisfied in any of the heat treatments by containing ferrite in a volume fraction of 2% or more. However, the strength was determined only when the AcC-Q'-T method was applied.
High strength of 0 N / mm 2 or more can be secured. This is because, as shown in FIG. 2, the particle size is 50 nm or less, preferably 20 nm
This is for the purpose of strengthening precipitation by the following fine Nb carbonitride that is consistent with the mother lattice. However, even when the QQ'-T method was applied, precipitation of Nb carbonitride was observed, but these were precipitated during the air cooling after rolling and the heating process during quenching, and the particle diameter was 50 nm or more. Since it becomes coarse and loses consistency and is inconsistent, it does not contribute to precipitation strengthening. Therefore, high strength of 590 N / mm 2 or more cannot be secured by the QQ′-T method.

【0022】また、ボックス柱のサブマージアーク溶接
による角継手のような大入熱溶接では、母材と組織が変
化すること、冷却が遅いため結晶粒が成長することによ
り、母材よりも継手強度が低下する問題がある。これに
対してもNbの析出強化が有効である。すなわち、溶接に
は、複数パスによる多層盛溶接と入熱を非常に大きくし
た1パスだけの1ラン溶接とがある。多層盛溶接の場
合、Nbの固溶温度以上に熱せられるボンド部とその近傍
では、Nbの析出物は再固溶する。しかし、次パスにより
析出温度まで熱せられるため再び析出し、結果としてNb
の析出強化のため母材とほぼ同程度の強度が得られる。
1ラン溶接の場合、Nbの固溶温度以上に熱せられるボン
ド部とその近傍では、Nbの析出物は再固溶する。この場
合は次パスがないためこの部分の強度は低下する。しか
しながら、溶接熱影響部の大部分はNbの固溶温度以下に
しか熱せられることはなく、この部分はNb析出物のため
粒成長が抑制され強度低下が少ない。その結果として、
大入熱溶接継手も母材とほぼ同程度の強度が得られる。
Also, in the case of large heat input welding such as a square joint formed by submerged arc welding of a box column, the joint strength is lower than that of the base metal because the base material and the structure change and crystal grains grow due to slow cooling. There is a problem that decreases. To this end, precipitation strengthening of Nb is effective. That is, the welding includes multi-pass welding with multiple passes and one-run welding with only one pass in which the heat input is very large. In the case of multi-pass welding, Nb precipitates are re-dissolved in and near the bond portion heated to the solid solution temperature of Nb or higher. However, because it is heated to the deposition temperature by the next pass, it precipitates again, resulting in Nb
Approximately the same strength as the base material can be obtained due to precipitation strengthening of the base material.
In the case of one-run welding, the Nb precipitates re-dissolve in the vicinity of the bond portion heated to a temperature equal to or higher than the solid solution temperature of Nb. In this case, since there is no next pass, the strength of this portion decreases. However, most of the weld heat affected zone is heated only below the solid solution temperature of Nb, and since this portion is Nb precipitates, grain growth is suppressed and the strength does not decrease much. As a result,
The large heat input welded joint can also obtain almost the same strength as the base metal.

【0023】次に、Nb量と機械的性質との関係を調査す
るためNb量を変化させ、上記と同様に板厚60mmに熱間圧
延し、AcC−Q’−T熱処理を施した。Q’温度は、
図2において強度が最も高い 760℃とした。図3に粒子
径が50nm以下の微細なNb炭窒化物の体積分率と引張特
性、靱性(vE0: 0℃でのシャルピ試験における吸収エネ
ルギー) との関係を示す。
Next, in order to investigate the relationship between the amount of Nb and the mechanical properties, the amount of Nb was changed, and the sheet was hot-rolled to a thickness of 60 mm and heat-treated with AcC-Q'-T in the same manner as described above. Q 'temperature is
In FIG. 2, the highest strength was set at 760 ° C. FIG. 3 shows the relationship between the volume fraction of fine Nb carbonitride having a particle diameter of 50 nm or less, tensile properties, and toughness (absorbed energy in a Charpy test at vE 0 : 0 ° C.).

【0024】図3より、590N/mm2以上の引張強度を確保
するためには、Nb炭窒化物の量は体積分率で0.01%以上
必要であり、また 50J以上の vE0 を確保するために
は、Nb炭窒化物の量は体積分率で0.6 %以下とする必要
があることが分かる。
According to FIG. 3, in order to secure a tensile strength of 590 N / mm 2 or more, the amount of Nb carbonitride needs to be 0.01% or more in volume fraction, and in order to secure vE 0 of 50 J or more. It can be seen that the amount of Nb carbonitride needs to be 0.6% or less in volume fraction.

【0025】従って、本発明では、析出強化に有効な粒
子径が50nm以下の微細で母格子と整合なNb炭窒化物を体
積分率で0.01〜0.6 %確保し、マルテンサイト、ベイナ
イト主体のミクロ組織中にフェライトを体積分率で 2%
以上確保しなければならない。
Therefore, according to the present invention, 0.01 to 0.6% by volume fraction of Nb carbonitride, which is effective for precipitation strengthening and has a particle diameter of 50 nm or less and is consistent with the parent lattice, is secured, and the microstructure mainly composed of martensite and bainite is obtained. 2% ferrite in volume fraction
More than that.

【0026】次に、製造方法の限定理由について説明す
る。本発明者らは、表3に示す化学成分を有する鋼を、
板厚60mmに熱間圧延し、種々の熱処理を施し、強度、降
伏比に及ぼす製造方法の影響を調査した。表3の化学成
分は従来のQ−Q’−T法によるPCMが高い低降伏比型
高張力鋼板の化学成分である。また、圧延および熱処理
条件を表4に示す。なお、適用した熱処理は従来の590N
/mm2級鋼板に適用されているQ−T法、二相域熱処理で
あるQ’を含む従来のQ−Q’−T法および加速冷却
(AcC)法、直接焼入れ(DQ)法を利用したAcC
−Q’−T法、AcC−N’−T法、DQ−Q’−T
法、DQ−N’−T法であり、概略を図4に示す。引張
特性の調査結果を図5に示す。
Next, the reasons for limiting the manufacturing method will be described. The present inventors have made steel having the chemical components shown in Table 3 into:
Hot rolling was performed to a thickness of 60 mm, various heat treatments were performed, and the influence of the manufacturing method on strength and yield ratio was investigated. Chemical composition of Table 3 is the chemical component of low yield ratio type high tensile steel has high P CM by the conventional Q-Q'-T method. Table 4 shows the rolling and heat treatment conditions. The applied heat treatment is the same as the conventional 590N
/ mm The QT method applied to grade 2 steel sheet, the conventional QQ'-T method including Q 'which is a dual-phase heat treatment, accelerated cooling (AcC) method, and direct quenching (DQ) method are used. AcC
-Q'-T method, AcC-N'-T method, DQ-Q'-T method
The DQ-N'-T method is shown schematically in FIG. FIG. 5 shows the results of the investigation on the tensile properties.

【0027】ここで、Q:Ac3点以上の温度からの再加
熱焼入れ、 AcC:オンラインで圧延終了後直ちに、 450℃まで水
冷、水量密度:0.3m3/m2・分、 DQ:オンラインで圧延終了後直ちに水冷し、室温まで
冷却、 Q’:二相域温度(Ac1点以上Ac3点未満)からの再加
熱焼入れ、 N’:二相域温度(Ac1点以上Ac3点未満)からの再加
熱焼きならし、 T:Ac1点未満の温度からの焼戻しである。
Here, Q: reheating and quenching from a temperature of 3 or more Ac, AcC: immediately after the end of rolling online, water cooling to 450 ° C., water density: 0.3 m 3 / m 2 · min, DQ: online Immediately after rolling, water-cooled and cooled to room temperature. Q ': Reheating and quenching from two-phase region temperature (Ac 1 point or more and less than Ac 3 points). N': Two-phase region temperature (Ac 1 point or more and less than Ac 3 points.) )), T: Ac tempering from a temperature of less than 1 point.

【0028】[0028]

【表3】 [Table 3]

【0029】[0029]

【表4】 [Table 4]

【0030】図5より、従来のQ−T法では、降伏比は
90%以上であるのに比べ、二相域熱処理を含む他の5種
類の方法では、いずれも80%以下の低降伏比が得られる
こと、これらの5種類の熱処理法の中でも加速冷却(A
cC)法、直接焼入れ(DQ)法を利用したAcC−
Q’−T法、AcC−N’−T法、DQ−Q’−T法、
DQ−N’−T法の場合の方がQ−Q’−T法の場合よ
りも高強度が得られていることがわかる。
As shown in FIG. 5, in the conventional QT method, the yield ratio is
Compared to 90% or more, the other five methods including the two-phase heat treatment can obtain a low yield ratio of 80% or less, and among these five heat treatment methods, accelerated cooling (A
AcC- using the cC) method and the direct quenching (DQ) method
Q'-T method, AcC-N'-T method, DQ-Q'-T method,
It can be seen that higher strength is obtained in the case of the DQ-N'-T method than in the case of the QQ'-T method.

【0031】この理由は、前述した粒子径が50nm以下の
微細で母格子と整合なNb炭窒化物による析出強化のため
である。もっとも、Q−Q’−T法を適用した場合でも
Nb炭窒化物の析出が見られるものの、これらは圧延後の
空冷時および焼入れ時の加熱過程において析出したもの
であり、粗大化し、整合性もくずれて非整合であるた
め、析出強化に寄与しない。それ故、Q−Q’−T法で
は590N/mm2以上の高強度を確保することができない。
The reason for this is that precipitation is strengthened by Nb carbonitride, which is fine and has a particle diameter of 50 nm or less and is consistent with the parent lattice. However, even when the QQ'-T method is applied,
Although precipitation of Nb carbonitride is observed, these precipitate during the heating process during air cooling after quenching and during quenching, and do not contribute to precipitation strengthening because they are coarse, lose consistency and are inconsistent. . Therefore, high strength of 590 N / mm 2 or more cannot be secured by the QQ′-T method.

【0032】このように、加速冷却(AcC)法、直接
焼入れ(DQ)法を利用したAcC−Q’−T法、Ac
C−N’−T法、DQ−Q’−T法、DQ−N’−T法
は低降伏比を確保しながら高強度化する上で非常に有効
な方法である。しかしこれはあくまで、Nbを含有する場
合にのみ限られるのは言うまでもない。
As described above, the AcC-Q'-T method utilizing the accelerated cooling (AcC) method, the direct quenching (DQ) method,
The CN'-T method, the DQ-Q'-T method, and the DQ-N'-T method are very effective methods for increasing the strength while securing a low yield ratio. However, it goes without saying that this is limited only to the case where Nb is contained.

【0033】以上の新知見を活用することにより、本発
明者らは590N/mm2級以上の低降伏比型高張力鋼板の耐溶
接割れ性の改善を試みた。表5に示すように、PCMを従
来のQ−Q’−T法による低降伏比型590N/mm2鋼板の0.
23%から0.20%にまで低減した鋼に、表4と同様の条件
でAcC−Q’−T法、AcC−N’−T法、DQ−
Q’−T法、DQ−N’−T法およびQ−Q’−T法を
適用した。その引張特性を表5に併記する。
By utilizing the above-mentioned new knowledge, the present inventors have attempted to improve the weld crack resistance of a high yield strength type steel sheet having a low yield ratio of 590 N / mm 2 or more. As shown in Table 5, 0 low yield ratio 590N / mm 2 steel plate P CM by the conventional Q-Q'-T method.
On the steel reduced from 23% to 0.20%, under the same conditions as in Table 4, the AcC-Q'-T method, the AcC-N'-T method, and the DQ-
The Q′-T method, DQ-N′-T method and QQ′-T method were applied. Table 5 also shows the tensile properties.

【0034】[0034]

【表5】 [Table 5]

【0035】表5から明らかなようにAcC−Q’−T
法、AcC−N’−T法、DQ−Q’−T法、DQ−
N’−T法の場合は、低いPCMであるにもかかわらず59
0N/mm2以上の十分な強度が得られている。一方、Q−
Q’−T法の場合はPCMが低いため十分な強度を確保で
きなかった。以上の理由から、本発明においては製造方
法として、AcC−Q’−T法、AcC−N’−T法、
DQ−Q’−T法、DQ−N’−T法に限定する。
As is clear from Table 5, AcC-Q'-T
Method, AcC-N'-T method, DQ-Q'-T method, DQ-
In the case of the N'-T method, a low P CM despite 59
A sufficient strength of 0 N / mm 2 or more is obtained. On the other hand, Q-
In the case of Q'-T method it was not able to secure a sufficient strength due to the low P CM. For the above reasons, in the present invention, the AcC-Q′-T method, the AcC-N′-T method,
The method is limited to the DQ-Q'-T method and the DQ-N'-T method.

【0036】次に、上記熱処理および加熱・圧延におけ
る温度範囲の限定理由について説明する。鋼片の加熱温
度は1000℃以上とする。この理由は、Nbを完全に固溶さ
せるためおよび後ほど説明するが優れた音響異方性を確
保するため、圧延終了温度を 875℃以上とする必要があ
るためである。しかし、1250℃を超えるとオーステナイ
ト粒が著しく粗大化するため上限を1250℃とする。
Next, the reason for limiting the temperature range in the heat treatment and the heating / rolling will be described. The heating temperature of the billet is 1000 ° C or more. The reason for this is that the rolling end temperature must be 875 ° C. or higher in order to completely dissolve Nb and to secure excellent acoustic anisotropy as described later. However, when the temperature exceeds 1250 ° C., the austenite grains become extremely coarse, so the upper limit is set to 1250 ° C.

【0037】圧延では、仕上温度を 875℃以上に限定す
る。この理由は、以下のとおりである。本発明の鋼板は
主として建築用鋼板を対象としている。建築用鋼板の場
合は超音波探傷における音響異方性が厳しく制限されて
いる。これは、溶接欠陥を超音波探傷する際、音響異方
性が大きいと欠陥を正確に把握することが困難であるか
らである。この音響異方性は圧延仕上温度と関係があ
り、仕上温度が低いほど大きくなる傾向がある。従っ
て、良好な音響異方性を確保するため仕上温度の下限を
875℃とする。
In rolling, the finishing temperature is limited to 875 ° C. or higher. The reason is as follows. The steel sheet of the present invention is mainly intended for a steel sheet for construction. In the case of building steel plates, acoustic anisotropy in ultrasonic flaw detection is severely restricted. This is because it is difficult to accurately grasp the defect if the acoustic anisotropy is large at the time of ultrasonic inspection for the welding defect. This acoustic anisotropy is related to the rolling finishing temperature, and tends to increase as the finishing temperature decreases. Therefore, in order to secure good acoustic anisotropy,
Set to 875 ° C.

【0038】圧延終了後、引き続き急冷を実施する。こ
の目的は、Nbを固溶状態のまま室温までもちきたすため
である。しかしながら、析出温度以下まで急冷すればNb
を固溶状態のまま室温までもちきたすことができるの
で、冷却は、途中で冷却を停止する加速冷却(AcC)
と直接焼入れ(DQ)のどちらを用いてもかまわない。
加速冷却の場合は、停止温度の上限は析出温度以下まで
冷却する必要があるため500℃とし、下限は冷却終了後
平坦度向上を目的とした矯正を十分実施できるように 4
00℃とする。また、急冷のための水量密度は0.3m3/m2
分以上とする。
After the completion of the rolling, rapid cooling is performed. The purpose is to bring Nb to room temperature in a solid solution state. However, if quenched below the precipitation temperature, Nb
Can be brought to room temperature in a solid solution state, so that cooling is stopped halfway through accelerated cooling (AcC).
And direct quenching (DQ) may be used.
In the case of accelerated cooling, the upper limit of the stop temperature is set to 500 ° C because it is necessary to cool down to the deposition temperature or less, and the lower limit is set so that straightening for the purpose of improving flatness can be sufficiently performed after cooling is completed.
Set to 00 ° C. The water density for quenching is 0.3m 3 / m 2
Minutes or more.

【0039】次に、オフラインでAc1点+25℃〜Ac1
+100 ℃に再加熱し水冷(Q’)または空冷(N’)す
る二相域熱処理を実施する。これは、圧延後の急冷によ
って生成したマルテンサイトとベイナイトの硬質相の中
に、軟質相であるフェライトを生成させ、降伏比を80%
以下に低減するためである。そのため、加熱温度はオー
ステナイトとフェライトの二相域にする必要がある。図
6に、表5に示す化学成分からなる鋼に、表4と同様の
条件でAcC−Q’−T法およびAcC−N’−T法を
適用し、Q’およびN’温度を変化させた場合のQ’お
よびN’温度と引張強度との関係を示す。
[0039] Next, a offline Ac 1 point + 25 ° C. to Ac 1 point +100 ° C. in reheated water cooling (Q ') or air (N') to the two-phase zone heat treatment. This produces ferrite, which is a soft phase, in the hard phase of martensite and bainite generated by rapid cooling after rolling, and reduces the yield ratio to 80%.
This is to reduce the amount below. Therefore, the heating temperature needs to be in the two-phase region of austenite and ferrite. In FIG. 6, the AcC-Q′-T method and the AcC-N′-T method were applied to steel having the chemical components shown in Table 5 under the same conditions as in Table 4 to change the Q ′ and N ′ temperatures. The relationship between the Q 'and N' temperatures and the tensile strength in the case of the above is shown.

【0040】図6より、Ac1点+100 ℃より高い温度で
は急激に引張強度が低下しており、590N/mm2以上の引張
強度を確保できないことが分かる。この理由は、一般に
Nbの拡散はフェライトの高温域では非常に速くなると言
われており、このため、Ac1点+100 ℃より高い温度の
時、逆変態していない部分においては、Nbの析出および
析出物の成長が急激に起こり整合性が崩れ非整合となり
析出強化に寄与しなくなるためと考えられる。従って、
Q’およびN’温度の上限はAc1点+100 ℃とする。下
限は実操業上加熱炉の温度のばらつき(約±20℃)を考
慮してAc1点+25℃とする。
FIG. 6 shows that at a temperature higher than the Ac 1 point + 100 ° C., the tensile strength sharply decreases, and a tensile strength of 590 N / mm 2 or more cannot be secured. The reason for this is generally
It is said that the diffusion of Nb becomes very fast in the high temperature region of ferrite. Therefore, when the temperature is higher than the single point of Ac + 100 ° C, the precipitation of Nb and the growth of the precipitate in the portion where reverse transformation is not performed. It is considered that this occurs suddenly, the consistency is lost, the material becomes inconsistent, and does not contribute to precipitation strengthening. Therefore,
The upper limit of the Q 'and N' temperatures is set to 1 point of Ac + 100 ° C. The lower limit is set to Ac 1 point + 25 ° C in consideration of the temperature variation (about ± 20 ° C) of the heating furnace in actual operation.

【0041】Nb析出物による強化機構は、析出物が転移
の運動の障害となるためである。析出物は母相との関係
により図7(a) に示すような整合析出物と(b) に示すよ
うな非整合析出物とに分けられる。整合析出物の場合
は、格子定数の違う母相と析出相とが整合性を保つため
に歪場を生じる。この整合歪みのために運動がさらに妨
げられることになり、整合析出物が析出強化に寄与する
のである。
The mechanism of strengthening by Nb precipitates is because the precipitates hinder the movement of the transition. The precipitates are classified into a coherent precipitate as shown in FIG. 7A and a non-coherent precipitate as shown in FIG. In the case of a coherent precipitate, a strain field is generated in order to maintain coherence between the mother phase having a different lattice constant and the precipitating phase. The motion is further hindered by the coherent strain, and coherent precipitates contribute to precipitation strengthening.

【0042】次に、 500〜650 ℃に再加熱し空冷するNb
炭窒化物の析出処理を実施する。これは、析出強化のた
めに微細で母格子に整合なNb炭窒化物を析出させるため
である。また、Q’、N’熱処理時にオーステナイトに
逆変態した部分がその後の冷却によりマルテンサイトや
ベイナイト等に変態しているため、この部分の靱性の改
善も兼ねている。析出処理の加熱温度の上限は、あまり
高温にするとNb析出物の粗大化による強度低下を招くた
め、 650℃とする。下限は析出温度の下限である 500℃
とする。
Next, Nb is reheated to 500 to 650 ° C. and air-cooled.
A carbonitride precipitation treatment is performed. This is for precipitating Nb carbonitride which is fine and conforms to the matrix for precipitation strengthening. In addition, since the portion that has been transformed back into austenite during the Q ′ and N ′ heat treatments has been transformed into martensite, bainite, etc. by subsequent cooling, it also serves to improve the toughness of this portion. The upper limit of the heating temperature in the precipitation treatment is set to 650 ° C., because if the temperature is too high, the strength of the Nb precipitates is reduced due to coarsening. The lower limit is the lower limit of the deposition temperature, 500 ℃
And

【0043】最後に、本発明における化学成分の限定理
由について説明する。C は高張力鋼板としての強度を確
保するために必要な元素であるが、含有量が0.05%未満
では引張強さ590N/mm2以上の強度が得がたく、また、0.
15%を超えて添加すると耐溶接割れ性を劣化させるので
好ましくない。したがって、C 含有量は0.05〜0.15%の
範囲とする。
Finally, the reasons for limiting the chemical components in the present invention will be described. C is an element necessary for securing the strength as a high-tensile steel sheet, but if the content is less than 0.05%, it is difficult to obtain a tensile strength of 590 N / mm 2 or more.
Addition of more than 15% is not preferable because it deteriorates weld cracking resistance. Therefore, the C content is in the range of 0.05 to 0.15%.

【0044】Siは脱酸に必要な元素であるが、含有量が
0.05%未満ではこの効果は少なく、また、0.50%を超え
て過多に添加すると、溶接性、靱性を劣化させるので好
ましくない。したがって、Si含有量は0.05〜0.50%の範
囲とする。
Although Si is an element necessary for deoxidation, its content is
If it is less than 0.05%, this effect is small, and if it is more than 0.50%, the weldability and toughness are undesirably deteriorated. Therefore, the Si content is in the range of 0.05 to 0.50%.

【0045】Mnは鋼の焼入れ性を向上し、強度を確保す
るために必要な元素であり、このような効果を得るため
には、0.30%以上の添加が必要である。しかし、1.80%
を超えて過剰に添加すると、靱性、溶接性を劣化させ
る。したがって、Mn含有量は0.30〜1.80%の範囲とす
る。
Mn is an element necessary for improving the hardenability of the steel and ensuring the strength, and in order to obtain such an effect, it is necessary to add 0.30% or more. But 1.80%
If it is added excessively in excess of, the toughness and weldability deteriorate. Therefore, the Mn content is in the range of 0.30 to 1.80%.

【0046】P は靱性や溶接性を損ない、溶接時の高温
割れ発生の原因ともなる。したがって、P 含有量は0.01
5 %以下とする。
P impairs toughness and weldability, and causes hot cracking during welding. Therefore, the P content is 0.01
5% or less.

【0047】S はMnとMnS という形態の介在物を形成
し、圧延によって伸展して曲げ加工性および靱性を劣化
させる。したがって、S 含有量は0.015 %以下とする。
S forms inclusions in the form of Mn and MnS, and expands by rolling to deteriorate bending workability and toughness. Therefore, the S content is limited to 0.015% or less.

【0048】Alは脱酸元素であるが、 0.005%未満では
そのような効果は少なく、また、0.10%を超えて添加す
ると、靱性の劣化をもたらす。したがって、Al含有量は
0.005〜0.10%の範囲とする。
Al is a deoxidizing element. However, if it is less than 0.005%, such an effect is small, and if it exceeds 0.10%, toughness is deteriorated. Therefore, the Al content is
The range is 0.005 to 0.10%.

【0049】Nbは炭窒化物の析出により強度の上昇およ
び組織の微細化に有効であり、特に本発明では前述のよ
うに、このNbの炭窒化物の析出強化を利用している。こ
のような効果を得るためには、 0.005%以上の添加が必
要である。しかし、0.100 %を超えて添加すると靱性お
よび溶接性を劣化させる。したがって、Nb含有量は 0.0
05〜0.100 %の範囲とする。
Nb is effective for increasing strength and miniaturizing the structure by precipitation of carbonitride. In particular, the present invention utilizes the strengthening of precipitation of carbonitride of Nb as described above. In order to obtain such effects, 0.005% or more must be added. However, if added in excess of 0.100%, toughness and weldability deteriorate. Therefore, the Nb content is 0.0
The range is from 05 to 0.100%.

【0050】この他に、Cu、Ni、Cr、Mo、V 、Ca、B 、
TiおよびREM を板厚、目標靱性レベルに応じて1種また
は2種以上添加するものとする。
In addition, Cu, Ni, Cr, Mo, V, Ca, B,
One or two or more of Ti and REM are added according to the sheet thickness and the target toughness level.

【0051】Cuは焼入れ性の向上および固溶強化、析出
強化による強度上昇に有効な元素であるが、含有量が0.
01%未満ではこのような効果は十分に発揮されず、ま
た、0.50%を超えて過剰に添加すると熱間加工性、靱性
および溶接性を劣化させる。したがって、Cu含有量は0.
01〜0.50%の範囲とする。
Cu is an element effective for improving the hardenability and increasing the strength by solid solution strengthening and precipitation strengthening.
If it is less than 01%, such effects are not sufficiently exhibited, and if it exceeds 0.50%, hot workability, toughness and weldability are deteriorated. Therefore, the Cu content is 0.
The range is from 01 to 0.50%.

【0052】Niは焼入れ性の確保と積層欠陥エネルギー
の上昇による靱性向上に有効な元素であるが、含有量が
0.05%未満ではそのような効果は十分に発揮されず、ま
た、2.00%を超えて過剰に添加するとコストアップとな
る。したがって、Ni含有量は0.05〜2.00%の範囲とす
る。
Ni is an element effective for securing hardenability and improving toughness due to an increase in stacking fault energy.
If it is less than 0.05%, such an effect is not sufficiently exerted, and if it exceeds 2.00%, the cost increases if it is added excessively. Therefore, the Ni content is in the range of 0.05 to 2.00%.

【0053】Crは強度上昇に有効な元素であるが、含有
量が0.05%未満ではこのような効果は十分に発揮され
ず、また、1.00%を超えて過剰に添加すると溶接性を劣
化させる。したがって、Cr含有量は0.05〜1.00%の範囲
とする。
Cr is an element effective for increasing the strength. However, if the content is less than 0.05%, such an effect is not sufficiently exerted, and if it exceeds 1.00%, the weldability is deteriorated. Therefore, the Cr content is in the range of 0.05 to 1.00%.

【0054】Moは強度上昇と焼戻し軟化防止に有効な元
素であるが、含有量が0.05%未満では十分な効果が得ら
れず、また、1.00%を超えて過剰に添加すると、溶接性
を劣化させ、コストアップにもなる。したがって、Mo含
有量は0.05〜1.00%の範囲とする。
Mo is an element effective in increasing the strength and preventing temper softening. However, if the content is less than 0.05%, a sufficient effect cannot be obtained, and if it exceeds 1.00%, the weldability deteriorates. And increase costs. Therefore, the Mo content is in the range of 0.05 to 1.00%.

【0055】V は強度上昇と焼戻し軟化防止に有効な元
素であるが、含有量が 0.005%未満ではその効果は十分
に発揮されず、また、 0.070%を超えて過剰に添加する
と靱性と溶接性を劣化させる。したがって、V 含有量は
0.005〜0.070 %の範囲とする。
V is an element effective for increasing strength and preventing temper softening. However, if its content is less than 0.005%, its effect is not sufficiently exhibited, and if it exceeds 0.070%, its toughness and weldability are excessively increased. Deteriorates. Therefore, the V content is
The range is 0.005 to 0.070%.

【0056】Caは非金属介在物の球状化作用を有し、曲
げ加工性および靱性の向上に有効な元素であるが、含有
量が0.0005%未満ではその十分な効果が得られず、ま
た、0.010 %を超えて添加すると球状化には過剰の添加
となり、余ったCaが介在物となって靱性を劣化させる。
したがって、Ca含有量は0.0005〜0.010 %の範囲とす
る。
Ca has an effect of spheroidizing nonmetallic inclusions and is an effective element for improving bending workability and toughness. However, if its content is less than 0.0005%, its sufficient effect cannot be obtained. If added in excess of 0.010%, excessive spheroidization is added, and the excess Ca becomes inclusions and deteriorates toughness.
Therefore, the Ca content is in the range of 0.0005 to 0.010%.

【0057】B は微量の添加で焼入れ性を高め強度の上
昇に有効な元素であるが、含有量が0.0003%未満ではそ
の効果は十分に得られず、また、0.0030%を超えて過剰
に添加すると靱性を劣化させる。したがって、B 含有量
は0.0003〜0.0030%の範囲とする。
B is an element effective for increasing the hardenability and increasing the strength by adding a small amount. However, if the content is less than 0.0003%, the effect cannot be sufficiently obtained. Then, the toughness is deteriorated. Therefore, the B content is in the range of 0.0003 to 0.0030%.

【0058】Tiはオーステナイト結晶粒の粒成長抑制に
より細粒化に有効な元素であるが、このような効果を得
るためには 0.005%以上の添加が必要である。しかし、
0.025%を超えて過剰に添加すると靱性を劣化させる。
したがって、Ti含有量は 0.005〜0.025 %の範囲とす
る。
Ti is an element effective for grain refinement by suppressing grain growth of austenite crystal grains, but in order to obtain such an effect, it is necessary to add 0.005% or more. But,
Excessive addition exceeding 0.025% deteriorates toughness.
Therefore, the Ti content is in the range of 0.005 to 0.025%.

【0059】REM は介在物の形態制御作用があり、曲げ
加工性、靱性および板厚方向の延性改善に有効な元素で
あるが、含有量が 0.001%未満ではその効果が十分に発
揮されず、また、 0.010%を超えて過剰に添加すると靱
性を劣化させる。したがって、REM 含有量は 0.001〜0.
010 %の範囲とする。
REM has an effect of controlling the morphology of inclusions and is an effective element for improving bending workability, toughness and ductility in the thickness direction. However, if the content is less than 0.001%, the effect is not sufficiently exhibited. Further, if added in excess of 0.010%, the toughness is deteriorated. Therefore, the REM content is 0.001--0.
The range is 010%.

【0060】[0060]

【実施例】以下に、本発明に係わる耐溶接われ性に優れ
た引張強度590N/mm2以上の低降伏比型高張力鋼板の実施
例について説明するが、本発明は本実施例のみに限定さ
れるものではない。
EXAMPLES Hereinafter, examples of a high yield strength type high strength steel sheet having a tensile strength of 590 N / mm 2 or more according to the present invention and having excellent weld resistance will be described, but the present invention is limited to only this example. It is not something to be done.

【0061】実施例1 供試鋼板は表6に示す化学成分を有する鋼片を、表7に
示す板厚15〜100mm の鋼板に圧延した後、種々の熱処理
を施したものである。これらの鋼板から試験片を採取
し、母材の引張強度、耐溶接割れ性およびミクロ組織調
査を行った。その結果を表7に示す。なお、耐溶接割れ
性はJIS Z 3158 y型溶接割れ試験によって判定した。
Example 1 A test steel sheet was prepared by rolling a steel slab having the chemical composition shown in Table 6 into a steel sheet having a thickness of 15 to 100 mm shown in Table 7, and then performing various heat treatments. Specimens were collected from these steel sheets, and the tensile strength, weld crack resistance and microstructure of the base metal were investigated. Table 7 shows the results. The welding crack resistance was determined by a JIS Z 3158 y-type welding crack test.

【0062】表7から明らかなように、本発明の鋼種A
〜Iは、いずれも590N/mm2以上の引張強度と80%以下の
降伏比であるとともに、被覆アーク溶接によるy型溶接
割れ試験における割れ防止予熱温度が25℃以下という優
れた耐溶接割れ性を有している。
As is clear from Table 7, the steel type A of the present invention was used.
-I have a tensile strength of 590 N / mm 2 or more and a yield ratio of 80% or less, and have excellent weld cracking resistance with a crack prevention preheating temperature of 25 ° C or less in a y-type welding crack test by coated arc welding. have.

【0063】これに対して、比較例の鋼種J〜Rは、Nb
析出物の体積分率、フェライトの体積分率または化学成
分が本発明の限定範囲から外れているため、引張強度が
低いか、降伏比が高いかまたは耐溶接割れ性が劣ってい
る。すなわち、鋼種M、O、Qでは、微細で母格子に整
合なNbの炭窒化物量が体積分率で 0.1%に満たないた
め、引張強度が590N/mm2以下と強度不足であり、鋼種
J、K、Rでは、フェライトの体積分率が 2%未満のた
め、降伏比が80%以上と高くなっており、鋼種L、N、
Pでは、PCMが0.23%以上と高いため、割れ防止予熱温
度が75℃以上となり耐溶接割れ性が劣っている。
On the other hand, steel types J to R of the comparative examples
Since the volume fraction of the precipitate, the volume fraction of ferrite, or the chemical composition is out of the range of the present invention, the tensile strength is low, the yield ratio is high, or the weld crack resistance is poor. That is, in the steel types M, O, and Q, the amount of Nb carbonitride, which is fine and conforms to the matrix, is less than 0.1% in volume fraction, and the tensile strength is 590 N / mm 2 or less, and the strength is insufficient. , K, and R, the yield ratio is as high as 80% or more because the volume fraction of ferrite is less than 2%.
In P, because P CM is high 0.23% or more, cracking prevention preheating temperature is inferior becomes resistant weld crack resistance and 75 ° C. or higher.

【0064】[0064]

【表6】 [Table 6]

【0065】[0065]

【表7】 [Table 7]

【0066】実施例2 供試鋼板は表8に示す化学成分を有する鋼片を、表9に
示す製造方法で圧延した後、種々の熱処理を施し、板厚
15〜100mm の鋼板に仕上げたものである。これらの鋼板
から試験片を採取し、母材の引張強度および耐溶接割れ
性調査を行った。その結果を表9に併記した。なお、耐
溶接割れ性はJIS Z 3158 y型溶接割れ試験によって判
定した。
Example 2 As a test steel sheet, a slab having the chemical components shown in Table 8 was rolled by the manufacturing method shown in Table 9, and then subjected to various heat treatments to obtain a sheet thickness.
It is finished in a steel plate of 15 to 100 mm. Specimens were taken from these steel sheets, and the tensile strength and weld crack resistance of the base metal were investigated. The results are shown in Table 9. The welding crack resistance was determined by a JIS Z 3158 y-type welding crack test.

【0067】表9から明らかなように、本発明の鋼種A
〜Iは、いずれも590N/mm2以上の引張強度と80%以下の
降伏比であるとともに、被覆アーク溶接によるy型溶接
割れ試験における割れ防止予熱温度が25℃以下という優
れた耐溶接割れ性を有している。
As is clear from Table 9, the steel type A of the present invention
-I have a tensile strength of 590 N / mm 2 or more and a yield ratio of 80% or less, and have excellent weld cracking resistance with a crack prevention preheating temperature of 25 ° C or less in a y-type welding crack test by coated arc welding. have.

【0068】これに対して、比較例の鋼種J〜Rは、化
学成分は本発明の限定範囲内であるものの、製造方法が
限定範囲から外れているため、引張強度が低いか、降伏
比が高い。すなわち、鋼種Jは鋼片加熱温度が高いた
め、また、鋼種Kは冷却停止温度が高いため、引張強度
が590N/mm2以下と強度不足であり、鋼種L、Mは製造方
法が再加熱焼入れ(Q)であるた、Lは強度不足であ
り、Mは降伏比が高くなっており、鋼種NはQ’温度が
高いため、また、鋼種Oは、Nb炭窒化物析出処理温度が
低いため、いずれも強度不足であり、鋼種PはN’温度
が低いため、降伏比が高くなっており、鋼種Qは冷却時
の水量密度が小さいため、強度不足であり、鋼種RはNb
炭窒化物析出処理温度が高いため、強度不足である。
On the other hand, the steel types J to R of the comparative examples have a low tensile strength or a low yield ratio because the chemical composition is within the limited range of the present invention but the production method is out of the limited range. high. That is, since the steel type J has a high billet heating temperature, and the steel type K has a high cooling stop temperature, the tensile strength is 590 N / mm 2 or less and the strength is insufficient, and the steel types L and M are manufactured by reheating and quenching. (Q), L has insufficient strength, M has a high yield ratio, steel type N has a high Q ′ temperature, and steel type O has a low Nb carbonitride precipitation treatment temperature. , All have insufficient strength, the steel type P has a low N ′ temperature, so the yield ratio is high, and the steel type Q has a low water density during cooling, so the strength is insufficient, and the steel type R is Nb.
Since the carbonitride precipitation treatment temperature is high, the strength is insufficient.

【0069】[0069]

【表8】 [Table 8]

【0070】[0070]

【表9】 [Table 9]

【0071】[0071]

【発明の効果】以上述べたところから明らかなように、
本発明によれば、引張強度590N/mm2以上の降伏比80%以
下の低降伏比型高張力鋼板を得ることができ、かつ、従
来のQ−T法による高降伏比型高張力鋼板と同等以上の
優れた耐溶接割れ性を確保することができる。したがっ
て、本発明の耐溶接割れ性に優れた引張強度590N/mm2
上の低降伏比型高張力鋼板は、超高層、大スパンの建築
構造物に広く使用することができる。
As is apparent from the above description,
According to the present invention, it is possible to obtain a low-yield-ratio high-strength steel sheet having a tensile strength of 590 N / mm 2 or more and a yield ratio of 80% or less, and a high-yield-ratio high-tensile steel sheet by a conventional QT method. Excellent or equal welding crack resistance can be secured. Therefore, the low-yield-ratio high-strength steel sheet with excellent tensile strength of 590 N / mm 2 or more according to the present invention can be widely used for ultrahigh-rise, large-span building structures.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実験に用いた熱処理方法の概略図である。FIG. 1 is a schematic diagram of a heat treatment method used in an experiment.

【図2】Q’温度と50nm以下のNbの炭窒化物体積分率、
フェライト体積分率および引張特性との関係を示す図で
ある。
FIG. 2 Q 'temperature and carbonnitride volume fraction of Nb below 50 nm,
It is a figure which shows the relationship between a ferrite volume fraction and a tensile characteristic.

【図3】50nm以下のNbの炭窒化物体積分率と機械的性質
との関係を示す図である。
FIG. 3 is a diagram showing the relationship between the carbon nitride body volume fraction of Nb of 50 nm or less and mechanical properties.

【図4】実験に用いた熱処理方法の概略図である。FIG. 4 is a schematic diagram of a heat treatment method used in an experiment.

【図5】熱処理方法と引張特性との関係を示す図であ
る。
FIG. 5 is a diagram showing a relationship between a heat treatment method and tensile properties.

【図6】Q’およびN’温度と引張強度との関係を示す
図である。
FIG. 6 is a diagram showing a relationship between Q ′ and N ′ temperatures and tensile strength.

【図7】母相と析出相との関係を示す図で、(a) は整合
析出物を、(b) は非整合析出物を示す図である。
FIGS. 7A and 7B are diagrams showing a relationship between a parent phase and a precipitated phase, wherein FIG. 7A shows a coherent precipitate and FIG. 7B shows a non-coherent precipitate.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C22C 38/58 C22C 38/58 (56)参考文献 特開 平8−143950(JP,A) 特開 平5−171272(JP,A) 特開 平5−125481(JP,A) 特開 平2−205626(JP,A) 特開 昭63−24012(JP,A) 特許2687841(JP,B2) (58)調査した分野(Int.Cl.6,DB名) C22C 38/00 301 C21D 8/02 C22C 38/12 C22C 38/54 C22C 38/58 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification symbol FI C22C 38/58 C22C 38/58 (56) References JP-A-8-143950 (JP, A) JP-A-5-171272 (JP) , A) JP-A-5-125481 (JP, A) JP-A-2-205626 (JP, A) JP-A-63-24012 (JP, A) Patent 2687841 (JP, B2) (58) Int.Cl. 6 , DB name) C22C 38/00 301 C21D 8/02 C22C 38/12 C22C 38/54 C22C 38/58

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 質量%で、C:0.05〜0.15%、 Si:0.05〜
0.50%、 Mn:0.30〜1.80%、 P:0.015%以下、 S:0.005
%以下、Al:0.005〜0.10%、Nb:0.005〜0.100 %を含有
し、残部Feおよび不可避的不純物からなり、粒子径が50
nm以下のNbの炭窒化物を体積分率で0.01〜0.6 %および
フェライトを体積分率で 2%以上含有し、かつ下記式
で求まるPCMが0.22%以下であることを特徴とする耐溶
接割れ性に優れた引張強度590N/mm2以上の低降伏比型高
張力鋼板。 PCM=C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15+V/10+5 ×B (%) …
[Claim 1] In mass%, C: 0.05-0.15%, Si: 0.05-
0.50%, Mn: 0.30 to 1.80%, P: 0.015% or less, S: 0.005
% Or less, Al: 0.005 to 0.10%, Nb: 0.005 to 0.100%, the balance being Fe and unavoidable impurities, and having a particle size of 50%.
from 0.01 to 0.6% carbonitrides of nm or less Nb in volume fraction and ferrite containing more than 2% by volume fraction, and P CM which is obtained by the following formula is equal to or less than 0.22% resistance welding excellent tensile strength 590N / mm 2 or more low yield ratio type high tensile steel in crack resistance. P CM = C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15 + V / 10 + 5 × B (%)…
【請求項2】 質量%で、C:0.05〜0.15%、 Si:0.05〜
0.50%、 Mn:0.30〜1.80%、 P:0.015%以下、 S:0.005
%以下、Al:0.005〜0.10%、Nb:0.005〜0.100 %を含有
し、さらに Cu:0.05〜0.50%、 Ni:0.05〜2.00%、 Cr:
0.05〜1.00%、 Mo:0.05〜1.00%、 V:0.005〜0.070
%、B:0.0003〜0.0030%、 Ca:0.0005〜0.010 %、Ti:
0.005〜0.025 %、 REM:0.001〜0.010 %の内から選ん
だ1種または2種以上を含有し、残部Feおよび不可避的
不純物からなり、粒子径が50nm以下のNbの炭窒化物を体
積分率で0.01〜0.6 %およびフェライトを体積分率で 2
%以上含有し、かつ下記式で求まるPCMが0.22%以下
であることを特徴とする耐溶接割れ性に優れた引張強度
590N/mm2以上の低降伏比型高張力鋼板。 PCM=C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15+V/10+5 ×B (%) …
2. C: 0.05-0.15%, Si: 0.05-% by mass%
0.50%, Mn: 0.30 to 1.80%, P: 0.015% or less, S: 0.005
%, Al: 0.005 to 0.10%, Nb: 0.005 to 0.100%, Cu: 0.05 to 0.50%, Ni: 0.05 to 2.00%, Cr:
0.05-1.00%, Mo: 0.05-1.00%, V: 0.005-0.070
%, B: 0.0003-0.0030%, Ca: 0.0005-0.010%, Ti:
0.005 to 0.025%, REM: 0.001 to 0.010%, one or more selected from the group consisting of Fe and unavoidable impurities, with a volume fraction of Nb carbonitride with a particle size of 50 nm or less. 0.01 to 0.6% and ferrite in volume fraction 2
% Or more containing, and tensile calculated by the following formula P CM is excellent in resistance to weld cracking, characterized in that at most 0.22% strength
590N / mm 2 or more low yield ratio type high tensile steel. P CM = C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15 + V / 10 + 5 × B (%)…
【請求項3】 質量%で、C:0.05〜0.15%、 Si:0.05〜
0.50%、 Mn:0.30〜1.80%、 P:0.015%以下、 S:0.005
%以下、Al:0.005〜0.10%、Nb:0.005〜0.100 %を含有
し、かつ下記式で求まるPCMが0.22%以下で、残部Fe
および不可避的不純物からなる鋼片を、1000〜1250℃の
温度に加熱し、仕上温度が 875℃以上となるように熱間
圧延し、熱間圧延終了後水量密度が0.3m3/m2・分以上、
停止温度が 400〜500 ℃であるオンライン冷却を実施
し、その後オフラインでAc1点+25℃〜Ac1点+100 ℃
に再加熱し水冷または空冷する二相域熱処理および 500
〜650 ℃に再加熱し空冷するNb炭窒化物の析出処理を行
うことを特徴とする耐溶接割れ性に優れた引張強度590N
/mm2以上の低降伏比型高張力鋼板の製造方法。 PCM=C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15+V/10+5 ×B (%) …
3. The composition according to claim 1, wherein C: 0.05-0.15%, Si: 0.05-% by mass%.
0.50%, Mn: 0.30 to 1.80%, P: 0.015% or less, S: 0.005
% Or less, Al: 0.005 to 0.10%, Nb: containing 0.005 to 0.100%, and calculated P CM is below 0.22% by the following equation, the balance Fe
And a steel slab consisting of unavoidable impurities is heated to a temperature of 1000 to 1250 ° C, hot-rolled so that the finishing temperature is 875 ° C or higher, and after completion of hot rolling, the water density is 0.3 m 3 / m 2 More than a minute,
Conducted online cooling stop temperature is 400 to 500 ° C., then offline Ac 1 point + 25 ° C. to Ac 1 point +100 ° C.
Two-phase heat treatment with reheating and water or air cooling to 500 and 500
Tensile strength of 590N with excellent resistance to weld cracking, characterized by Nb carbonitride precipitation treatment of reheating to ~ 650 ° C and air cooling
/ mm 2 or more low yield ratio type high strength steel sheet manufacturing method. P CM = C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15 + V / 10 + 5 × B (%)…
【請求項4】 質量%で、C:0.05〜0.15%、 Si:0.05〜
0.50%、 Mn:0.30〜1.80%、 P:0.015%以下、 S:0.005
%以下、Al:0.005〜0.10%、Nb:0.005〜0.100 %を含有
し、さらに Cu:0.05〜0.50%、 Ni:0.05〜2.00%、 Cr:
0.05〜1.00%、 Mo:0.05〜1.00%、 V:0.005〜0.070
%、B:0.0003〜0.0030%、 Ca:0.0005〜0.010 %、Ti:
0.005〜0.025 %、 REM:0.001〜0.010 %の内から選ん
だ1種または2種以上を含有し、かつ下記式で求まる
CMが0.22%以下で、残部Feおよび不可避的不純物から
なる鋼片を、1000〜1250℃の温度に加熱し、仕上温度が
875℃以上となるように熱間圧延し、熱間圧延終了後水
量密度が0.3m3/m2・分以上、停止温度が 400〜500 ℃で
あるオンライン冷却を実施し、その後オフラインでAc1
点+25℃〜Ac1点+100 ℃に再加熱し水冷または空冷す
る二相域熱処理および500〜650 ℃に再加熱し空冷するN
b炭窒化物の析出処理を行うことを特徴とする耐溶接割
れ性に優れた引張強度590N/mm2以上の低降伏比型高張力
鋼板の製造方法。 PCM=C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15+V/10+5 ×B (%) …
4. In mass%, C: 0.05-0.15%, Si: 0.05-
0.50%, Mn: 0.30 to 1.80%, P: 0.015% or less, S: 0.005
%, Al: 0.005 to 0.10%, Nb: 0.005 to 0.100%, Cu: 0.05 to 0.50%, Ni: 0.05 to 2.00%, Cr:
0.05-1.00%, Mo: 0.05-1.00%, V: 0.005-0.070
%, B: 0.0003-0.0030%, Ca: 0.0005-0.010%, Ti:
0.005 to 0.025%, REM: containing 0.001 to 0.010% chose one or more but from among, and P CM is below 0.22% which is obtained by the following equation, the slab containing the balance of Fe and unavoidable impurities Heating to a temperature of 1000 ~ 1250 ℃, the finishing temperature
Hot rolling is performed at 875 ° C or higher, and after hot rolling is completed, on-line cooling is performed with a water density of 0.3 m 3 / m 2 min or more and a stop temperature of 400 to 500 ° C., and then offline Ac 1
Point + 25 ° C to Ac 1 point + 100 ° C, two phase heat treatment with water cooling or air cooling, and reheating to 500 to 650 ° C and air cooling N
(b) A method for producing a high-strength steel sheet having a low yield ratio and a tensile strength of 590 N / mm 2 or more, which is excellent in resistance to weld cracking, which is characterized by performing a carbonitride precipitation treatment. P CM = C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15 + V / 10 + 5 × B (%)…
【請求項5】 熱間圧延終了後、オンラインにて水量密
度が0.3m3/m2・分以上で室温まで冷却し、その後オフラ
インでAc1点+25℃〜Ac1点+100 ℃に再加熱し水冷ま
たは空冷する二相域熱処理および 500〜650 ℃に再加熱
し空冷するNb炭窒化物の析出処理を行う請求項3または
4記載の耐溶接割れ性に優れた引張強度590N/mm2以上の
低降伏比型高張力鋼板の製造方法。
5. After the end of hot rolling, water flow rate at online cooled to room temperature 0.3m 3 / m 2 · min or more, then reheated to Ac 1 point + 25 ° C. to Ac 1 point +100 ° C. offline 5. A tensile strength of 590 N / mm 2 or more excellent in welding crack resistance according to claim 3 or 4, wherein a two-phase heat treatment of water cooling or air cooling and a precipitation treatment of Nb carbonitride reheated to 500 to 650 ° C. and air cooled are performed. Manufacturing method of low yield ratio type high strength steel sheet.
JP1514195A 1995-02-01 1995-02-01 Low-yield-ratio high-strength steel sheet with excellent tensile strength of 590 N / mm2 or more and excellent weld cracking resistance and method for producing the same Expired - Lifetime JP2901890B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1514195A JP2901890B2 (en) 1995-02-01 1995-02-01 Low-yield-ratio high-strength steel sheet with excellent tensile strength of 590 N / mm2 or more and excellent weld cracking resistance and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1514195A JP2901890B2 (en) 1995-02-01 1995-02-01 Low-yield-ratio high-strength steel sheet with excellent tensile strength of 590 N / mm2 or more and excellent weld cracking resistance and method for producing the same

Publications (2)

Publication Number Publication Date
JPH08209294A JPH08209294A (en) 1996-08-13
JP2901890B2 true JP2901890B2 (en) 1999-06-07

Family

ID=11880544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1514195A Expired - Lifetime JP2901890B2 (en) 1995-02-01 1995-02-01 Low-yield-ratio high-strength steel sheet with excellent tensile strength of 590 N / mm2 or more and excellent weld cracking resistance and method for producing the same

Country Status (1)

Country Link
JP (1) JP2901890B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180155810A1 (en) * 2016-04-28 2018-06-07 Jiangyin Xingcheng Special Steel Works Co., Ltd Low-crack-sensitivity and low-yield-ratio ultra-thick steel plate and preparation method therefor

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104611525A (en) * 2015-02-06 2015-05-13 桂林理工大学 Heating method for refining 30# steel austenite grains
CN104611530A (en) * 2015-02-06 2015-05-13 桂林理工大学 Heating method for refining steel 40 austenite grains
CN115233108A (en) * 2022-08-12 2022-10-25 河北普阳钢铁有限公司 Q355NF steel plate for economical wind power tower cylinder and production method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180155810A1 (en) * 2016-04-28 2018-06-07 Jiangyin Xingcheng Special Steel Works Co., Ltd Low-crack-sensitivity and low-yield-ratio ultra-thick steel plate and preparation method therefor
US10781510B2 (en) * 2016-04-28 2020-09-22 Jiangyin Xingcheng Special Steel Works Co., Ltd Thick steel plate with low cracking sensitivity and low yield ratio and manufacturing method thereof

Also Published As

Publication number Publication date
JPH08209294A (en) 1996-08-13

Similar Documents

Publication Publication Date Title
US7648597B2 (en) Method for manufacturing high tensile strength steel plate
JP5574059B2 (en) High-strength H-section steel with excellent low-temperature toughness and method for producing the same
JP4362318B2 (en) High strength steel plate with excellent delayed fracture resistance and method for producing the same
JP4379085B2 (en) Manufacturing method of high strength and high toughness thick steel plate
JP5089224B2 (en) Manufacturing method of on-line cooling type high strength steel sheet
JP3906779B2 (en) Manufacturing method of low temperature steel with excellent stress corrosion cracking resistance
JPH08176659A (en) Production of high tensile strength steel with low yield ratio
JP2005256037A (en) Method for producing high strength-high toughness-thick steel plate
JP2913426B2 (en) Manufacturing method of thick high strength steel sheet with excellent low temperature toughness
JP2901890B2 (en) Low-yield-ratio high-strength steel sheet with excellent tensile strength of 590 N / mm2 or more and excellent weld cracking resistance and method for producing the same
JP3499705B2 (en) 950N / mm2 class tempered high-strength steel sheet having excellent homogeneity in thickness direction and low anisotropy of toughness, and method for producing the same
JP3399983B2 (en) Method for producing high-strength steel sheet with excellent weldability and low yield ratio of 570 N / mm2 or more
JP4507730B2 (en) Low yield ratio high strength high toughness steel sheet and method for producing the same
JP3737300B2 (en) Non-tempered low yield ratio high tensile strength steel plate with excellent weldability
JP4311020B2 (en) Low yield ratio high strength high toughness steel sheet and method for producing the same
JP3879639B2 (en) High toughness and high yield point steel with excellent weldability and method for producing the same
JP2828754B2 (en) Manufacturing method of low yield ratio 70kg / fmm / mm2 upper grade steel sheet with excellent weldability
JP2828755B2 (en) Manufacturing method of low yield ratio 80 ▲ kgff / ▲ mm ▼▼ 2 上 class steel sheet with excellent weldability
JP3602396B2 (en) Low yield ratio high strength steel sheet with excellent weldability
JP2005226080A (en) Method of producing high tensile strength thick steel plate having excellent weldability and low temperature toughness
JP2905639B2 (en) Method for producing 780 N / mm2 grade steel sheet with extremely low yield ratio
JP4412099B2 (en) High strength steel plate with excellent weld heat affected zone toughness and method for producing the same
JP2004162076A (en) Steel plate excellent in weldability and earthquake resistance, and its production method
JP2002105594A (en) High burring property hot rolled steel sheet having excellent low cycle fatigue strength and its production method
JP3975920B2 (en) Low yield ratio high strength high toughness steel sheet and method for producing the same

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990223

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080319

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090319

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100319

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100319

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110319

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110319

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 15

EXPY Cancellation because of completion of term