JP2899884B2 - Shape measurement method - Google Patents

Shape measurement method

Info

Publication number
JP2899884B2
JP2899884B2 JP63227150A JP22715088A JP2899884B2 JP 2899884 B2 JP2899884 B2 JP 2899884B2 JP 63227150 A JP63227150 A JP 63227150A JP 22715088 A JP22715088 A JP 22715088A JP 2899884 B2 JP2899884 B2 JP 2899884B2
Authority
JP
Japan
Prior art keywords
measured
stage
reference line
reflected light
flatness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63227150A
Other languages
Japanese (ja)
Other versions
JPH0274816A (en
Inventor
元秀 荒山
博文 中尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP63227150A priority Critical patent/JP2899884B2/en
Publication of JPH0274816A publication Critical patent/JPH0274816A/en
Application granted granted Critical
Publication of JP2899884B2 publication Critical patent/JP2899884B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は形状測定方法に関し、特にセラミック基板等
の表面うねりと厚みを光学的手段によって検査する形状
測定方法に関する。
Description: TECHNICAL FIELD The present invention relates to a shape measuring method, and more particularly to a shape measuring method for inspecting the surface undulation and thickness of a ceramic substrate or the like by optical means.

(従来の技術と問題点) 電子部品を被着したり、電気回路を印刷するセラミッ
ク基板の表面は完全に平坦であることが要求される。そ
の検査方法として、従来より、被測定物体の表面に光を
あてて、その反射光によって表面状態を把握しようとす
る試みがなされている。
(Prior Art and Problems) It is required that the surface of a ceramic substrate on which electronic components are deposited or an electric circuit is printed be completely flat. As the inspection method, conventionally, an attempt has been made to illuminate the surface of an object to be measured and to grasp the surface state by the reflected light.

例えば特開昭62−36511号公報には、被測定物体上に
スポット的に映した基準となる形状を二次元センサーに
画像として入力し、入力した基準形状の特徴量と、予め
記憶した合格となる被測定物体上の基準形状の特徴量と
の差を所定式に基づく見掛け上の偏位から抽出して被測
定物体の合否を判定することが提案されている。
For example, Japanese Patent Application Laid-Open No. 62-36511 discloses that a reference shape, which is spot-likely projected on an object to be measured, is input as an image to a two-dimensional sensor, and the input characteristic amount of the reference shape and a pass stored in advance. It has been proposed to determine the pass / fail of the measured object by extracting the difference between the characteristic amount of the reference shape on the measured object and the apparent deviation based on a predetermined formula.

ところが、この従来の被測定物体の測定方法では、セ
ラミック基板全体の大きなうねりは検出できるものの、
基準形状とのずれを検出して合否を判定することから、
例えばこの種基板には極めて重要な電子部品を被着する
部分等の部分的なうねりや平坦度、表面部分の正確な平
坦度、更にはうねりの度合等は検出できないものであっ
た。
However, with this conventional method for measuring an object to be measured, although large undulations of the entire ceramic substrate can be detected,
Since the deviation from the reference shape is detected and pass / fail is determined,
For example, such a substrate cannot detect a partial undulation or flatness of a portion to which an extremely important electronic component is attached, an accurate flatness of a surface portion, or a degree of undulation.

一方、特開昭58−111708号、特開昭61−40503号に
は、レーザ光を投射して被測定物体表面の平坦度を測定
することが提案されているが、この方法は、光電変換装
置での反射光の変位量を検出して電気信号に変えて被測
定物体表面の平坦度を把握することから、被測定物体の
厚みは均一であることを前提にした測定方法であり、光
源からの距離に応じた平坦度しか把握できない。即ち、
被測定物をステージ上に載置して、従来のような方法で
平坦度を測定すると、ステージ自体の傾きや被測定物体
の部分的な厚みの相違に起因して被測定物体自体が傾い
ていると、それ自体で光源からの距離が相違してしま
い、正確な平坦度や厚みを測定することはできないもの
であった。
On the other hand, JP-A-58-111708 and JP-A-61-40503 propose to measure the flatness of the surface of an object to be measured by projecting a laser beam. The measurement method assumes that the thickness of the measured object is uniform because it detects the amount of displacement of the reflected light from the device and converts it into an electric signal to determine the flatness of the surface of the measured object. Only the degree of flatness according to the distance from can be grasped. That is,
When the object to be measured is placed on the stage and the flatness is measured by a conventional method, the object to be measured is tilted due to the inclination of the stage itself or a partial thickness difference of the object to be measured. In such a case, the distance from the light source itself differs, and it was impossible to measure the flatness and thickness accurately.

本発明は、このような従来方法の問題点に鑑みて案出
されたものであり、被測定物体表面の平坦度を正確に検
出したり、被測定物体表面の部分的な平坦度も検出する
ことができ、また被測定物体の厚みも極めて正確に検出
することができる形状測定方法を提供することを目的と
するものである。
The present invention has been devised in view of such problems of the conventional method, and accurately detects the flatness of the surface of the measured object and also detects the partial flatness of the surface of the measured object. It is another object of the present invention to provide a shape measuring method capable of detecting the thickness of an object to be measured very accurately.

(問題点を解決するための手段) 第1の発明によれば、被測定物体上に投射光線を相対
移動させて反射光を光電変換装置で受け、該光電変換装
置上での反射光の変位量を数値化して被測定物体表面の
平坦度を測定する形状測定方法であって、前記投射光線
の走査線上のうちの2点を結んで仮想基準線と為し、該
仮想基準線からの凹凸値を検出して被測定物体表面の平
坦度を測定することを特徴とする形状測定方法が提供さ
れる。
(Means for Solving the Problems) According to the first invention, the reflected light is received by the photoelectric conversion device by relatively moving the projected light beam onto the measured object, and the displacement of the reflected light on the photoelectric conversion device is changed. A shape measuring method for measuring the flatness of the surface of an object to be measured by quantifying an amount, forming a virtual reference line by connecting two points on the scanning line of the projection light beam, and forming an irregularity from the virtual reference line. A shape measuring method is provided, wherein a flatness of a surface of a measured object is measured by detecting a value.

第2の発明によれば、ステージ上に被測定物体を載置
して、該被測定物体上に投射光線を相対移動させて反射
光を光電変換装置で受け、該光電変換装置上での反射光
の変位量を数値化して被測定物体の複写箇所の厚みを測
定する形状測定方法であって、前記反射光の変位量を数
値化して得られた実測値から、前記ステージ上に投射光
線を相対移動させて求めたステージの傾きに対応する値
を引いて引測定物体の厚みを測定することを特徴とする
形状測定方法が提供される。
According to the second invention, the object to be measured is placed on the stage, the projected light beam is relatively moved on the object to be measured, the reflected light is received by the photoelectric conversion device, and the reflected light is reflected by the photoelectric conversion device. A method for measuring the thickness of a copy portion of an object to be measured by quantifying the amount of displacement of light, wherein the projection light is projected onto the stage from an actually measured value obtained by quantifying the amount of displacement of the reflected light. A shape measuring method is provided, wherein a thickness corresponding to a pull measurement object is measured by subtracting a value corresponding to a tilt of a stage obtained by relative movement.

(実施例) 以下、本発明を添付図面に基づき詳細に説明する。Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

第1図は、本発明に係わる形状測定方法に用いられる
装置の概略構成図であり、1はセンサヘッド、2はXYス
テージ、3は演算制御装置、7は被測定物体である。
FIG. 1 is a schematic configuration diagram of an apparatus used for a shape measuring method according to the present invention, wherein 1 is a sensor head, 2 is an XY stage, 3 is an arithmetic and control unit, and 7 is an object to be measured.

前記センサヘッド1は、例えばレーザ光等の投射光線
Bの照射部1aと、この投射光線Bの反射光B′を受光す
るための受光部1bとで構成され、この反射光B′の受光
部1bは例えば光電変換装置で構成される。この光電変換
装置上での反射光B′の変位量を検出して線図化する所
謂光学的三角測距方式により、引測定物体7の形状が検
出される。尚、このセンサヘッド1は、Z軸方向に手動
で可変できるように、微調ステージ1cに固定されてい
る。
The sensor head 1 includes an irradiating section 1a for projecting light B such as a laser beam, and a light receiving section 1b for receiving reflected light B 'of the projected light B, and a light receiving section for receiving the reflected light B'. 1b is composed of, for example, a photoelectric conversion device. The shape of the object to be measured 7 is detected by a so-called optical triangulation method in which the displacement of the reflected light B 'on the photoelectric conversion device is detected and plotted. The sensor head 1 is fixed to the fine adjustment stage 1c so that it can be manually changed in the Z-axis direction.

前記XYステージ2は、パルスモータ2a,2bを駆動する
ことにより、X軸・Y軸方向に移動できるように構成さ
れている。従って、前記センサヘッド1の投射光線B
は、このXYステージ2上を相対的に移動することにな
る。このステージ2は、第2図に示すように、プレート
2cに複数個の透孔2dが形成されており、プレート2cの下
方部は中空状に形成されている。このプレート2cに、被
測定物体7を固定するにあたっては、プレート2cの端部
に設けられたノックピン2dで、所定位置に被測定物体7
よりも大きな透孔が形成されたワークガイド2eを固定し
て、このワークガイド2eの透孔部に被測定物体7を位置
決めしてステージ2上に載置し、吸引機4(第1図参
照)で中空部を吸引することにより固定される。このXY
ステージ2は、演算制御装置3の操作に基づいて、ドラ
イバ6を介して駆動される。
The XY stage 2 is configured to move in the X-axis and Y-axis directions by driving the pulse motors 2a and 2b. Therefore, the projected light beam B of the sensor head 1
Moves relatively on the XY stage 2. This stage 2 is, as shown in FIG.
A plurality of through holes 2d are formed in 2c, and the lower part of the plate 2c is formed in a hollow shape. In fixing the measured object 7 to the plate 2c, the measured object 7 is fixed at a predetermined position by a knock pin 2d provided at an end of the plate 2c.
A work guide 2e having a larger through-hole formed therein is fixed, the object 7 to be measured is positioned in the through-hole of the work guide 2e, placed on the stage 2, and then a suction machine 4 (see FIG. 1). ) Is fixed by suctioning the hollow portion. This XY
The stage 2 is driven via a driver 6 based on an operation of the arithmetic and control unit 3.

尚、前記演算制御装置3にはコントローラ5が接続さ
れており、このコントローラ5は、被測定物体7表面の
凹凸によって変位する反射光線B′の光電変換装置での
変位量を予め設定されるゲインに基づいて算出する作用
を為す。
A controller 5 is connected to the arithmetic and control unit 3, and the controller 5 controls the amount of displacement of the reflected light beam B 'displaced by the irregularities on the surface of the measured object 7 in the photoelectric conversion device by a gain set in advance. The function of calculating based on is performed.

又、前記演算制御装置3は、主としてマイクロコンピ
ュータで構成され、その演算結果は印字装置3aによって
記録される。
The arithmetic and control unit 3 is mainly composed of a microcomputer, and the arithmetic result is recorded by a printing device 3a.

第3図は、検出された被測定物体7の表面状態と基準
線Xとの関係を示す図である。
FIG. 3 is a diagram showing the relationship between the detected surface state of the measured object 7 and the reference line X.

XYステージ2をX軸・Y軸方向に移動させることによ
って、投射光線Bを被測定物体7上で走査させると、投
射光線Bの光源から等距離な基準線Xに対して凹凸部を
含んだ走査線Aのように線図化される。この基準線X
は、光源からの等距離線に過ぎず、ステージ2自体の傾
きX′や被測定物体7の部分的な厚みの相違による被測
定物体7自体の傾きX″は考慮されていない。従って、
この基準線Xからの凹凸量を検出しても正確な凹凸量は
検出できない。そこで、投射光線Bの走査始点LSと走査
終点LEを結んで仮想基準線X″とし、この仮想基準線
X″からの凹凸量を検出すれば、被測定物体7の表面そ
のものの正確な凹凸量を検出できることとなる。
By moving the XY stage 2 in the X-axis and Y-axis directions to scan the projection light beam B on the object 7 to be measured, the projection light beam B includes an uneven portion with respect to a reference line X equidistant from the light source of the projection light beam B. It is plotted as a scanning line A. This reference line X
Is merely an equidistant line from the light source, and does not take into account the tilt X ′ of the stage 2 itself or the tilt X ″ of the measured object 7 itself due to a partial difference in the thickness of the measured object 7.
Even if the amount of unevenness from the reference line X is detected, an accurate amount of unevenness cannot be detected. Therefore, by connecting the scanning start point L S and the scanning end point L E of the projection beam B "and, the virtual reference line X" imaginary reference line X by detecting the amount of irregularities from exact surface itself of the object to be measured 7 The amount of unevenness can be detected.

第4図は、本発明に係わる平坦度の測定方法を説明す
るための図である。
FIG. 4 is a diagram for explaining a method of measuring flatness according to the present invention.

まず、センサヘッド1で検知した測定箇所の各々のポ
イントの全データ(h1〜hn,L1〜Ln)を演算制御装置3
に取り込む。このとき、走査線Aから基準線X至る距離
hmは算出される。
First, all data (h 1 to hn, L 1 to Ln) of each point of the measurement location detected by the sensor head 1 are calculated and processed by the arithmetic and control unit 3.
Take in. At this time, the distance from the scanning line A to the reference line X
hm is calculated.

次に、走査線Aの走査始点(h1,L1)と走査終点(hn,
Ln)を結んで仮想基準線X″を引き、基準線Xに対する
仮想基準線X″の偏位量Xmを、 Xm=Lm/L・XE で求める。
Next, the scanning start point (h 1 , L 1 ) and the scanning end point (hn,
By connecting ln) "pull the virtual reference line X with respect to the reference line X" imaginary reference line X excursion amount Xm of, obtained by Xm = Lm / L · X E .

次に、走査線Aから基準線Xに対する垂線のうちの、
走査線Aから仮想基準線X″に至る距離h′mを、 h′m=hm−Lm/L・XE で求める。
Next, of the perpendiculars from the scanning line A to the reference line X,
The distance H'm from the scanning line A leading to a virtual reference line X ", obtained by h'm = hm-Lm / L · X E.

次に、走査線Aから仮想基準線X″に対する垂線のう
ちの、走査線Aから仮想基準線X″に至る距離h″m
を、 で求める。
Next, of the perpendiculars from the scanning line A to the virtual reference line X ", the distance h" m from the scanning line A to the virtual reference line X "
To Ask for.

以下同様に、各々の測定箇所の仮想基準線X″からの
距離h″mを求める。
Similarly, the distance h ″ m of each measurement point from the virtual reference line X ″ is obtained.

このようにして求めた走査線Aから仮想基準線X″に
至る各々の距離のうち、 h″m(max)−h″m(min)=W がうねり量Wとなる。
Among the respective distances from the scanning line A to the virtual reference line X ″ obtained in this way, h ″ m (max) −h ″ m (min) = W is the swell amount W.

従って、ステージ2の傾きや被測定物体7の厚みのバ
ラツキを排除して純粋に被測定物体7表面の凹凸量を正
確に検出することができる。
Therefore, the inclination of the stage 2 and the variation of the thickness of the measured object 7 can be eliminated, and the unevenness amount on the surface of the measured object 7 can be accurately detected.

尚、以上の実施例では、投射光線Bの走査始点と走査
終点を結んで仮想基準線とすることについて述べたが、
この実施例に限定されるものではなく、例えば投射光線
の走査線上のうちのいずれか2点を抽出して結んで仮想
基準線としても、同様な効果を得ることができる。
In the above embodiment, the description has been given of connecting the scanning start point and the scanning end point of the projection light beam B as a virtual reference line.
The present invention is not limited to this embodiment. For example, similar effects can be obtained by extracting and connecting any two points on the scanning line of the projected light beam and forming a virtual reference line.

第5図は、ステージ2の傾きと被測定物体の厚みの関
係を示す図である。
FIG. 5 is a diagram showing the relationship between the inclination of the stage 2 and the thickness of the measured object.

被測定物体7やワークガイド2eをプレート2c上に載置
せずに投射光線Bをプレート2c上に走査させて、投射光
線Bの光源からステージ2の1点までの距離(基準線
X)とステージ2自体の傾きX′を予め求めておく。
The projection light B is scanned on the plate 2c without placing the object 7 to be measured and the work guide 2e on the plate 2c, and the distance (reference line X) from the light source of the projection light B to one point on the stage 2 is determined. The inclination X 'of the stage 2 itself is obtained in advance.

次に、センサヘッド1で検知した測定箇所の各々のポ
イントの全データ(h1〜hn,L1〜Ln)を演算制御装置3
に取り込む。このとき、走査線Aから基準線X至る距離
hmは算出される。
Then, all data points for each measurement point detected by the sensor head 1 (h 1 ~hn, L 1 ~Ln) an arithmetic and control unit 3
Take in. At this time, the distance from the scanning line A to the reference line X
hm is calculated.

次に、傾き量XSに対応する値hSを、 hS=XS/L・Lm で求め、実測値hmから引けば引測定物体7の正確な厚
みh″mを得ることができる。
Then, the value h S corresponding to the tilt amount X S, determined by h S = X S / L · Lm, it is possible to obtain an accurate thickness h "m Citations measurement object 7 by pulling from the measured value hm.

(発明の効果) 以上のように、本発明に係わる形状測定方法によれ
ば、投射光線の走査線上のうちの2点を結んで仮想基準
線と為し、該仮想基準線からの凹凸値を検出して被測定
物体表面の平坦度を測定することから、被測定物体表面
の平坦度を極めて正確に検出することができ、例えばセ
ラミック基板のうちの半導体装置を搭載する部分だけ等
被測定物体の部分的な平坦度も正確に検出でき、さらに
は被測定物体の表面が傾斜している場合でもその平坦度
を正確に検出できる極めて優れた形状測定方法を提供で
きる。
(Effect of the Invention) As described above, according to the shape measuring method according to the present invention, two points on the scanning line of the projected light are connected to form a virtual reference line, and the unevenness value from the virtual reference line is calculated. By detecting and measuring the flatness of the surface of the object to be measured, the flatness of the surface of the object to be measured can be detected extremely accurately, for example, only the portion of the ceramic substrate on which the semiconductor device is mounted, such as the portion on which the semiconductor device is mounted. The present invention can provide an extremely excellent shape measurement method capable of accurately detecting even the partial flatness of the object, and accurately detecting the flatness even when the surface of the measured object is inclined.

また、反射光の変位量を数値化して得られた実測値か
ら、ステージ上に投射光線を相対移動させて求めたステ
ージの傾きに対応する値を引いて被測定物体の厚みを測
定することから、被測定物体の極めて正確な厚みを測定
できる形状測定方法を提供できる。
Also, from the measured value obtained by quantifying the amount of displacement of the reflected light, the value corresponding to the inclination of the stage obtained by relatively moving the projected light beam on the stage is subtracted to measure the thickness of the measured object. In addition, it is possible to provide a shape measuring method capable of measuring an extremely accurate thickness of an object to be measured.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明に係わる形状測定方法に用いる装置の概
略構成図、第2図はステージ部分の断面図、第3図は同
じく検出された被測定物体の表面状態と基準線との関係
を示す図、第4図は同じく測定方法を説明するための
図、第5図はステージ2の傾きと被測定物体の厚みの関
係を示す図である。 1……センサヘッド、2……ステージ 3……演算制御装置、7……被測定物体 A……走査線 B……投射光線 B′……反射光 X……基準線 X″……仮想基準線
FIG. 1 is a schematic configuration diagram of an apparatus used for a shape measuring method according to the present invention, FIG. 2 is a cross-sectional view of a stage portion, and FIG. 3 shows a relationship between a detected surface state of a measured object and a reference line. FIG. 4 is a view for explaining the measurement method, and FIG. 5 is a view showing the relationship between the inclination of the stage 2 and the thickness of the object to be measured. DESCRIPTION OF SYMBOLS 1 ... Sensor head, 2 ... Stage 3 ... Calculation control device, 7 ... Measured object A ... Scanning line B ... Projection ray B '... Reflected light X ... Reference line X "... Virtual reference line

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】被測定物体上に投射した光線を相対移動さ
せて反射光を光電変換装置で受け、該光電変換装置上で
の反射光の変位量を数値化して被測定物体表面の平坦度
を測定する形状測定方法であって、 前記投射光線の走査線上のうちの走査始点と走査終点を
結んで仮想基準線となし、該仮想基準線からの凹凸値を
検出して被測定物体表面の平坦度を測定することを特徴
とする形状測定方法。
A light beam projected on an object to be measured is relatively moved, a reflected light is received by a photoelectric conversion device, and a displacement amount of the reflected light on the photoelectric conversion device is quantified to obtain a flatness of a surface of the object to be measured. A virtual reference line connecting the scanning start point and the scanning end point on the scanning line of the projected light beam, and detecting the unevenness value from the virtual reference line to obtain the surface measurement object surface. A shape measuring method characterized by measuring flatness.
【請求項2】ステージ上に被測定物体を載置して、該被
測定物体上に投射した光線を相対移動させて反射光を光
電変換装置で受け、該光電変換装置上での反射光の変位
量を数値化して被測定物体の複数箇所の厚みを測定する
形状測定方法であって、 前記反射光の変位量を数値化して得られた実測値から、
前記ステージ上に投射した光線を相対移動させて求めた
ステージの傾きに対応する値を引いて被測定物体の厚み
を測定することを特徴とする形状測定方法。
2. An object to be measured is placed on a stage, a light beam projected on the object to be measured is relatively moved, and reflected light is received by a photoelectric conversion device. A shape measurement method for quantifying the amount of displacement and measuring the thickness of a plurality of portions of the measured object, from an actual measurement value obtained by quantifying the amount of displacement of the reflected light,
A shape measuring method characterized in that the thickness of an object to be measured is measured by subtracting a value corresponding to the inclination of the stage obtained by relatively moving the light beam projected on the stage.
JP63227150A 1988-09-09 1988-09-09 Shape measurement method Expired - Fee Related JP2899884B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63227150A JP2899884B2 (en) 1988-09-09 1988-09-09 Shape measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63227150A JP2899884B2 (en) 1988-09-09 1988-09-09 Shape measurement method

Publications (2)

Publication Number Publication Date
JPH0274816A JPH0274816A (en) 1990-03-14
JP2899884B2 true JP2899884B2 (en) 1999-06-02

Family

ID=16856277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63227150A Expired - Fee Related JP2899884B2 (en) 1988-09-09 1988-09-09 Shape measurement method

Country Status (1)

Country Link
JP (1) JP2899884B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8311777B2 (en) * 2007-02-22 2012-11-13 Nippon Steel Corporation Coke oven wall surface evaluation apparatus, coke oven wall surface repair supporting apparatus, coke oven wall surface evaluation method, coke oven wall surface repair supporting method and computer program

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58111708A (en) * 1981-12-25 1983-07-02 Sumitomo Metal Ind Ltd Flatness measuring device
JPS6250612A (en) * 1985-08-29 1987-03-05 Lion Corp Measuring method for surface roughness

Also Published As

Publication number Publication date
JPH0274816A (en) 1990-03-14

Similar Documents

Publication Publication Date Title
JP2691789B2 (en) Solder printing inspection device
JP3566166B2 (en) Tool position measuring method, offset measuring method, reference member and bonding device
EP0391532A2 (en) Apparatus for measuring three-dimensional curved surface shapes
JP2000121324A (en) Thickness measuring apparatus
JP4008168B2 (en) Printed circuit board inspection equipment
JP2899884B2 (en) Shape measurement method
JP3987378B2 (en) Substrate processing equipment
JP3926347B2 (en) Electronic component mounting equipment
JPH11190616A (en) Surface shape measuring device
JPS5847209A (en) Device for measuring surface configuration
JPH08327332A (en) Apparatus for measuring film thickness of solder paste
JP2008151687A (en) Method of measuring terminal height of electronic component
JP3949257B2 (en) Component recognition method, component inspection, and mounting method
JPH0612252B2 (en) Automatic three-dimensional shape measurement method
JP3640012B2 (en) Method for measuring level of mask or wafer in exposure apparatus and measurement control apparatus
JP3923168B2 (en) Component recognition method and component mounting method
JP2000101298A (en) Part position matching device and part position matching method using the same
JPH06258040A (en) Laser displacement meter
JP3692587B2 (en) Mounting component inspection method and inspection apparatus using the same
JP3013255B2 (en) Shape measurement method
JPH02159509A (en) Film thickness measuring apparatus
JPH06129993A (en) Positioning and fixing device for printed board
JP4320796B2 (en) Pattern position measuring device
JP3018887B2 (en) 3D shape measuring device
JP3503233B2 (en) Optical scanning displacement sensor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees