JP2898793B2 - Method for producing non-oriented electrical steel sheet having high magnetic flux density and low iron loss - Google Patents

Method for producing non-oriented electrical steel sheet having high magnetic flux density and low iron loss

Info

Publication number
JP2898793B2
JP2898793B2 JP3165984A JP16598491A JP2898793B2 JP 2898793 B2 JP2898793 B2 JP 2898793B2 JP 3165984 A JP3165984 A JP 3165984A JP 16598491 A JP16598491 A JP 16598491A JP 2898793 B2 JP2898793 B2 JP 2898793B2
Authority
JP
Japan
Prior art keywords
less
iron loss
annealing
present
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3165984A
Other languages
Japanese (ja)
Other versions
JPH05186834A (en
Inventor
武秀 瀬沼
猛 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP3165984A priority Critical patent/JP2898793B2/en
Publication of JPH05186834A publication Critical patent/JPH05186834A/en
Application granted granted Critical
Publication of JP2898793B2 publication Critical patent/JP2898793B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は磁気特性に優れた無方向
性電磁鋼板の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a non-oriented electrical steel sheet having excellent magnetic properties.

【0002】[0002]

【従来の技術】無方向性電磁鋼板は高磁場鉄損の減少に
重きをおいた高Siの材料と、高磁束密度を重視した普
通鋼成分系の材料がある。後者の材料としてはフルプロ
セスとセミプロセスの分類があり、それらの相違はセミ
プロセスの材料はフルプロセスにスキンパスを施したも
ので、ユーザーで打ち抜き加工をした後、歪み取り焼鈍
をして結晶粒の粗大化を可能にしたものである。この歪
み取り焼鈍による結晶粒の粗大化により、鉄損の顕著な
低減が達成できるが(特開昭60−17014号公報参
照)、ユーザーによっては必要の焼鈍設備を有していな
いところもあるばかりでなく、設備をもっているところ
でも歪み取り焼鈍による工程の増加は生産性に不利とな
る。
2. Description of the Related Art Non-oriented electrical steel sheets are classified into high Si materials which emphasize reduction of high magnetic field iron loss, and ordinary steel component materials which emphasize high magnetic flux density. The latter material is classified into full process and semi-process.The difference between the two is that the semi-processed material is obtained by applying a skin pass to the full process. Is made possible. A significant reduction in iron loss can be achieved by the coarsening of crystal grains by the strain relief annealing (see Japanese Patent Application Laid-Open No. Sho 60-17014), but some users do not have necessary annealing equipment. In addition, the increase in the number of steps due to the strain relief annealing is disadvantageous to the productivity even when the equipment is provided.

【0003】普通鋼成分系の無方向性電磁鋼板の冷延後
の焼鈍条件は連続焼鈍炉において10℃/s前後の速度
で昇温し、設定した750℃から850℃のフェライト
温度域で1分から2分間保持して焼鈍するのが一般的な
条件である。しかし、このような条件では、再結晶後の
粒成長が十分起きず、鉄損の減少に有利と言われる10
0μmから300μmの結晶粒径の粗大のフェライト組
織は得られない。また、A3 変態点以上の温度に焼鈍し
て、一度オーステナイト組織にすると、従来の成分鋼で
はγ→α変態時に組織が微細化し、低い鉄損を達成する
ことができない。
[0003] The annealing conditions of a non-oriented electrical steel sheet of ordinary steel component after cold rolling are as follows: the temperature is raised at a rate of about 10 ° C / s in a continuous annealing furnace, and the ferrite temperature range is 750 ° C to 850 ° C. It is a general condition to anneal while holding for 2 to 2 minutes. However, under such conditions, grain growth after recrystallization does not sufficiently occur, which is said to be advantageous for reducing iron loss.
A coarse ferrite structure with a crystal grain size of 0 μm to 300 μm cannot be obtained. Further, by annealing the A 3 transformation point or above the temperature, when once austenitic structure, in the conventional components steels gamma → alpha organization finer during transformation, it is not possible to achieve a low iron loss.

【0004】[0004]

【発明が解決しようとする課題】近年、フェライト組織
の粗大化及び磁気時効の観点よりCの極低化及び成分の
高純化が施行されているが、これによる組織の粗大化は
従来の連続焼鈍条件では不十分である。一方、Cの極低
化及び成分の高純化により冷延焼鈍後の集合組織は{1
11}方位が高く、磁気特性に好ましい{100}方位
が低くなる欠点がある。また、鉄損の減少を狙い板厚を
薄くするために冷延率を高めると上記の集合組織形成の
傾向はより顕著になる。
In recent years, from the viewpoint of coarsening of ferrite structure and magnetic aging, extremely low C and high purity of components have been implemented. The conditions are not enough. On the other hand, the texture after cold-rolling annealing is {1 due to the extremely low C content and the high purity of the components.
There is a disadvantage that the 11 ° orientation is high and the {100} orientation preferable for magnetic properties is low. In addition, when the cold rolling reduction is increased in order to reduce the iron loss and to reduce the sheet thickness, the tendency of the formation of the texture becomes more remarkable.

【0005】本発明はこのような現状にかんがみ、無方
向性電磁鋼板の製造において焼鈍時間及び設備の大幅な
短縮を可能にするメタラジーを提示し、鉄損減少に有利
な100μmから300μmの結晶粒径の粗大のフェラ
イト組織を得られ、かつ、{111}/{100}方位
の比が小さい鋼板をひずみ取り焼鈍を前提にせずに製造
する方法を提供することを目的とするものである。
In view of the above situation, the present invention proposes a metallurgy which enables a significant reduction in annealing time and equipment in the production of non-oriented electrical steel sheets, and provides a crystal grain of 100 μm to 300 μm which is advantageous for reducing iron loss. It is an object of the present invention to provide a method for producing a steel sheet having a coarse ferrite structure with a small diameter and a small ratio of {111} / {100} orientation without assuming strain relief annealing.

【0006】[0006]

【課題を解決するための手段】本発明者らは、成品板の
フェライト組織ならびに集合組織形成に及ぼす昇温速
度、焼鈍温度などの影響を研究した結果、鋼の成分、昇
温速度及びγ→α変態時の冷速を限定することおよび、
変態点以上に急速に昇温することにより、非常に短時間
の加熱時間にもかかわらず、鉄損の減少に有利と言われ
る100μmから300μmの結晶粒径の粗大のフェラ
イト組織が変態後得られることを見いだした。また、
{111}/{100}方位の比も変態点以下の焼鈍に
比較して顕著に小さくなることが分かった。
Means for Solving the Problems The present inventors have studied the effects of the heating rate, annealing temperature, etc. on the ferrite structure and texture formation of the product sheet, and found that the steel composition, the heating rate and γ → limiting the cooling speed during α transformation; and
By rapidly raising the temperature above the transformation point, despite the very short heating time, a coarse ferrite structure having a crystal grain size of 100 μm to 300 μm, which is said to be advantageous in reducing iron loss, can be obtained after transformation. I found something. Also,
It was also found that the ratio of the {111} / {100} orientation was significantly smaller than that of annealing below the transformation point.

【0007】本発明は上記知見に基づいて完成したもの
であって、その要旨とするところは、重量比でC:0.
005%以下、N:0.005%以下、Si:1.0%
以下、P:0.15%以下、S:0.01%以下、A
l:1.0%以下、必要に応じてBをB/Nで1.5以
下含有せしめ、そして他の添加元素の総和を1%以下含
む鋼を、冷延後の焼鈍において500℃から焼鈍最高温
度の間の平均昇温速度を300℃/s以上とし、焼鈍最
高温度をT(℃)=910+50×{Si(wt%)+A
l(wt%)}の関係にある温度T℃超として、冷却過程
においてT(℃)からT(℃)−30℃の温度範囲の平
均冷速を80℃/s以下とすることを特徴とする磁気特
性の優れた鋼板の製造方法にある。
The present invention has been completed based on the above findings, and the gist of the present invention is that the weight ratio of C: 0.
005% or less, N: 0.005% or less, Si: 1.0%
Hereinafter, P: 0.15% or less, S: 0.01% or less, A
l: A steel containing 1.0% or less, if necessary, containing 1.5 or less of B by B / N, and containing 1% or less of the total of other additional elements in the annealing after cold rolling from 500 ° C. The average heating rate during the maximum temperature is 300 ° C./s or more, and the maximum annealing temperature is T (° C.) = 910 + 50 × ΔSi (wt%) + A
1 (wt%)}, the average cooling rate in the temperature range of T (° C.) to T (° C.)-30 ° C. in the cooling process is set to 80 ° C./s or less as the temperature exceeds T ° C. Manufacturing method of a steel sheet having excellent magnetic properties.

【0008】以下に、本発明の構成要件の限定理由につ
いて詳細に説明する。まず、本発明鋼の化学成分におい
て、Cは鉄損改善のためには少ないほうが好ましく、か
つ時効による磁性劣化を生じないためには0.005%
以下が好ましいので、C量の上限を0.005%とし
た。Nも鉄損改善のためには少ないほうがよく、本発明
鋼では上限を0.005%とした。特に、AlNの析出
を抑制し、鉄損を下げる場合にはBを添加してBNを析
出させることが好ましいが、B/Nが1.5超になると
過剰Bが磁性を悪化させるので、B量の上限をB/Nで
1.5と定めた。
Hereinafter, the reasons for limiting the constituent elements of the present invention will be described in detail. First, in the chemical composition of the steel of the present invention, C is preferably as small as possible for improving iron loss, and 0.005% for preventing magnetic deterioration due to aging.
Since the following is preferable, the upper limit of the C content is set to 0.005%. N should also be small for improving iron loss, and the upper limit of the steel of the present invention is set to 0.005%. In particular, when suppressing precipitation of AlN and reducing iron loss, it is preferable to add B to precipitate BN. However, when B / N exceeds 1.5, excess B deteriorates magnetism. The upper limit of the amount was set to 1.5 in B / N.

【0009】Siは鉄損改善のために添加されるが、1
%以上の添加は必要な粗粒を得るのに妨げになるので、
上限を1%とした。Pの添加は打ち抜き性を高め、鉄損
の改善にもなるが、0.15%以上の添加は熱間加工性
を著しく劣化し、熱間割れなどが発生する危険性が高い
ため、上限を0.15%とした。
Si is added to improve iron loss.
% Or more will interfere with obtaining the required coarse particles,
The upper limit was set to 1%. The addition of P enhances the punching properties and improves iron loss, but the addition of 0.15% or more significantly deteriorates hot workability and has a high risk of generating hot cracks. 0.15%.

【0010】Sは磁性向上に有害なMnSなどの非金属
介在物を生成するので0.01%以下にしなければ安定
した磁性改善効果が得られない。また、下記に示す焼鈍
条件で100μm以上の結晶粒径を得るにも、S量の低
下が必須であり、これらの条件よりS量の上限を0.0
1%とした。
Since S forms nonmetallic inclusions such as MnS which are harmful to the improvement of the magnetism, unless the content is 0.01% or less, a stable magnetism improving effect cannot be obtained. Further, in order to obtain a crystal grain size of 100 μm or more under the annealing conditions shown below, a decrease in the amount of S is indispensable.
1%.

【0011】AlはSiと同様鉄損改善のために添加さ
れるが、1%以上になると焼鈍時の粗粒化を妨げるだけ
でなく、熱間加工性も著しく劣化するので、添加量の上
限を1%とする。強度を高める元素として、Mn,C
r,Mo,Niなどの添加は本発明の趣旨を損するもの
ではないが、これらの元素の総和が多過ぎるとフェライ
ト組織の粗粒化を妨げ、磁性の劣化を招くので、総和の
上限は1%以下とする。
Al is added to improve iron loss like Si, but if it exceeds 1%, it not only prevents coarsening during annealing but also significantly deteriorates hot workability. Is 1%. Mn, C as elements for increasing strength
The addition of r, Mo, Ni and the like does not impair the purpose of the present invention. However, if the total sum of these elements is too large, coarsening of the ferrite structure is hindered and magnetism is deteriorated. % Or less.

【0012】次に、製造プロセスについて説明する。冷
延後の再結晶焼鈍において500℃から焼鈍最高温度の
間の平均昇温速度を300℃/s以上と限定したのは、
この温度範囲での平均昇温速度が300℃/s以下だと
焼鈍時に短時間で適正な結晶粒径にならないためであ
る。この原因はまだ十分解明されていないが、昇温過程
において回復のための時間を十分とらせないことによ
り、再結晶の駆動力が大きくなり、再結晶が爆発的に起
きることにより結晶粒が粗大化し、それがα→γ変態、
γ→α変態後も遺伝するためと考えられる。
Next, the manufacturing process will be described. The reason for limiting the average heating rate between 500 ° C. and the maximum annealing temperature to 300 ° C./s or more in recrystallization annealing after cold rolling is as follows.
If the average temperature rise rate in this temperature range is 300 ° C./s or less, an appropriate crystal grain size cannot be obtained in a short time during annealing. The reason for this has not yet been fully elucidated, but by not allowing sufficient time for recovery during the heating process, the driving force for recrystallization increases, and the recrystallization explosively occurs, causing the crystal grains to become coarse. And that is the α → γ transformation,
It is considered that heredity is inherited after γ → α transformation.

【0013】焼鈍最高温度をT(℃)=910+50×
{Si(wt%)+Al(wt%)}の関係にある温度T℃
以上としたのは、この温度域での短時間焼鈍で結晶粒の
適正な粗粒化が起こり、かつ{111}/{100}方
位の比が小さい集合組織が得られるためである。また、
冷却工程でT(℃)からT(℃)−30℃の平均冷速を
80℃/s以下と限定したのは、変態時に冷速がこれよ
り大きくなると結晶粒が微細になるか、フェライト組織
がアシキュラー的になり鉄損が高くなるため、この温度
域での平均冷速の上限を80℃/sとした。
The maximum annealing temperature is T (° C.) = 910 + 50 ×
Temperature T ° C with {Si (wt%) + Al (wt%)} relationship
The reason for this is that short-time annealing in this temperature range causes appropriate coarsening of crystal grains and provides a texture with a small ratio of {111} / {100} orientation. Also,
The reason why the average cooling rate from T (° C.) to T (° C.)-30 ° C. in the cooling step is limited to 80 ° C./s or less is that when the cooling rate is higher than this during transformation, the crystal grains become finer or the ferrite structure becomes smaller. Because of its acicularity and increased iron loss, the upper limit of the average cooling rate in this temperature range was set to 80 ° C./s.

【0014】また、500℃以上の温度域での焼鈍時間
を10秒以下と限定したのは、焼鈍時間の短縮及び設備
コストの低減からの限定で、磁気特性からの限定ではな
い。現状では500℃以上の温度域での焼鈍時間は約1
00秒前後であり、通常の連続焼鈍炉では約700mぐ
らいの炉長が必要となるが、本発明鋼では10分の1で
済むため大幅なコストダウンが達成できる。
The reason why the annealing time in the temperature range of 500 ° C. or more is limited to 10 seconds or less is that the annealing time and the equipment cost are reduced, not the magnetic characteristics. At present, the annealing time in the temperature range of 500 ° C. or more is about 1
The time is about 00 seconds, and a furnace length of about 700 m is required in a normal continuous annealing furnace. However, the steel of the present invention requires only one tenth, so that a significant cost reduction can be achieved.

【0015】[0015]

【実施例】本発明の実施例を、比較例と共に説明する。
表1および表2に本発明鋼と比較鋼の成分、プロセス条
件、そして成品板の磁気特性を示す。実験番号18は双
ロール法により直接鋳込みにより1.5mmの板に鋳造し
た材料を冷延したが、他の材料は250mmの連続鋳造ス
ラブを3mmの板に熱延した後、冷延した。熱延仕上温度
は860℃〜900℃、巻取温度は700℃前後であっ
た。冷延板の板厚は0.5mmである。焼鈍方法は連続焼
鈍法によって行なった。
EXAMPLES Examples of the present invention will be described together with comparative examples.
Tables 1 and 2 show the components of the steel of the present invention and the comparative steel, the process conditions, and the magnetic properties of the product sheet. In Experiment No. 18, the material cast into a 1.5 mm plate by direct casting by the twin roll method was cold-rolled, but the other materials were hot-rolled from a 250 mm continuous cast slab to a 3 mm plate and then cold rolled. The hot rolling finish temperature was 860 ° C to 900 ° C, and the winding temperature was around 700 ° C. The thickness of the cold rolled sheet is 0.5 mm. The annealing method was performed by a continuous annealing method.

【0016】[0016]

【表1】 [Table 1]

【0017】[0017]

【表2】 [Table 2]

【0018】本発明鋼である実験番号1,2,3,4,
8,10,16,18は磁束密度、鉄損共に優れた値を
示す。薄スラブより製造した実験番号18は連続鋳造ス
ラブより磁気特性が優れている。
Experiment Nos. 1, 2, 3, 4, which are the steels of the present invention.
8, 10, 16, and 18 show excellent values for both magnetic flux density and iron loss. Experiment No. 18 manufactured from a thin slab has better magnetic properties than a continuous cast slab.

【0019】冷延後の再結晶焼鈍において500℃から
焼鈍最高温度の間の平均昇温速度が200℃/sと本発
明の範囲外の実験番号5の材料は鉄損が高い。この原因
は成品板の粒径が小さかったためと考えられる。冷延後
の再結晶焼鈍において焼鈍最高温度が本発明の範囲より
低い実験番号6と9は結晶粒が細かくなり、本発明鋼よ
り磁性が劣る。T(℃)〜T(℃)−30℃の間の平均
冷速が100℃/sと本発明の範囲より大きい実験番号
7の場合も結晶粒が細かく、本発明鋼より磁性が劣る。
Si量が本発明鋼の範囲より多い実験番号11、Mn量
が本発明鋼の範囲より多い実験番号17は共に組織が細
かく、本発明鋼より磁性が劣る。C量が本発明鋼の範囲
より多い実験番号13およびNが本発明鋼の範囲より多
い実験番号14でも組織が細かくなり、鉄損が劣化す
る。S量が本発明鋼の範囲より多い実験番号15ではM
nSなどの非金属系介在物が多く生成し、それが結晶粒
径の微細化をもたらし、本発明鋼より磁性が劣る結果に
なっている。また、B量がB/Nで1.5と本発明鋼の
範囲より多い実験番号12も本発明鋼より磁性が劣る。
実験番号1,2の実施例は500℃以上での焼鈍時間が
10秒以下で実行されており、焼鈍時間の短縮が図られ
ているにもかかわらず本発明の範囲を満足していれば優
れた特性が確保できることを示している。
In the recrystallization annealing after cold rolling, the material of Experiment No. 5 having an average heating rate between 500 ° C. and the maximum annealing temperature of 200 ° C./s, which is out of the range of the present invention, has a high iron loss. This is considered to be due to the small particle size of the product plate. In Experiment Nos. 6 and 9 in which the maximum annealing temperature in the recrystallization annealing after cold rolling was lower than the range of the present invention, the crystal grains were finer and the magnetism was inferior to that of the steel of the present invention. In the case of Experiment No. 7 in which the average cooling rate between T (° C.) and T (° C.)-30 ° C. is 100 ° C./s, which is larger than the range of the present invention, the crystal grains are fine and the magnetism is inferior to the steel of the present invention.
Experiment No. 11 in which the amount of Si is larger than the range of the steel of the present invention, and Experiment No. 17 in which the amount of Mn is larger than the range of the steel of the present invention, both have fine structures and are inferior in magnetism to the steel of the present invention. Even in Experiment No. 13 in which the C content is larger than the range of the steel of the present invention and in Experiment No. 14 in which N is larger than the range of the steel of the present invention, the structure becomes finer, and iron loss deteriorates. In Experiment No. 15 in which the S content was larger than the range of the steel of the present invention, M
Many nonmetallic inclusions such as nS are generated, which leads to the refinement of the crystal grain size, resulting in inferior magnetism to the steel of the present invention. Experiment No. 12 in which the B content is 1.5 in B / N, which is more than the range of the steel of the present invention, also has lower magnetism than the steel of the present invention.
In the examples of Experiment Nos. 1 and 2, the annealing time at 500 ° C. or more was performed for 10 seconds or less, and if the annealing time was shortened and the range of the present invention was satisfied, it was excellent. It shows that the characteristics can be secured.

【0020】[0020]

【発明の効果】本発明によれば、高磁束密度で低鉄損の
無方向性電磁鋼板が得られ、モーター等のエネルギー損
失を下げ、地球温暖化などの環境問題の改善にも寄与す
る工業的に価値の高い発明である。
According to the present invention, a non-oriented electrical steel sheet having a high magnetic flux density and a low iron loss can be obtained, thereby reducing the energy loss of a motor and the like and contributing to the improvement of environmental problems such as global warming. This is a highly valuable invention.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 重量比でC:0.005%以下、N:
0.005%以下、Si:1.0%以下、P:0.15
%以下、S:0.01%以下、Al:1.0%以下、そ
して他の添加元素の総和を1%以下含む鋼を、冷延後の
焼鈍において500℃から焼鈍最高温度の間の平均昇温
速度を300℃/s以上とし、焼鈍最高温度をT(℃)
=910+50×{Si(wt%)+Al(wt%)}の関
係にある温度T℃超として、冷却過程においてT(℃)
からT(℃)−30℃の温度範囲の平均冷速を80℃/
s以下とすることを特徴とする磁気特性の優れた鋼板の
製造方法。
1. C: 0.005% or less by weight ratio, N:
0.005% or less, Si: 1.0% or less, P: 0.15
% Or less, S: 0.01% or less, Al: 1.0% or less, and a steel containing 1% or less of the total of other additional elements in the average after the cold rolling at 500 ° C. to the maximum annealing temperature. The rate of temperature rise is 300 ° C / s or more, and the maximum annealing temperature is T (° C).
= 910 + 50 x {Si (wt%) + Al (wt%)} as the temperature exceeds T ° C and T (° C) in the cooling process
The average cooling rate in the temperature range from T (° C) to 30 ° C is 80 ° C /
s or less, a method for producing a steel sheet having excellent magnetic properties.
【請求項2】 BをB/Nで1.5以下となるよう含有
させたことを特徴とする請求項1記載の高磁束密度、低
鉄損を有する無方向性電磁鋼板の製造方法。
2. The method for producing a non-oriented electrical steel sheet having a high magnetic flux density and a low iron loss according to claim 1, wherein B is contained at a B / N of 1.5 or less.
JP3165984A 1991-07-05 1991-07-05 Method for producing non-oriented electrical steel sheet having high magnetic flux density and low iron loss Expired - Lifetime JP2898793B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3165984A JP2898793B2 (en) 1991-07-05 1991-07-05 Method for producing non-oriented electrical steel sheet having high magnetic flux density and low iron loss

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3165984A JP2898793B2 (en) 1991-07-05 1991-07-05 Method for producing non-oriented electrical steel sheet having high magnetic flux density and low iron loss

Publications (2)

Publication Number Publication Date
JPH05186834A JPH05186834A (en) 1993-07-27
JP2898793B2 true JP2898793B2 (en) 1999-06-02

Family

ID=15822719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3165984A Expired - Lifetime JP2898793B2 (en) 1991-07-05 1991-07-05 Method for producing non-oriented electrical steel sheet having high magnetic flux density and low iron loss

Country Status (1)

Country Link
JP (1) JP2898793B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3333271A4 (en) * 2015-08-04 2018-07-04 JFE Steel Corporation Method for manufacturing non-oriented electromagnetic steel sheet with excellent magnetic properties
US10941458B2 (en) 2015-02-18 2021-03-09 Jfe Steel Corporation Non-oriented electrical steel sheet, production method therefor, and motor core

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6436199B1 (en) * 1999-09-03 2002-08-20 Kawasaki Steel Corporation Non-oriented magnetic steel sheet having low iron loss and high magnetic flux density and manufacturing method therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10941458B2 (en) 2015-02-18 2021-03-09 Jfe Steel Corporation Non-oriented electrical steel sheet, production method therefor, and motor core
EP3333271A4 (en) * 2015-08-04 2018-07-04 JFE Steel Corporation Method for manufacturing non-oriented electromagnetic steel sheet with excellent magnetic properties
US10975451B2 (en) 2015-08-04 2021-04-13 Jfe Steel Corporation Method for producing non-oriented electrical steel sheet having excellent magnetic properties

Also Published As

Publication number Publication date
JPH05186834A (en) 1993-07-27

Similar Documents

Publication Publication Date Title
JP6432173B2 (en) Non-oriented electrical steel sheet with good all-round magnetic properties
JP2020503444A (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP2022545027A (en) 600MPa class non-oriented electrical steel sheet and manufacturing method thereof
WO1996000306A1 (en) Method of manufacturing non-oriented electromagnetic steel plate having high magnetic flux density and low iron loss
JP2898793B2 (en) Method for producing non-oriented electrical steel sheet having high magnetic flux density and low iron loss
JP2898789B2 (en) Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties
JP2760013B2 (en) Method for producing high permeability magnetic material
JP3399726B2 (en) Manufacturing method of non-oriented electrical steel sheet with high magnetic flux density and low iron loss
JP3430833B2 (en) Non-oriented electrical steel sheet having excellent magnetic properties after strain relief annealing and method for producing the same
JP2787776B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JP3331401B2 (en) Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties all around
EP3859036A1 (en) Non-oriented electrical steel sheet and manufacturing method therefor
JPS6115929B2 (en)
JP3458682B2 (en) Non-oriented electrical steel sheet excellent in magnetic properties after strain relief annealing and method for producing the same
JP3352599B2 (en) Manufacturing method of non-oriented electrical steel sheet with high magnetic flux density
JP2898792B2 (en) Manufacturing method of non-oriented electrical steel sheet with excellent magnetism
JP3179986B2 (en) Method for producing unidirectional silicon steel sheet with excellent magnetic properties
JPH0797628A (en) Production of nonoriented silicon steel sheet high in magnetic flux density and low in core loss
JPH05186855A (en) Nonoriented silicon steel sheet excellent in magnetic property and its manufacture
JPH0726154B2 (en) Manufacturing method of low iron loss non-oriented electrical steel sheet
JP2515146B2 (en) Non-oriented electrical steel sheet manufacturing method
JPS62188756A (en) Grain-oriented foil of high saturation magnetic flux density and its production
JPH0617548B2 (en) Non-oriented electrical steel sheet with excellent rust resistance
JP3424178B2 (en) Non-oriented electrical steel sheet with low iron loss
JP3474594B2 (en) Manufacturing method of unidirectional electrical steel sheet with excellent thickness and thickness

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990202

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080312

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090312

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090312

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100312

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110312

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120312

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120312

Year of fee payment: 13